MATTER THEORY OF EXPANDED MAXWELL EQUATIONS

WU SHENG-PING

Abstract. This article try to unified the four basic forces by Maxwell equations, the only experimental theory. Self-consistent Maxwell equation with the e-current from matter current is proposed, and is solved to four kinds of electrons and the structures of particles. The static properties and decay are reasoned, all meet experimental data. The equation of general relativity sheerly with electromagnetic field is discussed as the base of this theory. In the end the conformation elementarily between this theory and QED and weak theory is discussed.

Contents

1. Unit Dimension of $s ch$ 1
2. Self-consistent Electrical-magnetic Fields 2
3. Calculation of Recursive Re-substitution 3
4. Solution 4
5. Electrons and Their Symmetries 4
6. Propagation and Movement 6
7. Conservation Law and Balance Formula 7
8. Effect 8
9. Muon 8
10. Pion 9
11. Pion Neutral 9
12. Tau 9
13. Proton 10
14. Neutron 10
15. Great Unification 10
16. Conclusion 11
References 11

1. Unit Dimension of $s ch$

A rebuilding of units and physical dimensions is needed. Time $s$ is fundamental. We can define:
The unit of time: $s$ (second)
The unit of length: $cs$ ($c$ is the velocity of light)
The unit of energy: $\frac{h}{s}$ ($h$ is Plank constant)

Date: Mar 27, 2018.

Key words and phrases. Maxwell equations, Decay, Electron function, Recursive re-substitution.
The unit dielectric constant $\epsilon$ is

$$\epsilon = \frac{|Q|^2}{|E||L|} = \frac{|Q|^2}{\hbar c}$$

The unit of magnetic permeability $\mu$ is

$$\mu = \frac{|E||T|^2}{|Q|^2|L|} = \frac{\hbar}{c|Q|^2}$$

We can define the unit of $Q$ (charge) as

$$\epsilon = \mu = 1$$

then

$$|Q| = \sqrt{\hbar}$$

$$|H| = |Q|/|L|^2 = [cD] = [E]$$

Then

$$\sqrt{\hbar} : C = (1.0546 \times 10^{-34})^{1/2}$$

$C$ is charge SI unit Coulomb.

For convenience we can define new base units by unit-free constants

$$c = 1, \hbar = 1, [Q] = \sqrt{\hbar}$$

then all physical unit are power of second $s^n$, the units are reduced.

Define

$$\text{Unitive Electrical Charge} : \sigma = \sqrt{\hbar}$$

$$\sigma = 1.03 \times 10^{-17} C \approx 64 e$$

$$e/\sigma = e/\sigma = 1.57 \times 10^{-2} \approx 1/64$$

Define

$$s \rightarrow Cs = : \kappa : m_e = 1$$

We always use it.

2. Self-consistent Electrical-magnetic Fields

Try so-called expanded Maxwell equation for the free E-M field in mass-center frame

$$\partial \cdot \partial'A = iA'' \cdot \partial A' = -J, \quad \sigma = 1$$

or

$$\partial \cdot \partial'A = ie_\sigma A'' \cdot \partial A' = -J, \quad e = 1$$

$$\partial_{\nu} \cdot A' = 0$$

with definition

$$(A') := (V, A), (J') = (\rho, J), (J) = (-\rho, J)$$

$$\partial := (\partial_{t}, \partial_{x_1}, \partial_{x_2}, \partial_{x_3})$$

$$\partial' := (\partial') := (-\partial_{t}, \partial_{x_1}, \partial_{x_2}, \partial_{x_3})$$

It’s deduced by using momentum to express e-current in a electron: the mass and charge have the same movement in electron. The equation 2.1 have symmetry $CPT, cc.PT$

The energy of the field $A$ are

$$\varepsilon := \int dV (E \cdot E^* + H \cdot H^*) / 2 = - \langle A''|\nabla^2|A_\nu >$$
It’s also valid with Lorentz gauge. As a convention the time-variant part is neglected.

