A Novel Approach to Reduce Toxicities and to Improve Bioavailabilities of DNA/RNA of Human Cancer Cells–Containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹–Tetrahydrocannabinol (THC) [(-)–trans–Δ⁹–Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as Anti–Cancer Nano Drugs by Coassembly of Dual Anti–Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance

Alireza Heidari¹◊, Ricardo Gobato²☼

¹Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA.
²Laboratory of Biophysics and Molecular Modeling Genesis, State Secretariat of Education of Paraná, CEJC, St. Rocha Pombo, 953, Center, Bela Vista do Paraíso, Paraná, 86130-000, Brazil.

To cite this article:

Received: July 25, 2018; Accepted: July 29, 2018; Published: August 9, 2018.

Abstract
The aim of the present study was to reduce toxicities and to improve bioavailabilities of DNA/RNA of human cancer cells–containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹–Tetrahydrocannabinol (THC) [(-)–trans–Δ⁹–Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as anti–cancer Nano drugs by coassembly of dual anti–cancer Nano drugs to inhibit DNA/RNA of human cancer cells drug resistance.

Keywords: Toxicities, Bioavailabilities, DNA/RNA, Human Cancer Cells, Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹–Tetrahydrocannabinol (THC) [(-)–trans–Δ⁹–Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet), Zidovudine (ZDV) [Azidothymidine (AZT)], Anti–Cancer Nano Drugs, Drug Resistance.

◊E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us
☼E-mail: ricardogobato@seed.pr.gov.br; ricardogobato@hotmail.com
1. Introduction

The aim of the present research was to reduce toxicities and to improve bioavailabilities of DNA/RNA of human cancer cells—containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(-)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as anti–cancer Nano drugs by coassembly of dual anti–cancer Nano drugs to inhibit DNA/RNA of human cancer cells drug resistance [1–176]. Results have shown that uncalcined catalyst and calcined catalyst have high activity for hydrogenolysis reaction. The effect of calcination on activity and selectivity was investigated and revealed that uncalcined catalysts with high percent of Cadmium Oxide (CdO) showed higher activity than calcined catalysts with the same composition, whereas uncalcined catalysts with high percent of Iron(III) Oxide (Fe₂O₃), Iridium(IV) Oxide (IrO₂), Rhodium(III) Oxide (Rh₂O₃), Ruthenium(IV) Oxide (RuO₂) and Titanium Dioxide (TiO₂) showed lower activity than calcined catalysts with the same composition [1–176]. The results showed that using catalyst with high percent Iron(III) Oxide (Fe₂O₃), Iridium(IV) Oxide (IrO₂), Rhodium(III) Oxide (Rh₂O₃), Ruthenium(IV) Oxide (RuO₂) and Titanium Dioxide (TiO₂) the single hydrogenolysis occurs mostly; and the Cadmium Oxide (CdO) catalyst had more tendencies to the multiple hydrogenolysis [1–198, 201].

2. Materials, Research Methods and Experimental Techniques

Energy Dispersive X–Ray Analysis (EDXA), Energy Dispersive X–Ray Microanalysis (EDXMA), Scanning Electron Microscope (SEM), Brunauer–Emmett–Teller (BET) analysis, X–Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Differential Thermal Analysis–Thermal Gravim Analysis (DTA–TGA), Energy–Dispersive X–Ray Spectroscopy (EDX), ¹H NMR, ¹³CNMR, UV–Vis, HR–Mass, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR–FTIR) and FT–Raman spectroscopies characterized the reduction of toxicities and to improve bioavailabilities of DNA/RNA of human cancer cells–containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(-)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as anti–cancer Nano drugs by coassembly of dual anti–cancer Nano drugs to inhibit DNA/RNA of human cancer cells drug resistance provides interesting redox properties for liquid–phase oxidation of Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(-)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] under moderate reaction conditions using Hydrogen Peroxide (H₂O₂) as oxidant and Acetonitrile Anhydrous, 99.8% as solvent [199, 200].

3. Results and Discussion

Catalysis is the art of lowering the activation energy of a chemical transformation. Catalysis has numerous applications and practical consequences: almost every process in nature and chemical industry uses some kind of catalysis. Multicomponent Reactions (MCR) is highly convergent reactions where a final product is formed in one chemical step (one–pot) by more than two starting materials. Typical examples include the Hantzsch Dihydropyridine (Pyridine) synthesis, the Passerini– or Ugi reaction. Catalysis and Multicomponent Reactions (MCR) have several important aspects in common including reduction of time, effort and cost for synthetic processes. In this work, a short overview on commercial bioactive nanocompounds or nanocompounds to reduce toxicities and to improve bioavailabilities of DNA/RNA of human cancer cells–containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) [(-)-trans-Δ⁹-Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as anti–cancer Nano drugs by coassembly of dual anti–cancer Nano
Figure 1: Molecular structure of (a) Cocaine (Coke), (b) Lysergide (Lysergic Acid Diethyl Amide or LSD), (c) Δ⁹-Tetrahydrocannabinol (THC) [(-)-trans-Δ⁹-Tetrahydrocannabinol], (d) Theobromine (Xantheose), (e) Caffeine, (f) Aspartame (APM) (NutraSweet) and (g) Zidovudine (ZDV) [Azidothymidine (AZT)] nanoparticles [1–198, 201].

