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Abstract

The Poincaré and conformal groups are contenders for the most fundamental spacetime symmetry
group. An 8-dimensional rep, putting two 4-spinors together, makes a suitable platform to install matrix
representations of these two fundamental groups. But some of their generators do not commute, so
new generators are introduced to keep the algebra closed. The combined algebra then has 37 basis
generators, a dozen more than needed for the Poincaré and conformal algebras. Interestingly, with two
Lorentz subalgebras, one finds two distinct definitions of spin. For the adjoint representation, one set
of Lorentz generators reduces to irreducible representations, all with integer spin. The other Lorentz
group reduces to both integer and ‘half-integer’ spin irreducible representations. Also, one finds that the
various representations confirm the spin rules for matrix translation generators with the spins of both
Lorentz subgroups.
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1 Introduction

The Poincaré and conformal groups have been well-studied, with a wide range of applications in a vast litera-
ture. A sample of applications include quantum field theory,[1] graphene,[2, 3] and theories of gravitation.[4,
5] Furthermore, the matrix representations (reps) of these groups here are based on the transformations of 4-
spinors in the Dirac formalism, a bedrock underpinning many explanations of spin 1/2 particle behavior.[1, 6]
Each of the ingredients has a high profile.

Individually, these topics have been well-studied. However, I am unaware of any attempts to combine
the two algebras in an 8-dimensional matrix representation. The problem makes for an exercise that is
complicated enough to display interesting twists.

While there are no applications in mind to motivate the work, the conformal group is largely regarded
as being associated with massless fields since a nonzero mass would set a scale.[7] That makes the Poincaré
group the go-to fundamental group for massive particle theories. One may speculate that the combined group
can explain situations involving a massive and a massless fermion. However, this article remains focused on
the algebra and there are no further attempts to develop applications.

To set the terminology, call the subgroup of spacetime rotations, e.g. rotations in 3-space and boosts,
the “Lorentz” group. The Poincaré group contains the Lorentz group as a subgroup as well as the subgroup
of translations of spacetime. The conformal group contains the Poincaré group as a subgroup and has, as
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well, dilations and inversions. The Poincaré group preserves spacetime scalar products while the conformal
group preserves the ratios of spacetime scalar products which is less restrictive and allows re-scaling.

The result of combining an 8-dimensional matrix rep of the Poincaré group with a 4-dimensional matrix
rep of the conformal group is a closed algebra generated by 8×8 matrices. The 4-dimensional conformal rep
can be tucked into a 4× 4 block of 8× 8 matrices.

While there are 37 basis generators in the combined algebra, that includes the 10 basis generators of
the Poincaré algebra and 15 generators of the conformal algebra. Extra generators are needed because the
Poincaré and conformal generators require new generators to be defined so that all commutators between
members of the combined algebra can be expressed as linear combinations of members, i.e. to make the
combined algebra closed.

Sec. 2 discusses the overall structure of the combined group. Besides the issue of defining new generators
to keep the algebra closed, it is interesting to look at the spin structure. Spin is a property of Lorentz
groups. Since the Poincaré and conformal groups each have their own Lorentz subgroup, there are two
types of spin defined in the combined group. For one type of spin, all members of the algebra transform as
either tensors, vectors, or scalars under spacetime rotations. For the other type, some members transform
as tensors, vectors or scalars, but others transform as if the Lorentz rep was 2-dimensional with spin (0, 1/2)
or (1/2, 0). Just having one spin removes one of the halves in the spin of a vector, (1/2, 1/2), leaving either
(0, 1/2) or (1/2, 0).

Sec. 3 discusses the adjoint rep of the combined algebra, a collection of large, 37 × 37 matrices. By
eigendecomposition of the adjoint rep, one can see the the spin structure of the algebra clearly. The adjoint
rep has matrices for both versions of the Lorentz group, the one for the Poincaré algebra and the one for
the conformal algebra. The adjoint rep of the Poincaré algebra’s Lorentz subgroup reduces to integer spin
irreducible reps (irreps), while the conformal group’s Lorentz subgroup has spin 1/2 irreps as well as integer
spin irreps.

Appendix A presents the choices of conventions and gives some background on Lie algebras. Much of
Appendix A provides instructions to build the 8×8 matrix realization that we use to investigate the combined
algebra. Appendix B collects the commutation relations of the combined algebra. Appendix C describes the
process used to find the irreducible representations (irreps) of the various reducible Lorentz group reps. The
results of reducing the two 8-spinor Lorentz reps are given at the end of Appendix C.

2 Combining the algebras

This section describes the two algebras and the algebra produced by combining them. To access a quick
reference to basic, general facts about such algebras, consult Appendix A.