With invariant normalization for one particle, this condition is found:

\[(2.3) \quad 1 = e/\sigma \int_0^\infty dt < A^\nu, \partial \cdot \partial' A_\nu >, e = 1\]

by the non-homogeneous equation 2.1, unless the particle is eternal.

### 3. Calculation of Recursive Re-substitution

We can calculates the solution by recursive re-substitution (RRS) for the two sides of the equation. For the equation

\[\hat{P} B = \hat{P} B\]

make the algorithm (It’s approximate, the exact solution needs a rate in the re-substitution)

\[\hat{P}(\sum_{k \leq n} B_k + B_{n+1}) = \hat{P} \sum_{k \leq n} B_k\]

One can write down a function initially and correct it by re-substitution. Here is the initial state

\[V = V_i e^{-ikt}, A_i = V, \partial_\mu \partial^n A^\nu_i = 0\]

Substituting into equation 2.1 and then we an find

\[\partial_\nu \cdot J^\nu = 0\]

hence

\[\partial_\nu \cdot A^\nu = 0\]

We calls the fields’ correction \(A_n\) with \(n\) degrees of \(A_i\) the \(n\) degrees correction.

The decay to a stable state is calculated in isolated system. It’s a process the EM energy \(\varepsilon_t = \varepsilon - \varepsilon_f\) transfer to mechanical (kinetic) energy \(E_k = \varepsilon_0 - \varepsilon_t\). With the matter number invariant normalization in space-time (2.3)

\[1 = \int_0^\infty e/\sigma dt < A^\nu, \partial \cdot \partial' A_\nu >, e = 1\]

\[-\int_0^\infty e/\sigma dt < A^\nu, J_\nu > /2 = -\int_0^\infty dt e/\sigma \varepsilon_0 e^{-Ct}, e = 1\]

then

\[C = e/\sigma \varepsilon_0\]

\[\varepsilon_t/\varepsilon_0 = e^{-Ct}\]

\(\varepsilon_0 - \varepsilon_t\) is of cause the decrease of the crossing energy of all the decayed blocks.
Firstly
\[ \nabla^2 A = k^2 A \]
is solved. Exactly, it's solved in spherical coordinate
\[ 0 = r^2(\nabla^2 f - k^2 f) = -k^2r^2f + (r^2f_r)_r + \frac{1}{\sin \theta}(\sin \theta f_\theta)_\theta + \frac{1}{\sin^2 \theta}(f_\phi)_\phi \]
Its solution is
\[ f = R\Theta\Phi = R_l Y_{lm} \]
where \( R_l = N j_l(kr) \) is spherical Bessel function.
\[ j_1(r) = \frac{\sin(r)}{r^2} - \frac{\cos r}{r} \]
\[ j_1(0) = 0 \]
\[ \int_0^\infty dr \cdot r^2 j_1(kr)j_1(k'r) = C k^{-2} \delta(k - k') \]
Define
\[ F(x) := NR_1(r)Y_{1,\pm 1}(\theta, \phi) \]
then
\[ F(kx)^* * F(kx) = \delta(r)/k^2 \]
Use discrete coordinates to get more correct calculation. We notice that
\[ \nabla^2 F(x) \]
the point \( O \) is a singular point.
The solution of \( l = 1, m = 1, Q = e/\sigma \) is calculated or tested for electron,
\[ V = -NR_1(kr)Y_{1,1}e^{-ikt} \]

5. Electrons and Their Symmetries

Some states of electrical field \( A \) are defined as the core of the electron, which's the initial function \( A_i = V \) that is electrical, for the re-substitution to get the whole electron function \( e \):
\[ e^+_r : NR_1(k_r)Y_{1,1}e^{ik_r t} \]
\[ e^+_l : NR_1(k_l)Y_{1,-1}e^{ik_l t} \]
\[ e^-_r : -NR_1(k_r)Y_{1,-1}e^{-ik_r t} \]
\[ e^-_l : -NR_1(k_l)Y_{1,1}e^{-ik_l t} \]
r, l is the direction of the spin.

