Classify Positive Integers to Prove Collatz Conjecture by the Mathematical Induction

Zhang Tianshu
Zhanjiang city, Guangdong province, China
Email: chinazhangtianshu@126.com
china.zhangtianshu@tom.com

Abstract

In this article, the author uses the mathematical induction, classifies positive integers gradually, and passes necessary operations by the operational rule to achieve finally the purpose proving Collatz conjecture.

AMS subject classification: 11P32, 11A25 and 11Y55

Keywords: Collatz conjecture, the operational rule, the mathematical induction, classify positive integers, operational routes

1. Introduction

The Collatz conjecture also called the $3x+1$ mapping, $3n+1$ problem, Hasse’s algorithm, Kakutani’s problem, Syracuse algorithm, Syracuse problem, Thwaites conjecture and Ulam’s problem, etc. Yet it is still both unproved and un-negated a conjecture ever since named after Lothar Collatz in 1937, [1].

2. A Few Bits of Basic Concepts

The Collatz conjecture states that take any positive integer n, if n is even, divide it by 2 to get $n/2$; if n is odd, multiply it by 3 and add 1 to get $3n+1$. Repeat the process indefinitely, then, no matter what positive integer you
start with, you will always eventually reach a result of \(I \), [2] and [3].

Let us regard aforesaid operational stipulations as the operational rule.

Begin with any positive integer or integer’s expression to operate by the operational rule continuously, so form successive integers or integer’s expressions. We regard such consecutive integers or integer’s expressions plus synclastic arrowheads among them as an operational route.

If a positive integer’s expression \(P_{ie} \) or integer \(P \) exists at an operational route, then may term the operational route “an operational route via \(P_{ie} \) or \(P \)”. Generally speaking, integer’s expressions at an operational route have a common variable or some variables which can transform into a variable.

Two operational routes via \(P_{ie} \) branch from \(P_{ie} \) or an integer’s expression after pass operations of \(P_{ie} \).

3. Judging Criteria and the Classified Proof

Prove the Collatz conjecture by the mathematical induction [4], as follows.

(1) From
\[
1 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 2 \rightarrow 1; \quad 3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 4 \rightarrow 2 \rightarrow 1; \quad 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 6 \rightarrow 3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 9 \rightarrow 28 \rightarrow 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 12 \rightarrow 6 \rightarrow 3 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 14 \rightarrow 7 \rightarrow 22 \rightarrow 11 \rightarrow 34 \rightarrow 17 \rightarrow 52 \rightarrow 26 \rightarrow 13 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 15 \rightarrow 46 \rightarrow 23 \rightarrow 70 \rightarrow 35 \rightarrow 106 \rightarrow 53 \rightarrow 160 \rightarrow 80 \rightarrow 40 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1; \quad 16 \rightarrow 8 \rightarrow
4→2→1; 17→52→26→13→40→20→10→5→16→8→4→2→1; 18→9→28→14→7→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1 and
19→58→29→88→44→22→11→34→17→52→26→13→40→20→10→5→16→8→4→2→1, get that every positive integer ≤19 suits the conjecture.

(2) Suppose that \(n \) suits the conjecture, where \(n \) is an integer ≥19.

(3) Prove that positive integer \(n+1 \) suits the conjecture too.

Before make the proof, it is necessary to prepare judging criteria concerned.

Theorem 1 If an integer’s expression at an operational route via integer’s expression \(P_{ie} \) is smaller than \(P_{ie} \), and that \(P_{ie} \) contains \(n+1 \), then \(n+1 \) suits the conjecture.

For example, if \(P_{ie}=31+3^{2}\eta \), and \(P_{ie} \) contains \(n+1 \), where \(\eta \geq 0 \), then from \(27+2^{3}\eta \rightarrow 82+3\times 3^{2}\eta \rightarrow 124+3^{2}\times 2^{2}\eta \rightarrow 62+3^{2}\times 2\eta \rightarrow 31+3^{2}\eta \geq 27+2^{3}\eta \), conclude that \(n+1 \) suits the conjecture. For another example, if \(P_{ie}=5+2^{2}\mu \), and \(P_{ie} \) contains \(n+1 \), where \(\mu \geq 0 \), then from \(5+2^{2}\mu \rightarrow 16+3\times 2^{2}\mu \rightarrow 8+3\times 2\mu \rightarrow 4+3\mu <5+2^{2}\mu \), conclude that \(n+1 \) suits the conjecture.

Proof Suppose that there is an integer’s expression \(C_{ie} \) at an operational route via \(P_{ie} \), and \(C_{ie} < P_{ie} \).