The 8-dimensional matrix rep of the Poincaré algebra has a ten generator basis, including six independent
matrices from the angular momentum Jµν8 that generate a Lorentz rep of spacetime rotations and the four
linear momentum matrices Pµ8 that generate translations. They satisfy the Poincaré algebra,[6]

[Jµν8 , Jρσ8 ] = −i (ηνρJµσ8 + ηµσJνρ8 − ηµρJνσ8 − ηνσJ
µρ
8 ) (1)

[Jµν8 , P ρ8 ] = −i (ηνρPµ8 − ηµρP ν8 ) (2)

[Pµ8 , P
ν
8 ] = 0 . (3)

The commutation relations are homogeneous in Pµ8 . It follows that there is a free constant scale factor. We
set the scale factor, and others like it, to unity to avoid clutter. Scale factors can be introduced by the
interested reader.
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In the realization in Appendix A, the 4-dimensional matrix rep of the conformal algebra acts nontrivially
only on the second of the two 4-spinors in the 8-spinor. Thus the conformal generators occupy a 4× 4 block
in 8× 8 matrices.

The conformal group has its own angular momenta Mµν that generate a Lorentz rep, two sets of momenta
Kµ and Pµ that generate two reps of translations, and a “dilation” matrix D that generates a rep of
multiplication by a scale factor. The commutation relations of the algebra are [6, 8]

[Mµν ,Mρσ] = −i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) (4)

[Mµν ,Kρ] = −i (ηνρKµ − ηµρKν) ; [Mµν , P ρ] = −i (ηνρPµ − ηµρP ν) (5)

[Kµ, P ν ] = +2i (ηµνD +Mµν) (6)

[Kµ, D] = +iKµ ; [Pµ, D] = −iPµ (7)

[Mµν , D] = [Kµ,Kν ] = [Pµ, P ν ] = [D,D] = 0 . (8)

In general, one could define the momenta, Kµ = kKK
µ and Pµ = kPP

µ, with distinct, arbitrary scale factors,
kK and kP . Unlike the Poincaré algebra, the conformal algebra is not homogeneous for these momenta. To
preserve (6), the product needs to be unity, kKkP = 1, which requires the factors to be inverses, kK = k−1P .
The interested reader can fill in the consequences of more general choices for kK and kP . We choose unity
for both factors, kK = 1 and kP = 1.

Since both sets of angular momentum matrices, Jµν8 and Mµν , generate a rep of spacetime rotations, the
combined group will have two reps of the Lorentz group. Since spin is a property of a Lorentz rep, there will
be two distinct sets of spin, identified, for example, as spin8 and spinM . Likewise, any other quantities that
differ for the Jµν8 and Mµν Lorentz reps will be labeled with a subscript 8 or M .

To begin with, we have 10 + 15 = 25 linearly independent generators in the basis of the combined algebra.
With the construction in Appendix A, the matrices Jµν8 are nonzero in two 4× 4 blocks along the diagonal.
Each matrix Pµ8 , M

µν , and D, is nonzero in just one 4× 4 block. And the two conformal momenta, i.e. Kµ

and Pµ, are each nonzero in 2× 2 blocks.
The nonzero commutators of the 2×2 block matrices with the others create problems. The effects include

splitting some of the 4 × 4 block generators and requiring the creation of several new 2 × 2 block matrix
generators to keep the combined algebra closed.

As noted, one consequence is the splitting of initial Poincaré momentum generator into two generators,

Pµ8 = Pµ8a + Pµ8b , (9)

where, by Appendix A, Pµ8a is nonzero in the 41 block and Pµ8b is nonzero in the 32 block.
In Appendix A, the 8 × 8 matrices are sectioned off in 2 × 2 blocks. The 41 block notation indicates a

2× 2 block in the first column of the fourth row.
And there are the newcomers, defined to keep the algebra closed. The new members to the algebra, JµνK ,

JµνP , Dk, and DP are nonzero in 2×2 blocks in Appendix A. The subscript “K” labels JµνK and DK because
they have nonzero commutators with Kµ, while JµνP and DP have nonzero commutators with Pµ.

One might expect the new angular momentum matrices JµνK and JµνP to have six linearly independent
components like Jµν8 and Mµν . However, a 2×2 matrix only has four components. Inspection shows that just

three are linearly independent. For the basis, we take J ijK and J ijP with 1 ≤ i < j ≤ 3, i.e. ij ∈ {12, 13, 23}.
With the new generators, there are many more generators than the original 10 + 15 = 25 in the basis.

