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Abstract

Because of the superiority in dealing with uncertainty expression, Dempster-Shafer

theory (D-S theory) is widely used in decision theory. In D-S theory, the basic

probability assignment (BPA) is the basis and core. Recently, some researchers

represent BPA on a N-dimension frame of discernment (FOD) as 2N-dimension

vector in Descartes coordinate system. However, the concept of orthogonality in

this method is confused and inexplicable. A new representation method of B-

PA is proposed in this paper. The BPA on a N-dimension FOD is represented as

N-dimension vector with parameters in this method. Then BPA is expressed as

subset of N-dimension Cartesian space. The essence of this method is to con-

vert BPA to probability distribution (PD) with parameters. Based on this method,

problems in D-S theory can be solved, which include the fusion of BPAs, the dis-

tance between BPAs, the correspondence between BPA and probability, and the

entropy of BPAs. This representation conforms to the definition of orthogonality,

and can get satisfactory computing results.
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1. INTRODUCTION

Dempster-Shafer theory (D-S theory) [6, 29], as an important and widely used

uncertain reasoning method, has been receiving increasingly attention. D-S theo-

ry assigns probabilities to the power set of events, so it can effectively deal with

uncertainty and unknown problems. Because of the superiority in pattern recogni-

tion [9, 21, 24] and decision making [1, 3], D-S theory has been applied in various

fields [26, 28, 27, 5, 41].

In D-S theory, A complete set of incompatible basic hypotheses is called a

frame of discernment (FOD), which represents all possible answers to a problem.

The degree of trust assigned to each subset of FOD is called the basic probability

assignment (BPA). Since the N-dimension FOD has 2N subsets, some researchers

represent the BPA as 2N-dimension vector in Descartes coordinate system [20, 4].

However, each dimension in Cartesian space is orthogonal to another. In other

words, the dimensions separately represented by any two subsets in the set are

mutually orthogonal. There are at least two problems. One is that how can two

sets with non-empty intersection be mutual orthogonal? The other is that how can

empty set represent a equipotent dimension with other non-empty sets? Because

of these problems, this method has great limitations.

Based on the idea of converting BPA to probability distribution (PD), a new

interpretation of D-S theory is proposed in this paper. The BPA on a N-dimension

FOD is represented as N-dimension vector with parameters in this method. Each
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dimension indicates a hypothesis in FOD. In fact, BPA is represented as a subset

of N-dimension space because of the variable parameters. Since the hypotheses

in FOD are incompatible, the problem of orthogonal is no longer exists. Based

on this representation method, several problems in D-S theory have been studied,

which include the fusion of BPAs, the distance between BPAs, the correspondence

between BPA and probability, and the entropy of BPAs.

The paper is organized as follows. In section 2, we review the basic definitions

about D-S theory, the fusion of BPAs, and the traditional vector representation of

BPA. In section 3, we propose and discuss the improved representation of BPA.

In section 4, we discuss the fusion of BPAs by the new method. In section 5,

we define and explain the distance between BPAs. In section 6, we discuss the

correspondence between BPA and probability. In section 7, we discuss the entropy

of BPAs. In section 8, we have a brief summarization.

2. PRELIMINARIES

2.1. Dempster-Shafer theory

D-S theory can be applied to expert systems, and has the ability to deal with

uncertain information. As an uncertain reasoning method, the main feature of the

evidence theory is to satisfy the weaker conditions than the Bayesian probability

theory, and it has the ability to directly express uncertainty and unknown.