Normalize the electron function with charge and mass
\[ <e_\mu| i\partial_t |e^\mu>/2 + c.c. = 1/e_\sigma, e = 1 \]
\[ <\nabla e_\mu|\nabla e^\mu> = 1, \sigma = 1 \]
Then
\[ |k_e| = 1 \]
The magnetic dipole moment of electron is calculated as the first rank of approximation
\[-r \times \partial \cdot \partial' A/4 + cc.\]
\[\mu_z = \langle A_i | -i \partial \phi | A_i \rangle / 4 + cc.\]
\[= \frac{Q_e}{2k_e}\]

By the discussion in the section 2 the spin is
\[S_z = \mu_z k_e / e = 1/2\]

Define
\[\varsigma_{k,l,m}(x) := R_l(kr)Y_{l,m}, \varsigma_k = \varsigma_{k}^{+}(x) := \varsigma_{k,1,\pm 1}(x)\]

It meets the following results
\[\varsigma_{k}^{+}(x)e^{int}\varsigma_{n}^{+}(x)e^{-in't} \ast \delta(t - r)/(4\pi r) = \varsigma_{n}^{+}(x)e^{int}\varsigma_{n}^{+}(x)e^{-in't}\]

The correction of the equation 2.1 is
\[A_n = A_{n-1}i\partial(A_i - A_i^*)/2 \ast u\]
\[= (A_i^* (i\partial_i A_i))(i\partial_i(A_i - A_i^*)/2)^{n-3}((i\partial_i(A_i - A_i^*)/2)\]
\[u = \delta(t - r)/(4\pi r)\]

The convolution is made in 4-d space. In fact
\[\partial' \cdot \partial e = e - A_i\]

and then
\[\int d^4x e^{\nu'} \partial' \cdot \partial e_{\nu} = 0\]

The function of \(e_i^+\) is decoupled with \(e_i^+\)
\[< \nabla (e_i^+) \nu, \nabla (e_i^+) \mu > = 0\]
The increment of field energy \( e_{/\sigma} \varepsilon \) on the coupling of \( e_+^r, e_-^r \) mainly between \( A_2 \) is

\[
e_{/\sigma} \varepsilon = e_{/\sigma} < \nabla (e_+^r)^\nu, \nabla (e_-^r)_\nu > \approx -2e^3 \sigma e = -\frac{1}{1.66 \times 10^{-16} s}
\]

This value of increments on the coupling of electrons are

\[
\begin{align*}
e_e & \quad e_+^r & \quad e_-^r & \quad e_+^l & \quad e_-^l \\
e_+^r & + & - & 0 & 0 \\
e_-^r & - & + & 0 & 0 \\
e_+^l & 0 & 0 & + & - \\
e_-^l & 0 & 0 & - & +
\end{align*}
\]

The increment of field energy \( e_{/\sigma} \varepsilon \) on the coupling of \( e_+^r, e_-^l \) mainly between \( A_4 \), is

\[
e_{/\sigma} \varepsilon_x = e_{/\sigma} < \nabla (e_+^r)^\nu, \nabla (e_-^l)_\nu > \approx -\frac{1}{4} e^7 \sigma e = -\frac{1}{2.18 \times 10^{-8} s}
\]

This value of increments on the coupling of electrons are

\[
\begin{align*}
e_x & \quad e_+^r & \quad e_-^r & \quad e_+^l & \quad e_-^l \\
e_+^r & + & 0 & 0 & - \\
e_-^r & 0 & + & 0 & 0 \\
e_+^l & 0 & - & + & 0 \\
e_-^l & - & 0 & 0 & +
\end{align*}
\]

Because

\[
\partial \cdot \partial' (-e(-t)) = ie_{/\sigma} \partial(-e(-t))^{\nu\nu'} \cdot (-e(-t))_{\nu'}/2 + cc., e = 1
\]

\[
\begin{align*}
Q & \quad + & \quad - & \quad + & \quad - & \quad - & \quad + & \quad - \\
S & \quad r & \quad r & \quad l & \quad l & \quad r & \quad l & \quad l & \quad l \\
\mu_B & \quad r & \quad l & \quad l & \quad r & \quad l & \quad r & \quad l & \quad l \\
\varepsilon(m) & \quad + & \quad +
\end{align*}
\]