Since \(P_{ie} \) and \(C_{ie} \) exist at an operational route, and \(C_{ie} < P_{ie} \), then, when their common variable equals some fixed value such that \(P_{ie}=n+1 \), let \(C_{ie}=\text{integer } m \), so it has \(m < n+1 \). Undoubtedly operations of \(n+1 \) can pass operations of \(m \) at the operational route via \(n+1 \) to reach 1, because each and every positive integer < \(n+1 \) was supposed to suit the conjecture.
Lemma 1: If an integer’s expression or an integer at an operational route suits the conjecture, then each and every integer’s expression or each and every integer at the operational route suits the conjecture too.

Theorem 2: If an operational route via integer’s expression Q_{ie} and an operational route via integer’s expression P_{ie} intersect, and that an integer’s expression at the operational route via Q_{ie} is smaller than P_{ie}, in addition P_{ie} contains $n+1$, then $n+1$ suits the conjecture, where $P_{ie} \neq Q_{ie}$.

For example, $P_{ie} = 95 + 3^2 \times 2^7 \phi$, and P_{ie} contains $n+1$, where $\phi \geq 0$, then from

\[95 + 3^2 \times 2^7 \phi \rightarrow 286 + 3^3 \times 2^7 \phi \rightarrow 143 + 3^3 \times 2^6 \phi \rightarrow 430 + 3^4 \times 2^6 \phi \rightarrow 215 + 3^4 \times 2^5 \phi \rightarrow 646 + 3^5 \times 2^5 \phi \rightarrow 323 + 3^5 \times 2^4 \phi \rightarrow 970 + 3^6 \times 2^4 \phi \rightarrow 485 + 3^6 \times 2^3 \phi \rightarrow 1456 + 3^7 \times 2^3 \phi \rightarrow 728 + 3^7 \times 2^2 \phi \rightarrow 364 + 3^7 \times 2 \phi \rightarrow 182 + 3^7 \phi \rightarrow \ldots \]

↑121 + $3^6 \times 2 \phi \rightarrow 242 + 3^6 \times 2^2 \phi \rightarrow 484 + 3^6 \times 2^3 \phi \rightarrow 161 + 3^3 \times 2^3 \phi \rightarrow 322 + 3^3 \times 2^4 \phi \rightarrow 322 + 3^6 \times 2^3 \phi \rightarrow 107 + 3^4 \times 2^4 \phi \rightarrow 214 + 3^4 \times 2^5 \phi \rightarrow 71 + 3^3 \times 2^5 \phi < 95 + 3^2 \times 2^7 \phi$, conclude that $n+1$ suits the conjecture.

Proof: Suppose that there is an integer’s expression D_{ie} at an operational route via Q_{ie} and $D_{ie} < P_{ie}$, in addition the operational route via Q_{ie} and an operational route via P_{ie} intersect at A_{ie}.

When their common variable equals some fixed value such that $P_{ie} = n+1$, let $D_{ie} =$ integer μ, and $A_{ie} =$ integer ζ, so it has $\mu < n+1$. Then, operations of ζ can pass operations of μ at the operational route via ζ to reach 1 according to Lemma 1. Like that, operations of $n+1$ can pass operations of ζ at the operational route via $n+1$ to reach 1.

Lemma 2: If an operational route via integer’s expression Q_{ie} and an
operational route via integer’s expression P_{ie} are at indirect connection, and that an integer’s expression at the operational route via Q_{ie} is smaller than P_{ies}, in addition P_{ie} contains $n+1$, then $n+1$ suits the conjecture. What is called the indirect connection? Such as an operational route via Q_{ie} intersects an operational route via R_{ies}, and the operational route via R_{ie} intersects an operational route via P_{ie}, yet the operational route via Q_{ie} intersects not the operational route via P_{ies}, then the operational route via Q_{ie} and the operational route via P_{ie} are at the indirect connection.

Lemma 3 · If an integer’s expression at an operational route suits the conjecture, then each and every integer’s expression at every operational route that intersects directly the operational route and connects indirectly with the operational route suits the conjecture.

For example, on the supposition that integer’s expression C_{ie} at an operational route via integer’s expression A_{ie} suits the conjecture, if the operational route via A_{ie} and an operational route via integer’s expression B_{ie} intersect on integer’s expression X_{ie}, then X_{ie} suits the conjecture according to Lemma 1; like the reason, each and every integer’s expression at the operational route via B_{ie} suits the conjecture. If the operational route via A_{ie} and an operational route via integer’s expression P_{ie} are at indirect connection, then each and every integer’s expression at the operational route via P_{ie} suits the conjecture, as long as apply continuously aforementioned way of doing the thing, in line for.
By now, let us set to prove the Collatz conjecture progressively, ut infra.

Proof. According to fore-prepared theorems and lemmas, on balance, must classify positive integers, then find out a relation between each class which possibly contains $n+1$ and another class which is smaller than the former, to prove that $n+1$ suits the conjecture.

It is well known that positive integers are divided into positive even numbers and positive odd numbers.

For even numbers $2k$ with $k \geq 1$, from $2k \rightarrow k < 2k$, conclude that if $n+1 \in 2k$, then $n+1$ suits the conjecture according to Theorem 1.

