On the Pythagoras’ and De Gua’s theorems in geometric algebra

Miroslav Josipović
miroslav.josipovic@gmail.com
November, 2018

This small article is intended to be a contribution to the LinkedIn group “Pre-University Geometric Algebra”. The main idea is to show that in geometric algebra we have the Pythagoras’ and De Gua’s theorems without a metric defined. This allows us to generalize these theorems to any dimension and any signature.

Keywords: the Pythagoras’ theorem, De Gua’s theorem, geometric algebra, metric, bivector

The geometric product

In geometric algebra, we define a non-commutative product of two vectors with the properties of associativity and distributivity, which can be decomposed into the symmetric and anti-symmetric parts

\[ab = \frac{ab + ba}{2} + \frac{ab - ba}{2} = S + A , \]

where we can define that vectors are orthogonal if

\[S = \frac{ab + ba}{2} = 0 \Rightarrow ab = -ba , \]

which means that orthogonal vectors anti-commute. Likewise, we can define that vectors are parallel if

\[A = \frac{ab - ba}{2} = 0 \Rightarrow ab = ba , \]
which means that parallel vectors commute. These definitions are in accordance with the usual definitions in algebras. For example, we could define that two vectors a and b are parallel if $a = \lambda b$, where λ is a real number, but it is obvious that these vectors commute in geometric algebra, since real numbers commute with vectors.

Now we can show that products $a^2 = aa$ commute with all vectors. One can say that this is obvious, since a^2 is a real (or a complex) number. However, we do not need such an interpretation (that is, we do not need to introduce a metric, yet). Obviously, a^2 commutes with the vector a. Consider a vector b, which is orthogonal to the vector a. Then we have

$$a^2 b = aab = -aba = baa = ba^2,$$

which means that the commutativity here follows from the geometric product properties. Now we can show that this means that a^2 commutes with all vectors, but the pleasure is left to the reader.

Orthogonal vectors

Consider two orthogonal vectors in any dimension and of any signature. We have

$$(a + b)^2 = a^2 + ab + ba + b^2 = a^2 + ab - ab + b^2 = a^2 + b^2,$$

which means that the Pythagoras’ theorem is valid. Let us look at two 2D examples

$${\mathbb R}^2: \quad e_1^2 = e_2^2 = 1 \Rightarrow (e_1 + e_2)^2 = 1 + 1 + e_1 e_2 + e_2 e_1 = 2 = e_1^2 + e_2^2,$$

$${\mathbb R}^{1,1}: \quad e_1^2 = -e_2^2 = 1 \Rightarrow (e_1 + e_2)^2 = 1 - 1 + e_1 e_2 + e_2 e_1 = 0 = e_1^2 + e_2^2.$$

Note that the commutativity properties of geometric product play a central role here. Simply stated, with the geometric product we have the Pythagoras’ theorem in any vector space we can imagine. Moreover, we have this important result without definition of a metric.

De Gua's theorem

Now we can show how to get De Gua’s theorem easily. First, note that the anti-symmetric part of geometric product of two vectors is a bivector, which we can write as

$$A = \frac{ab - ba}{2} \equiv a \wedge b,$$
where \(\wedge \) stands for the outer (wedge) product. It is not difficult to show that the magnitude of a bivector is proportional to the area of the parallelogram defined by the vectors \(a \) and \(b \). Namely, decomposing the vector \(b \) into the prats parallel and orthogonal to the vector \(a \), we can write

\[
A = a \wedge b = a \wedge (b_\parallel + b_\perp) = a \wedge b_\perp = ab_\perp,
\]

whence, using \(|b_\perp| = |b||\sin \alpha| \), we get the parallelogram area formula. Defining the reverse involution

\[
A^\dagger = b_\perp a,
\]

we have

\[
AA^\dagger = ab_\perp b_\perp a = a^2 b_\perp^2,
\]

which we can interpret as the square of the area of the parallelogram defined by the vectors \(a \) and \(b \), but we have to define the square of a vector to be a positive real number (metric) first. Here, we will proceed without a metric, in order to get formulae that are more general.

Consider three orthogonal vectors \(a, \) \(b, \) \(\) and \(c \) (F.1) with the initial point \(O \), whose end points span a triangle. We can write

\[
\begin{align*}
a + d_1 - b &= 0, \\
b + d_2 - c &= 0, \\
c + d_3 - a &= 0,
\end{align*}
\]

whence follows that \(d_1 + d_2 + d_3 = 0 \). Now we can define the bivector \(B = d_1 \wedge d_2 \) whose magnitude is double of the red triangle area. Therefore, \(BB^\dagger / 4 \) gives the squared area of the red triangle. Ignoring the factor 4, we can calculate

\[
B = d_1 \wedge d_2 = (b - a) \wedge (c - b) = b \wedge c + c \wedge a - b \wedge b + a \wedge b = bc + ca + ab,
\]

whence follows that

\[
BB^\dagger = (bc + ca + ab)(cb + ac + ba) = \cdots = a^2 b^2 + a^2 c^2 + b^2 c^2.
\]

The details of the calculation are left to the reader; however, note that the result follows from the fact that orthogonal vectors anti-commute.

Finally, there are two important facts that we should stress here. First, note that the result is independent of a signature. Second, generalizations to higher dimension are straightforward; however, we should formulate a problem in terms of hyper-volumes.
Literature

[2] Josipović, Miroslav: *Geometric Multiplication of Vectors - An Introduction to Geometric Algebra in Physics*, Birkhäuser, 2019 (it is to be printed soon)