Let Θ be an exhaustive set of all hypotheses of a random variable, and the

elements in Θ are mutually exclusive. The set Θ is called the frame of discernment

(FOD) [6, 29]. Let Θ have N elements, which is expressed as follows:

Θ = {H1,H2,H3, · · · ,HN}. (1)
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The power set of Θ, represented by 2Θ , contains all possible subsets of Θ. Obvi-

ously, the set 2Θ have 2N elements. Such that

2Θ = { /0,{H1},{H2}, · · · ,{HN},{H1∪H2},

{H1∪H3}, · · · ,Θ}.
(2)

A pivotal conception in D-S theory is the BPA. A BPA is a mapping m from 2Θ to

[0,1] defined as [6, 29]

m : 2Θ→ [0,1] , (3)

which satisfies the following conditions:

∑
A∈2Θ

m(A) = 1, (4)

m( /0) = 0. (5)

Based on the BPA m, belief function Bel and plausibility function Pl are defined

as follows [6, 29]:

Pl(A) = ∑
B∈2Θ;B∩A6= /0

m(B), (6)

Bel(A) = ∑
B∈2Θ;B⊆A

m(B). (7)

2.2. Dempster’s rule of combination

How to combine BPAs from different information sources is a major problem

in D-S theory [6, 38, 31, 25, 32, 36, 12]. Because of the great uncertainty of

belief function, BPAs from different sources are different. Dempster is the first

one to define a combination method [6]. Dempster’s rule is to get a new BPA by

calculating the orthogonal sum of the known BPAs.
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Given two BPAs, m(1) and m(2), let m(12) denote the BPA resulting from m(1)

and m(2). Using ⊕ to denote orthogonal sum, the Dempster’s rule of combination

can be expressed as follows [6]:

m(12) (A) =


0, A = /0,

µ ·∑A1∪A2=A m(1) (A1) ·m(2) (A2), A 6= /0,
(8)

where

µ = ∑
A1∪A2 6= /0

m(1) (A1) ·m(2) (A2). (9)

If we ignore the normalization factor, the above formula can be simplified as

m(12) (A) = ∑
A1∪A2=A

m(1) (A1) ·m(2) (A2). (10)

2.3. Vector representation of BPA

From a linear algebraic perspective, BPA set on a N-dimension FOD can be

represented as a 2N-dimension vector in Descartes coordinate system. Given a

FOD Θ = {H1,H2,H3, · · · ,HN}, the power set is 2Θ. Suppose that

Ai ∈ 2Θ
(
i = 1,2,3, · · · ,2N) . (11)

Then the BPA m set on Θ can be represented as a vector ~M, which is expressed as

~M = (m(A1),m(A2),m(A3), · · · ,m(A2N ))T . (12)

Moreover, Ai can be habitually defined as

i = 1+ ∑
j∈B

2 j, (13)

Ai = {H j| j ∈ B}. (14)
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Clearly, in this vector representation method, the dimensions separately rep-

resented by any two subsets in Θ are mutually orthogonal. However, at least two

problems have been caused. One is that how can two sets with non-empty inter-

section be mutual orthogonal? The other is that how can empty set represent a

equipotent dimension with other non-empty sets? Because of these problems, this

method has great limitations.

3. Improved representation of BPA

3.1. Proposed representation method
Definition 1. Given a FOD Θ = {H1,H2,H3, · · · ,HN}, the BPA m on Θ can be
represented as a vector ~M.

~M = (M1,M2,M3, · · · ,MN)
T , (15)

where

M j = ∑
Ai⊆Θ

m(Ai)κ(H j|Ai)

(
j = 1,2,3, · · · ,N; i = 1,2,3, · · · ,2N) , (16)

and the variable parameters κ(H j|Ai)

(
j = 1,2,3, · · · ,N; i = 1,2,3, · · · ,2N) satisfy

the following conditions:

i. κ(H j|Ai) = 0, i f H j /∈ Ai; (17)

ii. κ(H j|Ai) ∈ (0,1] , i f H j ∈ Ai; (18)

iii. ∑
H j∈Ai

κ(H j|Ai) = 1, f or a f ixed Ai ⊆Θ. (19)

~M is called basic probability assignment vector (BPAV), which is not a a vector

in the traditional sense as elements of ~M is not fully determined. Mi is called

probability assignment quantity (PAQ). It is clear that

N

∑
k=1

Mk = 1. (20)
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Figure 1: The example of a box containing color balls

κ(H j|Ai) is variable parameter, which cannot be identified only through the BPA

m. However, if we get enough information from other sources to identify these

parameters, then the BPA is converted to a probability distribution (PD).