Secondly, for all unproved positive odd numbers, divide them into two genera, i.e. $5+4k$ and $7+4k$, where $k \geq 4$.

For $5+4k$, from $5+4k \rightarrow 16+12k \rightarrow 8+6k \rightarrow 4+3k < 5+4k$, conclude that if $n+1 \in 5+4k$, then $n+1$ suits the conjecture according to Theorem 1.

Also divide $7+4k$ into 3 sorts, i.e. $15+12c$, $19+12c$ and $23+12c$, where $c \geq 0$.

For $23+12c$, from $15+8c \rightarrow 46+24c \rightarrow 23+12c < 15+8c$, conclude that if $n+1 \in 23+12c$, then $n+1$ suits the conjecture according to Theorem 1.

For $15+12c$ and $19+12c$ when $c = 0$, they were proved to suit the conjecture fore. So only need us to prove $15+12c$ and $19+12c$ where $c \geq 1$.

For $15+12c$ and $19+12c$ where $c \geq 1$, we will operate them right along, so that expound the relation that they act in accordance with fore-prepared several judging criteria.

Firstly, operate $15+12c$ by the operational rule successively, as follows.
\[15+12c \rightarrow 46+36c \rightarrow 23+18c \rightarrow 70+54c \rightarrow 35+27c \]

\[d=2e+1: 29+27e \ (1) \quad e=2f: 142+486f \rightarrow 71+243f \]

\[\bullet 35+27c \downarrow \rightarrow c=2d+1: 31+27d \uparrow \rightarrow d=2e: 94+162e \rightarrow 47+81e \uparrow \rightarrow e=2f+1: 64+81f \ (2)\]

\[c=2d: 106+162d \rightarrow 53+81d \downarrow \rightarrow d=2e: 214+1458e \rightarrow 107+729e \downarrow \rightarrow e=2f+1: 64+81f \ (3)\]

\[d=2e: 160+486e \quad e=2f: 202+486f \rightarrow 101+243f \]

\[g=2h+1: 200+243h \ (4) \quad f=2g: 304+1458g \rightarrow 152+729g \downarrow \rightarrow g=2h+1: 418+729h \downarrow \rightarrow e=2f+1: 29+27e \ (1)\]

\[\text{where mark (1)}, \quad 29+27e < 51+48e, \text{so if } n+1 \in 51+48e, \text{then } n+1 \text{ suits the conjecture according to Theorem 1.} \]

Annotation:
(1) Each of letters c, d, e, f, g, h … etc at listed above operational routes expresses each of natural numbers plus 0.
(2) Also, there are ♣↔♣, ♥↔♥, ♠↔♠, and ♦↔♦.
(3) Aforesaid two points are suitable to latter operational routes of 19+12c similarly.

In the course of operation for \(15+12c/19+12c\) by the operational rule, if an operational result is smaller than a kind of \(15+12c/19+12c\), and that it first appears at an operational route of \(15+12c/19+12c\), then let us term the operational result “№ 1 satisfactory operational result”.

Hereupon conclude six kinds of \(15+12c\) derived monogamously from № 1 satisfactory operational results at the bunch of operational routes of \(15+12c\).

If \(n+1\) ∈ a kind in them, then \(n+1\) suits the conjecture, as listed below.

From c=2d+1 and d=2e+1, get c=2d+1=2(2e+1)+1=4e+3, then 15+12c=51+48e
\[=51+3\times2^4c \rightarrow 154+3^2\times2^4c \rightarrow 77+3^2\times2^3c \rightarrow 232+3^3\times2^3c \rightarrow 116+3^3\times2^2c \rightarrow 58+3^3\times2e \rightarrow 29+27e \]
where mark (1), and 29+27e < 51+48e, so if \(n+1 \in 51+48e\), then \(n+1\) suits the conjecture according to Theorem 1.
From $c=2d+1$, $d=2e$ and $e=2f+1$, get $c=2d+1=4e+1=4(2f+1)+1=8f+5$, then $15+12c=75+96f=75+3^2f\rightarrow 226+3^2\times 2^5f\rightarrow 113+3^2\times 2^4f\rightarrow 340+3^2\times 2^3f\rightarrow 170+3^2\times 2^3f\rightarrow 85+3^2\times 2^2f\rightarrow 256+3^2\times 2^2f\rightarrow 128+3^2\times 2^1f\rightarrow 64+81f$ where mark (2), and $64+81f < 75+96f$, so if $n+1 \in 75+96f$, then $n+1$ suits the conjecture according to Theorem 1.

From $c=2d$, $d=2e+1$ and $e=2f+1$, get $c=2d=4e+2=4(2f+1)+2=8f+6$, then $15+12c=87+96f=87+3\times 2^5f\rightarrow 262+3\times 2^5f\rightarrow 131+3\times 2^4f\rightarrow 710+3\times 2^4f\rightarrow 406+3\times 2^4f\rightarrow 229+3\times 2^3f\rightarrow 128+3\times 2^3f\rightarrow 64+81f$ where mark (3), and $74+81f < 87+96f$, so if $n+1 \in 87+96f$, then $n+1$ suits the conjecture according to Theorem 1.