The results showed that using catalyst with high percent Iron(III) Oxide (Fe₂O₃), Iridium(IV) Oxide (IrO₂), Rhodium(III) Oxide (Rh₂O₃), Ruthenium(IV) Oxide (RuO₂) and Titanium Dioxide (TiO₂) the single hydrogenolysis occurs mostly; and the Cadmium Oxide (CdO) catalyst had more tendencies to the multiple hydrogenolysis.

drugs to inhibit DNA/RNA of human cancer cells drug resistance by MCR chemistry is given together with some recent results from the BioSpectroscopy Core Research Laboratory at Faculty of Chemistry, California South University (CSU), Irvine, California, USA.
4. Conclusion

A series of Iron(III) Oxide (Fe₂O₃), Iridium(IV) Oxide (IrO₂), Rhodium(III) Oxide (Rh₂O₃), Ruthenium(IV) Oxide (RuO₂) and Titanium Dioxide (TiO₂) were synthesized via a post-treatment procedure and characterized using Energy Dispersive X–Ray Analysis (EDXA), Energy Dispersive X–Ray Microanalysis (EDXMA), Scanning Electron Microscope (SEM), Brunauer–Emmett–Teller (BET) analysis, X–Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Differential Thermal Analysis–Thermal Gravim Analysis (DTA–TGA), Energy–Dispersive X–Ray Spectroscopy (EDX), ¹H NMR, ¹³CNMR, UV–Vis, HR–Mass, Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR–FTIR) and FT–Raman spectroscopies. The reduction of toxicities and to improve bioavailabilities of DNA/RNA of human cells–containing Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹–Tetrahydrocannabinol (THC) [(-)–trans–Δ⁹–Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] as anti–cancer Nano drugs by coassembly of dual anti–cancer Nano drugs to inhibit DNA/RNA of human cancer cells drug resistance provides interesting redox properties for liquid–phase oxidation of Cocaine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹–Tetrahydrocannabinol (THC) [(-)–trans–Δ⁹–Tetrahydrocannabinol], Theobromine (Xantheose), Caffeine, Aspartame (APM) (NutraSweet) and Zidovudine (ZDV) [Azidothymidine (AZT)] under moderate reaction conditions using Hydrogen Peroxide (H₂O₂) as oxidant and Acetonitrile Anhydrous 99.8% as solvent. Under these conditions, the catalysts Cadmium Oxide (CdO) showed good substrate conversion and excellent product selectivity. The use of stronger oxidizing agent, Iron(III) Oxide (Fe₂O₃), Iridium(IV) Oxide (IrO₂), Rhodium(III) Oxide (Rh₂O₃), Ruthenium(IV) Oxide (RuO₂) and Titanium Dioxide (TiO₂), resulted in the formation of only iso–LSD, L–LSD and L–iso–LSD, Figure 1(b).

References

[10] Alireza Heidari. “Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and

[18] Alireza Heidari. “Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High–Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”, J Biom Biostat, 7: 292, 2016.

[27] Alireza Heidari. “Discriminate between Antibacterial and Non–Antibacterial Drugs
Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, *J Heavy Met Toxicity Dis*, 1: 2, 2016.

[77] Alireza Heidari. “Nanomedicine–Based Combination Anti–Cancer Therapy between Nucleic Acids and Anti–Cancer Nano Drugs in...

[111] Alireza Heidari. “Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, *International Journal of Biomedicine*, 7 (4), 335–340, 2017.

Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation”, *Glob J Endocrinol Metab*, 1 (3), 2018. GJEM. 000514–000519.

Amorphous Boron Nitride Nanotubes (a–BNNTs) and Hexagonal Boron Nitride Nanotubes (h–BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blastaoma Cancer Cells and Tissues”, \textit{Clin Med Rev Case Rep}, 5: 201, 2018.

[168] Alireza Heidari. “Cadaverine (1,5–Pentanediameine or Pentamethylenediamine), Diethyl Azodicarboxylate (DEAD or DEADCAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as

[169] Alireza Heidari. “Uranocene (U(C8H8)2) and Bis(Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe(COT)2)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports, 1 (2): 1–16, 2018.