Example 1. As shown in Figure 1, There is a box. All the information is known
as follow: 1)there are 100 balls in the box; 2)The balls are only red and blue;
3)50 of the balls are red; 20 of the balls are blue; the color of the remaining 30
balls is unknown.. Take a ball out of the box randomly.

The FOD here is Θ = {Red,Blue}. The BPA is m(Red) = 0.5,m(Blue) =
0.2,m(Θ) = 0.3. Using the proposed method, the BPA can be represented as

~M =
(
0.5+0.3κ(Red|Θ),0.2+0.3κ(Blue|Θ)

)T
, (21)

Clearly, if the color distribution of the remaining 30 balls is got, the parameters
κ(Red|Θ),κ(Blue|Θ) can be identified. For example, 20 of the remaining balls are
red, and 10 of them are blue. The parameters can be identified as follows:

κ(Red|Θ) =
2
3

; (22)

κ(Blue|Θ) =
1
3
. (23)

Then the vector ~M = (0.7,0.3)T. In fact, the BPA here is converted to a PD, and
P(Red) = ~M (1) ,P(Blue) = ~M (2).
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3.2. Geometric interpretation of the method

The essence of the proposed representation method is to convert BPA to PD

with parameters. The variability of the parameters indicates the fuzziness of BPA.

Vectors with variable parameters can be represented in Cartesian space. A PD is

a point in Cartesian space, while the BPA is a subset of the space.

Example 2. Given a FOD Θ= {H1,H2,H3}, the BPA m is m(H1)= 0.3, m(H2)=
0.1, m(H1,H2) = 0.2, m(H1,H3) = 0.2, m(Θ) = 0.2.

The vector representation of m is

~M = (0.3+0.2κ(H1|H1,H2)+0.2κ(H1|H1,H3)+0.2κ(H1|Θ),

0.1+0.2κ(H2|H1,H2)+0.2κ(H2|Θ),

0.2κ(H3|H1,H3)+0.2κ(H3|Θ))
T.

(24)

As shown in Figure 2, ~M can be represented in Cartesian space. The BPA is a
subset of the space, not a point. In some cases, the image can be used to represent
the BPA m or BPAV ~M.

4. Combination of BPAs

Definition 2. Suppose there are 2 PAQs from different information sources, M(1)
k

and M(2)
k , which are expressed as follows:

M(1)
k = ∑

Ai⊆Θ

m(1)(Ai)κ(Hk|Ai)

(
i = 1,2,3, · · · ,2N) , (25)

M(2)
k = ∑

A j⊆Θ

m(2)(A j)κ(Hk|A j)

(
j = 1,2,3, · · · ,2N) . (26)

8



0.5
0.45

0.4
0.35

0.3
0.25

M
2

0.2
0.15

0.10.9

0.8

0.7

M
1

0.6

0.5

0.4

0.4

0.3

0.2

0.1

0

0.3

M
3

Figure 2: Geometric interpretation of BPAV

The dot product · of M(1)
k and M(2)

k is defined as follows:

M(1)
k ·M

(2)
k =

2N

∑
i=1

2N

∑
j=1

m(1)(Ai)κ(Hk|Ai) ·m
(2)(A j)κ(Hk|A j)

=
2N

∑
i=1

2N

∑
j=1

m(Ai)
(1) ·m(2)(A j)

[
κ(Hk|Ai) ·κ(Hk|A j)

]
=

2N

∑
i=1

2N

∑
j=1

m(Ai)
(1) ·m(2)(A j)κ(Hk|Ai∩A j).