From $c=2d+1$, $d=2e$, $e=2f$, $f=2g+1$ and $g=2h+1$, get $c=2d+1=4e+1=8f+1=8(2g+1)+1=16g+9=16(2h+1)+9=32h+25$, then $15+12c=315+384h=315+3\times 2^7h\rightarrow 946+3^2\times 2^7h\rightarrow 473+3^2\times 2^6h\rightarrow 1420+3^2\times 2^5h\rightarrow 710+3^2\times 2^5h\rightarrow 355+3^2\times 2^4h\rightarrow 1066+3^2\times 2^4h\rightarrow 533+3^2\times 2^3h\rightarrow 1600+3^2\times 2^3h\rightarrow 800+3^2\times 2^3h\rightarrow 400+3^2\times 2^3h\rightarrow 200+243h$ where mark (4), and $200+243h < 315+384h$, so if $n+1 \in 315+384h$, then $n+1$ suits the conjecture according to Theorem 1.

From $c=2d$, $d=2e+1$, $e=2f$, $f=2g+1$ and $g=2h$, get $c=2d=2(2e+1)=4e+2=8f+2=8(2g+1)+2=16g+10=32h+10$, then $15+12c=135+384h=135+3\times 2^7h\rightarrow 406+3^2\times 2^7h\rightarrow 203+3^2\times 2^6h\rightarrow 610+3^2\times 2^6h\rightarrow 305+3^2\times 2^5h\rightarrow 916+3^2\times 2^5h\rightarrow 458+3^2\times 2^4h\rightarrow 229+3^2\times 2^3h\rightarrow 688+3^2\times 2^3h\rightarrow 344+3^2\times 2^3h\rightarrow 86+243h$ where mark (5), and $86+243h < 135+384h$, so if $n+1 \in 135+384h$, then $n+1$ suits the conjecture according to Theorem 1.

From $c=2d$, $d=2e$, $e=2f$, $f=2g$ and $g=2h$, get $c=2d=32h$, then $15+12c=15+3^2h\rightarrow 46+3^2\times 2^5h\rightarrow 70+3^2 \times 2^6h\rightarrow 35+3^2\times 2^5h\rightarrow 106+3^2\times 2^5h\rightarrow 53+3^2\times 2^4h\rightarrow 106+3^2\times 2^4h\rightarrow 60+3^2\times 2^4h\rightarrow 10+243h$ where mark (6), and
10+243h<15+384h, so if \(n+1 \in 15+384h \), then \(n+1 \) suits the conjecture according to Theorem 1.

Secondly, operate \(19+12c \) by the operational rule successively, as follows.

\[
19+12c \rightarrow 58+36c \rightarrow 29+18c \rightarrow 88+54c \rightarrow 44+27c
\]

\[
d=2e: 11+27e (a) \quad e=2f: 37+81f (\beta)
\]

\[
\bullet 44+27c \downarrow \rightarrow c=2d: 22+27d \uparrow \rightarrow d=2e+1: 48+162e (v)
\]

\[
c=2d+1: 214+162d \rightarrow 107+81d \downarrow \rightarrow d=2e: 322+486e (\varphi)
\]

\[
d=2e+1: 194+81e \downarrow \rightarrow e=2f: 47+81f (\gamma)
\]

\[
e=2f+1: 526+486f (\varphi)
\]

\[
g=2h: 119+243h (\delta)
\]

\[
f=2g+1: 138+243g \uparrow \rightarrow g=2h+1: 1444+1458h \rightarrow 722+729h \uparrow \rightarrow \ldots
\]

\[
\bullet 466+486f \rightarrow 233+243f \uparrow \rightarrow f=2g: 700+1458g \rightarrow 350+729g \downarrow \rightarrow g=2h+1: 3238+4374h \downarrow
\]

\[
g=2h: 175+729h \downarrow \rightarrow \ldots \ldots
\]

\[
\bullet 322+486e \rightarrow 161+243e \uparrow \rightarrow e=2f: 484+1458f \rightarrow \ldots
\]

\[
\bullet 526+486f \rightarrow 263+243f \downarrow \rightarrow f=2g: 790+1458g \rightarrow \ldots
\]

\[
f=2g+1: 253+243g \downarrow \rightarrow g=2h+1: 248+243h (\zeta)
\]

\[
g=2h: 760+1458h \rightarrow \ldots
\]

Like that, conclude six kinds of \(19+12c \) derived monogamously from No1 satisfactory operational results at the bunch of operational routes of \(19+12c \).

If \(n+1 \in a \) kind in them, then \(n+1 \) suits the conjecture, as listed below.