6. Propagation and Movement

The propagation:

\[
A := f * \sum_i e_i,
\]

\[
f * e := \int d^3y f(x-y)e(y)
\]

The following are stable propagation:

<table>
<thead>
<tr>
<th>particle</th>
<th>electron</th>
<th>photon</th>
<th>neutrino</th>
</tr>
</thead>
<tbody>
<tr>
<td>notation</td>
<td>( e_+^r )</td>
<td>( \gamma_r )</td>
<td>( \nu_r )</td>
</tr>
<tr>
<td>structure</td>
<td>( e_+^r )</td>
<td>( e_-^r )</td>
<td>( e_+^l + e_-^l )</td>
</tr>
</tbody>
</table>

By the condition of 2.3 or 5.2, their static mass except the couplings is zero.

The movement of the propagation is called Movement, ie. the third level wave:

\[
f * \sum_i f_i * e_{ij}
\]

Calculating the following coupling system of particle \( x \)

\[
A := e_x * (A^+ - A^-), < e_x | e_x > = 1
\]
\[ A^+ := \sum_c n_c e_c \]
\[ A^- := -\sum_{c'} n_{c'} e_{c'} \]

\( c, c' \) differ in charge, spin and being negative or not. Make RRS with the initial state
\[ e_{xi} = NR_1(kx)Ye^{ikx}t \]
to get the whole function \( e_x \).

With the normalization conditions of charge
\[ (6.1) \quad < e_x * (\sum_i e_i)^\nu | i \partial_i | e_x * (\sum_i e_i)^\nu > = Q_x \]
hence
\[ k_x \approx \sum_{cc'} n_{cc'}^2/Q_x \]
\[ < \nabla e_x * (\sum_i e_i)^\nu | \nabla e_x * (\sum_i e_i)^\nu > \approx \sum_{cc'} n_{cc'}^2/e \]

The static MDM (magnetic dipole moment) of a group of electrons is
\[ \mu_x = -\mathbf{r} \times \nabla \cdot \nabla e_x * A/4 + cc. \]

Use the second degree static correction of each electron as in 5.1
\[ \equiv e/\sigma \sum_c < \nabla e^\mu_c | \partial_\mu | \nabla e^\mu_{c'} > m_e/(4k_x) \]
\[ -e/\sigma \sum_c < \nabla e^\mu_{c'} | \partial_\mu | \nabla e^\mu_c > m_e/(4k_x) + cc., e = 1 \]

The harmonic wave has in Lorentz transform
\[ e^{ipx} * e(x) = e^{ip'x'} * e(x') \]
\[ p^\nu p'_\nu = p'^\nu p_\nu = 0 \]

7. Conservation Law and Balance Formula

The reaction
\[ A_{1i} - A_{2i} \rightarrow A_{1f} - A_{2f} \]
is equivalent of the same energy emission to
\[ A_{1i} + A_{2f}(x,-t) \rightarrow A_{1f} + A_{2i}(x,-t) \]
by the fourier forms of the both. This means we can shift electron to the other side, with the same emission of EM energy.

No matter in E-M fields level or in movement (the third) level, the conservation law is conservation of momentum and conservation of angular momentum. A balance formula for a reaction is the equivalent formula in positive matter, ie. after all negative terms is shifted to the other side of the reaction formula. Balance formula is suitable for the analysis of the energy transition of decay. The invariance of electron itself in reaction is also a conservation law.
8. Effect

Generally, there are kinds of EM energy increments i.e. EM effect

Weak coupling

\[ W : \ < \nabla (e^+)_\nu | \nabla (e^-)_\nu > \]

Light coupling

\[ L : \ < \nabla (e^+)_\nu | \nabla (e^-)_\nu > \]

Strong coupling is

\[ S : \ < \nabla (e^+)_\nu | \nabla (e^+)_\nu > \]

Weak side coupling

\[ Ws : \ < (e_x * e^+_x)^* \hat{\partial}_n (e_x * e^-_x)_\nu | x^* \hat{\partial}_n x > \]

Light side coupling

\[ Ls : \ < (e_x * e^+_x)^* \hat{\partial}_n (e_x * e^-_x)_\nu | x^* \hat{\partial}_n x > \]

These two side couplings come from the RRS on the factor \( e_x \) to the second correction.