(27)

Definition 3. Suppose there are 2 BPAVs on the same FOD from different infor-
mation sources, ~M(1) and ~M(2), which are expressed as

~M(1) =
(

M(1)
1 ,M(1)

2 ,M(1)
3 , · · · ,M(1)

N

)T
, (28)

~M(2) =
(

M(2)
1 ,M(2)

2 ,M(2)
3 , · · · ,M(2)

N

)T
. (29)

The direct product ⊗ of ~M(1) and ~M(2) is defined as follows:

~M(1)⊗ ~M(2) =
(

M(1)
1 ·M

(2)
1 ,M(1)

2 ·M
(2)
2 ,M(1)

3 ·M
(2)
3 , · · · ,M(1)

N ·M
(2)
N

)T
. (30)
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Definition 4. Given 2 BPAVs on the same FOD from different information sources,
~M(1) and ~M(2), ~M(12) denotes the BPA resulting from combining ~M(1) and ~M(2).
~M(12) is defined as

~M(12) = ~M(1)⊗ ~M(2). (31)

In fact, defining combination in this way has exactly the same meaning as

Dempsters rule of combination as equation (10). It is easy to find that direct

product ⊗ is commutative and associative, which can prove that Dempsters rule

of combination is commutative and associative. Equation (31) can be extend-

ed to n different information sources. Suppose that ~Mc is the result of combing

~M(1), ~M(2), ~M(3), · · · , ~M(n). ~Mc can be expressed as

~Mc = ~M(1)⊗ ~M(2)⊗ ~M(3)⊗·· ·⊗ ~M(n). (32)

Example 3. Given a FOD Θ = {H1,H2}, suppose that m(1) and m(2) are two
BPAs on Θ from different sources. m(12) is the BPA after combination. The BPAs
are known as follows:

m(1)(H1) = 0.7, m(1)(H2) = 0.2, m(1)(H1,H2) = 0.1;

m(2)(H1) = 0.6, m(2)(H1,H2) = 0.4.
(33)

On the one hand, according to equation (10), m(12) can be calculated as

m(12)(H1) = 0.76, m(1)(H2) = 0.12, m(1)(H1,H2) = 0.04. (34)

On the other hand, combination can be realized through BPAV. The BPAV of m(1)

and m(2) separately are
~M(1) =

(
0.7+0.1κ(H1|Θ),0.2+0.1κ(H2|Θ)

)T ;
~M(2) =

(
0.6+0.4κ(H1|Θ),0.4κ(H2|Θ)

)T
.

(35)

Therefore, ~M(12) can be calculated as
~M(12) = ~M(1)⊗ ~M(2)

=
(
0.76+0.04κ(H1|Θ),0.12+0.04κ(H2|Θ)

)T
.

(36)

By observing equation (34) and equation (36), it can be found that the results are
exactly the same.
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5. Distance between BPAs

To quantify the similarity between BPAs, researchers have defined different

distances between BPAs and apply it to solve problems [8, 14, 22, 18, 23, 19,

17]. Based on the proposed representation method, a new definition of distance

D is proposed. D
(

m(1),m(2)
)

denotes the distance between m(1) and m(2), while

D
(

~M(1), ~M(2)
)

denotes the distance between two BPAVs, ~M(1) and ~M(2). The

proposed definition is based on the definition of distance in linear space.

Definition 5. ~M(1) and ~M(2) are expressed separately as

~M(1) =
(

M(1)
1 ,M(1)

2 ,M(1)
3 , · · · ,M(1)

N

)T
, (37)

~M(2) =
(

M(2)
1 ,M(2)

2 ,M(2)
3 , · · · ,M(2)

N

)T
. (38)

The distance between two BPAVs are defined as

D2
(

~M(1), ~M(2)
)
=

N

∑
i=1

(
M(1)

i −M(2)
i

)2
. (39)

Clearly, D
(

~M(1), ~M(2)
)

has the feature of fuzziness which is not a fixed value.