From \(c=2d \) and \(d=2e \), get \(c=2d=4e \), then \(19+12c=19+48e=19+3 \times 2^4e \rightarrow 58+3 \times 2^4e \)

\[
\rightarrow 29+3 \times 2^4e \rightarrow 44+3 \times 2^4e \rightarrow 11+27e \text{ where mark } (a), \text{ and}
\]

\[
11+27e<19+48e, \text{ so if } n+1 \in 19+48e, \text{ then } n+1 \text{ suits the conjecture according to Theorem 1.}
\]

From \(c=2d, d=2e+1 \), and \(e=2f \), get \(c=2d=2(2e+1)=4e+2=8f+2 \), then \(19+12c=43+96f=43+3 \times 2^2f \rightarrow 130+3 \times 2^2f \rightarrow 65+3 \times 2^2f \rightarrow 196+3 \times 2^2f \rightarrow 98+3 \times 2^2f \rightarrow 49+3 \times 2^2f \)

\[
\rightarrow 148+3 \times 2^2f \rightarrow 74+3 \times 2^2f \rightarrow 37+81f \text{ where mark } (\beta), \text{ and } 37+81f < 43+96f, \text{ so if}
\]
From \(c=2d+1 \), \(d=2e+1 \) and \(e=2f \), get \(c=2d+1=4e+3=8f+3 \), then 19+12c=55+96f
=55+3\times2^3f\rightarrow166+3^2\times2^3f\rightarrow83+3^2\times2^4f\rightarrow250+3^3\times2^4f\rightarrow125+3^3\times2^3f\rightarrow376+3^4\times2^3f\rightarrow
188+3^4\times2^2f\rightarrow94+3^4\times2^1f\rightarrow47+81f \) where mark \((\gamma)\), and 47+81f < 55+96f, so if \(n+1 \in 55+96f \), then \(n+1 \) suits the conjecture according to Theorem 1.

From \(c=2d+1 \), \(d=2e+1 \), \(e=2f+1 \), \(f=2g+1 \) and \(g=2h \), get \(c=2d=2(2e+1)=4e+2=4(2f+1)+2=8f+6=8(2g+1)+6=16g+14=32h+14 \), then 19+12c=187+384h=187+3\times2^7h\rightarrow562+3^2\times2^7h\rightarrow281+3^2\times2^6h\rightarrow844+3^2\times2^6h\rightarrow422+3^2\times2^5h\rightarrow211+3^2\times2^4h\rightarrow634+3^2\times2^4h\rightarrow317+3^4\times2^3h\rightarrow952+3^4\times2^3h\rightarrow476+3^4\times2^2h\rightarrow238+3^4\times2^1h\rightarrow119+243h \) where mark \((\delta)\), and 119+243h<187+384h, so if \(n+1 \in 187+384h \), then \(n+1 \) suits the conjecture according to Theorem 1.

From \(c=2d+1 \), \(d=2e+1 \), \(e=2f+1 \), \(f=2g+1 \) and \(g=2h+1 \), get \(c=2d+1=2(2e+1)=4e+3=4(2f+1)+1=8f+5=16g+5=16(2h+1)+5=32h+21 \), then 19+12c=271+384h=271+3\times2^7h\rightarrow814+3^2\times2^7h\rightarrow407+3^2\times2^6h\rightarrow1222+3^2\times2^6h\rightarrow611+3^2\times2^5h\rightarrow1834+3^2\times2^5h\rightarrow917+3^2\times2^4h\rightarrow2752+3^2\times2^4h
\rightarrow1376+3^2\times2^3h\rightarrow688+3^2\times2^3h\rightarrow344+3^2\times2^2h\rightarrow172+243h \) where mark \((\epsilon)\), and 172+243h<271+384h, so if \(n+1 \in 271+384h \), then \(n+1 \) suits the conjecture according to Theorem 1.

From \(c=2d+1 \), \(d=2e+1 \), \(e=2f+1 \), \(f=2g+1 \) and \(g=2h+1 \), get \(c=2d+1=2(2e+1)=4e+3=4(2f+1)+1=8f+7=8(2g+1)+7=16(2h+1)+15=32h+31 \), then 19+12c=391+384h
=391+3\times2^7h\rightarrow1174+3^2\times2^7h\rightarrow587+3^2\times2^6h\rightarrow1762+3^2\times2^6h\rightarrow881+3^2\times2^5h\rightarrow2644+3^4\times2^5h\rightarrow1322+3^4\times2^4h\rightarrow661+3^4\times2^4h\rightarrow1984+3^4\times2^3h\rightarrow992+3^4\times2^3h\rightarrow496+3^4\times2^1h\rightarrow
248+243h \) where mark \((\zeta)\), and 248+243h < 391+384h, so if \(n+1 \in 391+384h \), then \(n+1 \) suits the conjecture according to Theorem 1.
then \(n + 1\) suits the conjecture according to Theorem 1.