9. Muon

The core of muon is

\[ \mu^+_1 : A_i = e_\mu * (e^+_1 - e^- - e^+_1) \]

Make RRS on \( e_\mu \) like 5.1 to get the solution. These are complete electron functions.

From the equation 15.1, \( \mu \) is approximately with mass \( 3m_e/e_\sigma = 3 \times 64m_e \) \[3.2][1] (The data in bracket is experimental by the referenced lab), spin \( S_e \) (electron spin), MDM \( \mu_B k_e/k_\mu \).

The main channel of decay

\[ \mu^+_1 \rightarrow -e^- + \nu_l - \nu_l \]

with balance formula

\[ e_\mu * e^+_1 + e^{ip_1x} * e^- + e^{ip_3x} * \nu_l \rightarrow e_\mu(-t) * \nu_l + e^{ip_2x} * \nu_l \]

The main EM effect is kind of \( Ws \). Calculate to the second correction of \( e_\mu \)

\[ - < (e^+_\mu(-t) * (e^-_\mu))^{*} \hat{\partial}_n (e_\mu(-t) * (e^+_1))_\nu | \mu^*_\nu \hat{\partial}_n \mu^{*} > \]

\[ \approx -\frac{2 \varepsilon x m_e}{k_\mu} = \frac{1}{2.1 \times 10^{-6} / e_\sigma} \approx 2.1970 \times 10^{-6} s \] \[1]
10. PION

The core of pion is
\[ \pi^+_r : e_r^* + e_r^+ + e_r^e * (e_r^+ + e_r^-) \]
It’s approximately with mass \(4 \times 64 m_e\) [4.2][1], spin \( S_e \) and MDM \( \mu_B k_e / k_{\pi^+} \).

Decay Channels:
\[ \pi^+_r \rightarrow -\mu^- + \nu_\tau \]
\[ e^+_r + e^-_r + e^{ip^1} x * e^{ip^2} (t) * e^-_r \rightarrow e^{ip^1} x * e^-_r + e^{ip^2} * \nu_\tau \]
The neutrino coupling in \( e^{ip^1} x * \nu_\tau \) is still coupled, and in \( e_x * \nu_\tau \), decoupled. The main EM effect is kind of \( W \)
\[ -\varepsilon_x = \frac{1}{2.18 \times 10^{-8} \sigma / \varepsilon} \quad \text{[}2.603 \times 10^{-8}\text{]}[1] \]

11. PION NEUTRAL

The core of pion neutral is like a atom
\[ \pi^0 : (e^+_r + e^-_r, e^e^- + e^-_r) \]
It has mass approximately \(4 \times 64 m_e\) [4.2][1], zero spin (?) and zero MDM. Its decay modes are
\[ \pi^0 \rightarrow \gamma_\tau + \gamma_\tau \]
The loss of energy is kind of \( L \)
\[ -2\varepsilon_e = \frac{1}{8.3 \times 10^{-17} \sigma / \varepsilon} \quad \text{[}8.4 \times 10^{-17}\text{]}[1] \]