However, this definition is still valuable. As the BPQs satisfy equation (17)-(19),

the maximum and minimum of D can be calculated, represented by maxD and

minD respectively.Clearly,

maxD≤
√

2 and minD≥ 0. (40)

Example 4. Given a FOD Θ = {H1,H2}, the BPA m is as follows:

m(H1) = 0.5, m(H2) = 0.3, m(H1,H2) = 0.2. (41)

Another BPA m′ is

m′(H1) = p, m′(H2) = 0.9− p, m′(H1,H2) = 0.1, (42)
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Figure 3: The maxD2 and minD2 between m′ and m

where p takes 0, 0.1, 0.2, · · · , 0.9 respectively.
After calculating the distance D between m and m′, the results are shown as

Table 1 and Figure 3. From the results, when p is between 0.5 and 0.6, the distance
is smallest, which means m′ is the most similar to m. However, when p = 0, m′

and m have the greatest difference, and the distance between them is the biggest.

p maxD2 minD2

0 0.98 0.32
0.1 0.72 0.18
0.2 0.50 0.08
0.3 0.32 0.02
0.4 0.18 0
0.5 0.08 0
0.6 0.08 0
0.7 0.18 0
0.8 0.32 0.02
0.9 0.50 0.08

Table 1: The maxD2 and minD2 between m′ and m
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maxD is also called the identity distance, while minD is called the con f lict

distance. That means maxD is a measure of identity, and minD is a measure of

conflict. A low con f lict distance and high identity distance illustrate that the

BPAs are not in conflict, but also do not support each other.

Example 5. There is a BPA m on a FOD Θ = {H1,H2} getting by a known infor-
mation. Suppose that

m(H1) = 0.8, m(H2) = 0.1, m(H1,H2) = 0.1. (43)

Now, here comes a new information, by which a BPA mnew is getting. However
the new information is useless, which means mnew (Θ) = 1. There is no additional
information. It can be found that minD, or con f lict distance, between m and
mnew is 0, so the new information do not conflict with known information. maxD
between m and mnew is 1.27, so the identity distance is high, which means the
new information do not support m. Therefore, the identity distance and con f lict
distance meet the actual situation.

6. Approximation of BPA with probability

As a BPA assigns probability to each of all the 2N subsets of the FOD Θ

with |Θ| = N. Therefore, the BPA has 2N −1 degrees of freedom, which is large

to store and process. Then the problem of approximating BPA with probability

arises [35, 34, 2, 13, 11, 10, 40]. A famous example is pignistic transformation

[33]. Given a BPA m on FOD Θ. The problem here is to find a transformation

function P : Θ→ [0,1].

Given a BPA m on Θ = {H1,H2,H3, · · · ,HN}, pignistic function Ppignistic is

defined as follows [33]:

Ppignistic (Hi) = ∑
A⊂Θ,Hi∈A

1
|A|

m(A)
1−m( /0)

, m( /0) 6= 0, (44)
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where |A| is the cardinality of subset A.

Clearly, belief function Bel and plausibility function Pl are both transforma-

tion functions. Belief function and plausibility function can be redefined based on

the proposed representation method.

Definition 6. Given a FOD Θ = {H1,H2,H3, · · · ,HN}, the BPAV ~M is

~M = (M1,M2,M3, · · · ,MN)
T . (45)

The belief function Bel and plausibility function Pl can be defined as

Bel (Hi) = min{Mi} (i = 1,2,3, · · · ,N) , (46)

Pl (Hi) = max{Mi} (i = 1,2,3, · · · ,N) . (47)

Some new transformation functions are defined based on the geometric inter-

pretation of the proposed representation method, which has been introduced in

section 3.

Definition 7. Suppose a BPAV ~M on FOD Θ = {H1,H2,H3, · · · ,HN}. Use π to
denote the area formed by BPAV ~M in N-dimension space. The transformation
function PCOG is defined as

(PCOG(H1),PCOG(H2),PCOG(H3), · · · ,PCOG(HN)) =COG{π} , (48)

where COG{π} means the centre of gravity of area π .

Definition 8. Suppose a BPAV ~M on FOD Θ = {H1,H2,H3, · · · ,HN}. Use π to
denote the area formed by BPAV ~M in N-dimension space. Suppose the vertexes
of π are {V1,V2,Vk}. The transformation function PSSD and PSD are separately
defined as

(PSSD(H1),PSSD(H2),PSSD(H3), · · · ,PSSD(HN)) = argmin
P∈RN

k

∑
i=1
‖P−Vi‖2, (49)

(PSD(H1),PSD(H2),PSD(H3), · · · ,PSD(HN)) = argmin
P∈RN

k

∑
i=1
‖P−Vi‖, (50)

where ‖P−Vi‖ is the distance between P and Vi.
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Figure 4: Approximation of BPA with probability

Apparently, function PSSD and PSD are calculated from the square sum of dis-

tance and the sum of distance separately.