It is obvious that if \(n + 1\) belongs within a kind of \(15+12c/19+12c\) derived from a \(\mathbb{N}_0\) satisfactory operational result, then \(n + 1\) suits the conjecture.

It is observed that variables \(d, e, f, g, h\ldots\) etc. of integer’s expressions appear at two bunches of operational routes of \(15+12c\) and \(19+12c\), in fact, the purpose which substitutes \(c\) by them is that in order to avoid the confusion and for convenience. On the contrary, let \(\chi\) represent variables \(d, e, f, g, h\), etc. intensively, but \(\chi\) can not represent the variable \(c\) directly.

After substitute variables \(d, e, f, g, h\) and otherwise by variable \(\chi\), the oddity of part integer’s expressions that contain the variable \(\chi\) at operational routes of \(15+12c/19+12c\) is still indeterminate. Or rather, for every such integer’s expression, both regard it as an odd number to operate, and regard it as an even number to operate. We thus label such integer’s expressions “odd-even expressions”.

For any odd-even expression at the bunch of operational routes of \(15+12c/19+12c\), two kinds of operations synchronize at itself.

After regard an odd-even expression as an odd number to operate, get a greater operational result \(>\) itself. Yet after regard it as an even number to operate, get a smaller operational result \(<\) itself.

Moreover, pass operations for each odd-even expression, the bunch of operational routes of \(15+12c/19+12c\) adds an operational route inevitably.

Begin with an integer’s expression to operate by the operational rule
continuously, every operational route via consecutive greater operational results will be getting longer and longer, and that the sum of constant term plus coefficient of χ of integer’s expression appeared thereon is getting greater and greater on the whole, along continuation of operations.

On the other, for a smaller operational result in synchronism with a greater operational result, if it can be divided by 2^μ with $\mu \geq 2$ to get an even smaller integer’s expression, and that once the even smaller integer’s expression is first smaller than a kind of $\frac{15+12c}{19+12c}$, then the even smaller integer’s expression is the very a №1 satisfactory operational result, accordingly can derive the kind of $\frac{15+12c}{19+12c}$ from it, so operations at the operational route may stop at here.

If the even smaller integer’s expression is still greater than any kind of $\frac{15+12c}{19+12c}$, or the smaller operational result is still an odd-even expression, then this needs us continue to operate by the operational rule.

By this token, on the one hand, operational routes at the bunch of operational routes of $\frac{15+12c}{19+12c}$ increase continually always; on the other hand, operational routes at the bunch of operational routes of $\frac{15+12c}{19+12c}$ reduce continually always.

Begin with any kind of $\frac{15+12c}{19+12c}$ to operate successively by the operational rule, certainly can educe or discover a №1 satisfactory operational result about itself, so long as the operational route proceed along consecutive smaller operational results.
Can derive at least a kind of $15+12c/19+12c$ from a No1 satisfactory operational result, for examples, $15+12(1+2^{57}y)$ derives itself from $23+3^{38}y$, yet $15+12(4+2^{55} \times 3^2y)$ and $15+12(8+2^{32} \times 3^{17}y)$ derive themselves from $61+2^3 \times 3^{17}y$, please, see also their operational routes, as listed below.