12. TAU

The core of tauon maybe
\[ \tau^+_l : e_\tau^* (5e^+_l - 5e^-_l - e^{ip^1}_l) \]
Its mass approximately \(51 \times 64 m_e\) [54][1], spin \( S_e \), MDM \( \mu_B k_e / k_\tau \). It has decay mode
\[ \tau^+_l \rightarrow \mu^+_l + \nu_\tau - \nu_\tau \]
\[ e_\tau^* (5e^+_l + e^{ip^1}_x * e^{ip^2}_x * e^e^e^- + e^{ip^2} \nu_\tau \rightarrow e_\tau (-t) * 5e^+_r + e_\tau (-t) * e^-_r \]
The main EM effect is kind of \( L_\tau \) and to the second correction of \( e_\tau \)
\[ - < (e_\tau^* (-t) * (5e^+_l)')^* \cdot i \partial_n (e_\tau (-t) * (e^-_l))_\nu > \]
\[ \approx - \frac{10 \varepsilon_e}{k_\tau / m_\tau} = \frac{1}{0.54 \times 10^{-13} / \sigma / \varepsilon} \quad \text{[}2.91 \times 10^{-13}\text{];} \quad \text{BR.} \quad 0.17\text{]}[1] \]
Depending on this kinds of particle including
\[ q^n_\nu := n(e^+_r - \epsilon^-) \]
we can construct particles of great mass decaying without strong effect (light radiative), for example
\[ e_x * (q^n - \epsilon) \]
This series of particle include \( \mu, \tau \) and in fact almost all light radiative particles are of this kind, they are created in colliding.
13. Proton

The core of proton may be like

\[ p_r^- : e_p \ast (-4e_r^+ - 3e_r^- - 2e_l^-) \]

The mass is \( 29 \times 64m_e \) [29][1] that’s very close to the real mass. The MDM is calculated as \( 3\mu_N \), spin is \( S_e \). The proton thus designed is eternal.

14. Neutron

Neutron is the atom of a proton and a electron and a neutrino,

\[ n = (p_r^+, -\nu, e_l^-) \]

Neutrino circles around proton with

\[ m_\nu \omega r^2 = 1 \]

The effect is between their (proton and neutrino) magnetic fields of \( A_2 \) (gross current)

\[ m_\nu \omega^2 r \approx 2 \cdot 3 \cdot 2 \cdot \varepsilon_e k_e / (k_p r^2) \]

\[ m_\nu = \frac{1}{2} e_\sigma^0 k_e \]

The EM energy emitted by neutrino is approximately

\[ \frac{24^2}{2} e_\sigma^0 4^2 k_e^0 / (k_p r_0^2) = \frac{1}{1093} \varepsilon / \sigma \]

15. Great Unification

The mechanic feature of the electromagnet fields is

\[ T_{ij} = F^k_i F^*_{kj} - g_{ij} F_{\mu \nu} F^{\mu \nu*} / 4 \]

\( T \) is stress-energy tensor,

\[ T_{ij} = \sum m u_i u_j, u = dx / ds \]

\( T_{00} \) is quantum expression of the energy, by Lorentz transform it’s easy to get the quantum expression of momentum. The observed mass in mass-center frame is

\[ M = \int dV T_{00} \]

(15.1) \[ M = < \nabla A^\nu, \nabla A_\nu > = \varepsilon \]

The General Theory of Relativity is

(15.2) \[ R_{ij} - \frac{1}{2} R g_{ij} = 8\pi G T_{ij} / c^4 \]

Firstly we redefine the unit second as \( S \) to simplify the equation 15.2

\[ R_{ij} - \frac{1}{2} R g_{ij} = T_{ij} \]

We observe that the co-variant curvature is

\[ R_{ij} = F^{ik}_i F^k_j + g_{ij} F^{\mu \nu}_\mu F^{\mu \nu*} / 8 \]
16. Conclusion

Fortunately, this model explained all the effects in the known world: strong, weak and electromagnetic effects, and even subclassify them further if not being to add new ones. In this model the only field is electromagnetic field, and this stands for the philosophical with the point of that unified world is from an unique source, all depend on a simple hypothesis: the current of matter in a system can be devised to analysis the e-charge current.

Except electron function my description of particles in fact is compatible with QED elementarily, but my theory isn’t compatible to the theory of quarks. In fact, The electron function is a good promotion for the experimental model of proton that went up very early.

Underlining my calculations a fact is that the electron has the same phase (electron resonance), which the BIG BANG theory would explain, all electrons are generated in the same time and place, the same source.

References

E-mail address: sunylock@139.com