Example 6. Use the case in Example 2. The BPA is approximated to probability,
and the results are shown as Table 2 and Figure 4. It can be seen that the results
are reasonable.

Ppignistic PCOG PSSD PSD

P(H1) 0.5667 0.5380 0.5570 0.5760
P(H2) 0.2667 0.2810 0.2710 0.2620
P(H3) 0.1666 0.1810 0.1710 0.1620

Table 2: Approximation of BPA with probability
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7. Entropy of BPAs

Shannon has first proposed Shannon entropy in information theory [30]. En-

tropy for D-S theory indicate the uncertainty of belief function. Many researchers

have proposed definitions of entropy of BPA [16, 7, 15, 37, 39]. Based on the

proposed method, two types of definition of entropy are given.

Definition 9. Given a BPA m on FOD Θ = {H1,H2,H3, · · · ,HN} and a transfor-
mation function P : Θ→ [0,1], the entropy of m, EP, is defined as

EP =
N

∑
i=1

P(Hi) log
(

1
P(Hi)

)
. (51)

Another type of entropy is defined by regarding the BPAV as PD. Then the

entropy is got by applying the Shannon entropy formula.

Definition 10. Given a BPAV ~M = (M1,M2,M3, · · · ,MN)
T on FOD Θ, the entropy

of ~M, EQ, is defined as

EQ =
N

∑
i=1

Mi log
(

1
Mi

)
. (52)

Clearly, EQ is not a fixed value. The maximum and minimum value of EQ are

respectively written as maxEQ and minEQ. The meanEQ is defined as

meanEQ =
1
2
(maxEQ +minEQ) . (53)

In fact, the entropy of BPA comes from two parts, one is measure of conflict,

the other is measure of non-specificity. Shannon entropy can measure the first

part, while |maxEQ−minEQ| can measure the second. Highly non-specific BPA

has a huge gap between maxEQ and minEQ. Therefore, meanEQ is a good measure

of uncertainty, which considers both sources that cause uncertainty.
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Example 7. Given a FOD Θ = {H1,H2}, the BPA m is

m(H1) = 0.3, m(H2) = t, m(H3) = 0.7− t, (54)

where t takes 0, 0.1, 0.2, · · · , 0.7 respectively.
The entropy EPCOG , maxEQ, minEQ and meanEQ of m are calculated, and the

results as shown as Table 3 and Figure 5. It can be found from the figure the
|maxEQ−minEQ| increase with m(H1,H2). Compared to EPCOG , meanEQ is a
better definition of entropy, which more fully expresses uncertainty.

t EPCOG maxEQ minEQ meanEQ

0 0.93 1 0 0.50
0.1 0.97 1 0.47 0.73
0.2 0.99 1 0.72 0.86
0.3 1 1 0.88 0.94
0.4 0.99 1 0.88 0.94
0.5 0.97 1 0.88 0.94
0.6 0.93 0.97 0.88 0.93
0.7 0.88 0.88 0.88 0.88

Table 3: The entropy of BPA

8. Conclusion

In this paper, a new representation method of BPA is proposed. The BPA on a

N-dimension FOD is represented as N-dimension vector with variable parameters

in this method. Then BPA is expressed as subset of N-dimension Cartesian space

and has a clear geometric interpretation. Then the methods in Bayesian theory can

be applied. With this representation, problems in D-S theory can be solved, which

include the fusion of BPAs, the distance between BPAs, the approximation of

BPA with probability, and the entropy of BPAs. This representation conforms to
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Figure 5: The entropy of BPA

the definition of orthogonality, and can get satisfactory computing results. As the

proposed method is basic work in D-S theory, it can be applied to more problems

in this field.
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