(1) From $15+12(1+2^{57}y)=27+2^{59} \times 3y \rightarrow 82+2^{59} \times 3^2y \rightarrow 41+2^{58} \times 3^2y \rightarrow 124+2^{58} \times 3^3y \rightarrow 62+2^{57} \times 3^3y \rightarrow 31+2^{56} \times 3^3y \rightarrow 94+2^{56} \times 3^4y \rightarrow 47+2^{55} \times 3^4y \rightarrow 142+2^{55} \times 3^5y \rightarrow 71+2^{54} \times 3^5y \rightarrow 214+2^{54} \times 3^6y \rightarrow 107+2^{53} \times 3^6y \rightarrow 322+2^{53} \times 3^7y \rightarrow 161+2^{52} \times 3^7y \rightarrow 484+2^{52} \times 3^8y \rightarrow 242+2^{51} \times 3^8y \rightarrow 121+2^{50} \times 3^9y \rightarrow 364+2^{50} \times 3^9y \rightarrow 182+2^{49} \times 3^9y \rightarrow 91+2^{48} \times 3^9y \rightarrow 274+2^{48} \times 3^{10}y \rightarrow 137+2^{47} \times 3^{10}y \rightarrow 412+2^{47} \times 3^{11}y \rightarrow 206+2^{46} \times 3^{11}y \rightarrow 103+2^{45} \times 3^{11}y \rightarrow 310+2^{45} \times 3^{12}y \rightarrow 155+2^{44} \times 3^{12}y \rightarrow 466+2^{44} \times 3^{13}y \rightarrow 233+2^{43} \times 3^{13}y \rightarrow 700+2^{43} \times 3^{14}y \rightarrow 350+2^{42} \times 3^{14}y \rightarrow 175+2^{41} \times 3^{14}y \rightarrow 526+2^{41} \times 3^{15}y \rightarrow 263+2^{40} \times 3^{15}y \rightarrow 790+2^{40} \times 3^{16}y \rightarrow 395+2^{39} \times 3^{16}y \rightarrow 1186+2^{39} \times 3^{17}y \rightarrow 593+2^{38} \times 3^{17}y \rightarrow 1780+2^{38} \times 3^{18}y \rightarrow 890+2^{37} \times 3^{18}y \rightarrow 445+2^{36} \times 3^{18}y \rightarrow 1336+2^{36} \times 3^{19}y \rightarrow 668+2^{35} \times 3^{19}y \rightarrow 334+2^{34} \times 3^{19}y = 167+2^{33} \times 3^{19}y \rightarrow 502+2^{33} \times 3^{20}y \rightarrow 251+2^{32} \times 3^{20}y \rightarrow 754+2^{32} \times 3^{21}y \rightarrow 377+2^{31} \times 3^{21}y \rightarrow 1132+2^{31} \times 3^{22}y \rightarrow 566+2^{30} \times 3^{22}y \rightarrow 283+2^{29} \times 3^{22}y \rightarrow 850+2^{29} \times 3^{23}y \rightarrow 425+2^{28} \times 3^{23}y \rightarrow 1276+2^{28} \times 3^{24}y \rightarrow 638+2^{27} \times 3^{24}y \rightarrow 319+2^{26} \times 3^{24}y \rightarrow 958+2^{26} \times 3^{25}y \rightarrow 479+2^{25} \times 3^{25}y \rightarrow 1438+2^{25} \times 3^{26}y \rightarrow 719+2^{24} \times 3^{26}y \rightarrow 2158+2^{24} \times 3^{27}y \rightarrow 1079+2^{23} \times 3^{27}y \rightarrow 3238+2^{23} \times 3^{28}y \rightarrow 1619+2^{22} \times 3^{28}y \rightarrow 4858+2^{22} \times 3^{29}y \rightarrow 2429+2^{21} \times 3^{29}y \rightarrow 7288+2^{21} \times 3^{30}y \rightarrow 3644+2^{20} \times 3^{30}y \rightarrow 1822+2^{19} \times 3^{30}y \rightarrow 911+2^{18} \times 3^{30}y \rightarrow 2734+2^{18} \times 3^{31}y \rightarrow 1367+2^{17} \times 3^{31}y \rightarrow 4102+2^{17} \times 3^{32}y \rightarrow 2051+2^{16} \times 3^{32}y \rightarrow 6154+2^{16} \times 3^{33}y \rightarrow 3077+2^{15} \times 3^{33}y \rightarrow 9232+2^{15} \times 3^{34}y \rightarrow 4616+2^{14} \times 3^{34}y \rightarrow 2308+2^{13} \times 3^{34}y \rightarrow 1154+2^{12} \times 3^{34}y \rightarrow 577+2^{11} \times 3^{34}y \rightarrow 1732+2^{11} \times 3^{35}y \rightarrow 866+2^{10} \times 3^{35}y \rightarrow 433+2^{9} \times 3^{35}y \rightarrow 1300+2^{9} \times 3^{36}y \rightarrow 650+2^{8} \times 3^{36}y \rightarrow 325+2^{7} \times 3^{36}y \rightarrow 976+2^{7} \times 3^{37}y \rightarrow 488+2^{6} \times 3^{37}y \rightarrow $
244+2^5\times3^7\rightarrow 122+2^4\times3^7\rightarrow 61+2^3\times3^7\rightarrow 184+2^3\times3^8\rightarrow 92+2^2\times3^8\rightarrow 46+2^1\times3^8\rightarrow 23+3^8, \text{ get No.1 satisfactory operational result } 23+3^8 \text{ about the kind of } 27+2^59\times3y.

(2) From 15+12(4+2^4\times3^2y)=63+2^57\times3^3y\rightarrow 190+2^57\times3^4y\rightarrow 95+2^56\times3^4y\rightarrow 286+2^56\times3^5y\rightarrow 143+2^55\times3^5y\rightarrow 430+2^55\times3^6y\rightarrow 215+2^54\times3^6y\rightarrow 646+2^54\times3^7y\rightarrow 323+2^53\times3^7y\rightarrow 970+2^53\times3^8y\rightarrow 485+2^52\times3^8y\rightarrow 1456+2^52\times3^9y\rightarrow 728+2^51\times3^9y\rightarrow 364+2^50\times3^9\times3y^* \text{ at operational route } 27+2^59\times3y\rightarrow 61+2^3\times3^7y, \text{ get No.1 satisfactory operational result } 61+2^3\times3^7y \text{ about the kind of } 63+2^57\times3^3y.

(3) From 15+12(8+2^32\times3^17y)=111+2^34\times3^18y\rightarrow 334+2^34\times3^19y^* \text{ at operational route } 27+2^59\times3y\rightarrow 61+2^3\times3^7y, \text{ get the same No.1 satisfactory operational result } 61+2^3\times3^7y \text{ about the kind of } 111+2^34\times3^18y \text{ too.}

In some cases, an operational route of 15+12c and an operational route of 19+12c can intersect, such as when operate 15+12(1+2^57y) to fifth step, the integer’s expression got is exactly 19+12(1+2^54\times3^2y) in example (1). Due to c\geq1, there are infinitely many odd numbers of 15+12c/19+12c, whether they belong to infinite many kinds or finite many kinds.

Since there is an operational route between each kind of 15+12c/19+12c and No.1 satisfactory operational result about the kind itself, so 15+12c/19+12c has how many kinds of 15+12c/19+12c, then there are how many operational routes of 15+12c/19+12c, yet for each line segment coincided from one another, either it is regarded as component part of some operational routes, or it is irrespective for the others.
Therefore, all operational routes at the bunch of operational routes of $15+12c/19+12c$ are formally similar to networking status. That is to say, between each operational route and each of operational routes except for the former, either both intersect directly, or both connect indirectly.

Since setting up the variable c, such that all kinds of $15+12c/19+12c$ collect at the bunch of operational routes of $15+12c/19+12c$; but then, due to the oddity of χ, such that the bunch of operational routes of $15+12c/19+12c$ has infinitely many branches.

Now that \aleph_1 satisfactory operational results determine all kinds of $15+12c/19+12c$, so begin with any kind of $15+12c/19+12c$ to operate by the operational rule continuously, then a \aleph_1 satisfactory operational result about the kind can only first appear under one in following 3 cases.

(1) \aleph_1 satisfactory operational result about a kind of $15+12c/19+12c$ first appears at an operational route via the kind of $15+12c/19+12c$ itself;

(2) An operational route via a kind of $15+12c/19+12c$ intersects another operational route that has \aleph_1 satisfactory operational result about the kind of $15+12c/19+12c$;

(3) An operational route via a kind of $15+12c/19+12c$ indirectly connects with another operational route that has \aleph_1 satisfactory operational result about the kind of $15+12c/19+12c$.

In any case, all kind of $15+12c/19+12c$ and every \aleph_1 satisfactory operational result must coexist at the bunch of operational routes of $15+12c$.

/19+12c, otherwise, no matter what integer’s expression, it belongs not to the type of $15+12c/19+12c$ or $\mathbb{N} \subseteq 1$ satisfactory operational result either. Operations by the operational rule from any concrete integer within a kind of $15+12c/19+12c$ to $\mathbb{N} \subseteq 1$ satisfactory operational result about the concrete integer can only pass finitely more steps. Because even if an operational route via the kind of $15+12c/19+12c$ pass consecutive greater operational results to elongate infinitely, while there is a smaller operational result in synchronism with each such greater operational result, and that operational routes via the smaller operational result will continue to operate along consecutive smaller operational results, up to educe or discover the $\mathbb{N} \subseteq 1$ satisfactory operational result about the kind of $15+12c/19+12c$ after pass operations of finite steps. Accordingly, when their common variable equals some fixed value such that the kind of $15+12c/19+12c$ equals the concrete integer, let the $\mathbb{N} \subseteq 1$ satisfactory operational result equals another integer, then from the concrete integer to appearing another integer can only pass finite more steps too. Now that operational routes of every kind of $15+12c$ can only exist at the bunch of operational routes of $15+12c$ and operational routes of every kind of $19+12c$ can only exist at the bunch of operational routes of $19+12c$, then either any operational route of any kind of $15+12c/19+12c$ intersects directly an operational route of any of above-listed six kinds of $15+12c$/
$19+12c$ derived monogamously from №1 satisfactory operational results according to the bunch of operational routes of $15+12c/19+12c$, or any operational route of any kind of $15+12c/19+12c$ connects indirectly with an operational route of any of the above-listed six kinds of $15+12c/19+12c$. Yet the six №1 satisfactory operational results and the six kinds of $15+12c/19+12c$ have been proven to suit the conjecture. By this token, for each operational route via a smaller operational result, whether it has the termination, this is absolutely unnecessary worry. Therefore any kind of $15+12c/19+12c$ is proven to suit the conjecture according to Lemma 1, or Lemma 3.

Consequently, if $n+1$ belongs within any kind of $15+12c/19+12c$, then $n+1$ suits the conjecture according to Theorem 1, Theorem 2, or Lemma 2. To sum up, $n+1$ has been proved to suit the conjecture, whether $n+1$ belongs within which genus, which sort or which kind of odd numbers, or it is exactly an even number. Likewise, we can too prove positive integers $n+2$, $n+3$, $n+4$ etc. up to every positive integer to suit the conjecture in the light of the old way of preceding doing things.

The proof was thus brought to a close. As a consequence, the Collatz conjecture is tenable.

References