Now the angular momenta, Jµν8 , Mµν , J ijK , and J ijP , number 6+6+3+3 = 18 linearly independent matrices.
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The linear momenta, e.g. Pµ8a, P
µ
8b, P

µ, Kµ, each has four linearly independent matrices, so there are
4 + 4 + 4 + 4 = 16, altogether. The three scalar matrix generators D, DK , and DP , brings the total to

N = 18 + 16 + 3 = 37 , (10)

so 12 more than the original 25.
The combined algebra is a Lie algebra with a basis of N = 37 matrix generators. Selecting a basis means

choosing 37 linearly independent matrices from the collection {Jµν8 , Mµν , J ijK , J
ij
P , P

µ
8a, P

µ
8b, P

µ, Kµ, D, DK ,
DP }. The choice we use keeps the order indicated in the list. See Appendix A for a detailed list. Appendix
A also defines a realization of 8× 8 matrices that satisfy the combined algebra.

The commutation relations of the combined algebra are displayed in Appendix B.
It is interesting to compare the status of the generators as tensors, vectors, scalars, or, possibly, none of

these with respect to the two reps of the Lorentz group determined by Jµν8 and Mµν .
By inspecting the commutation relations with the Jµν8 Lorentz generators, one can determine how the

quantities will transform. As prototype commutation relations, look at [Jµν8 ,Mρσ] in (A.15) which signals
that Mµν transforms as a tensor and [Jµν8 , P ρ8 ] in (2) which implies that Pµ8 transforms as a vector. Similar
commutation relations signal that quantities behave as tensors or vectors under spacetime rotations generated
by Jµν8 . The commutators of scalars with Jµν8 vanish.

By the commutation relations with Jµν8 in (A.14) to (A.19), one concludes that all families in the collection

{Jµν8 , Mµν , J ijK , J
ij
P , P

µ
8a, P

µ
8b, P

µ, Kµ, D, DK , DP } transform as indicated by their spacetime indices µ, ν.
This is no accident, the quantities were arranged and the notation was devised to make it so. The spacetime
indices of the algebra’s members indicate accurately their transformation behavior under the Lorentz rep
generated by the angular momentum Jµν8 .

2.1 Prototypical spin 1/2 behavior

The situation changes with the Mµν-generated Lorentz rep. By comparing the prototype commutation
relations [Jµν8 ,Mρσ] in (A.15) and [Jµν8 , P ρ8 ] in (2) with the commutation relations (A.20) to (A.26) for Mµν

with other matrices, one sees that Mµν acts as a tensor, Kµ and Pµ act as vectors, and D is a scalar under
the Mµν-Lorentz rep. The others, {Jµν8 , JµνK , JµνP , Pµ8a, P

µ
8b, DK , DP } do not fit the prototypes.

The commutators of Jµν8 with Mµν are sums of Mµν in a way that makes Mµν a tensor under rotations
generated by Jµν8 . Since the commutator is a sum of Mµν matrices, and not Jµν8 , it follows that Jµν8 is
definitely not a tensor under the rotations generated by Mµν .

The rest, i.e. {JµνK , JµνP , Pµ8a, P
µ
8b, DK , DP } are neither tensors nor vectors nor scalars under the Mµν-

Lorentz rep. Since only three of the JµνK and three of the JµνP are linearly independent, the list contains
sixteen independent matrices.

To simplify the discussion in this section, let us make two vector-looking sets of matrices from the {JµνK ,
JµνP , DK , DP }. Define QµK and QµP by

QµK ≡ {J
23
K , J

31
K , J

12
K , iDK} ; QµP ≡ {J

23
P , J

31
P , J

12
P , iDP } . (11)

The two matrix quantities QµK and QµP look like vectors since they have one spacetime index µ, but one can
quickly show they are not vectors under the Jµν8 Lorentz rep. Note, for example, that Q4

K = iDK is scalar
and does not transform like the fourth component of a vector under under Jµν8 Lorentz transformations.

The commutation relations of QµK and QµP with Mµν are found to be

[Mµν , QρK ] = − i
2

(ηνρQµK − η
µρQνK)− 1

2
εµνρσQK σ , (12)
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[Mµν , QρP ] = − i
2

(ηνρQµP + ηµρQνP ) +
1

2
εµνρσQP σ . (13)

Comparing these with [Mµν , P ρ8a] and [Mµν , P ρ8b] in (A.23) and (A.24) shows that all the matrix quantities,
{QµK , Q

µ
P , P

µ
8a, P

µ
8b}, obey similar commutation relations with Mµν . So we can discuss them all as one.

Consider the generators Pµ8a. By (A.6), these matrices are nonzero in just one 2× 2 block, the 41 block.
One finds at the end of Appendix C that the Lorentz generator Mµν reduces to spin (0, 1/2)⊕ (1/2, 0), with
spin (0, 1/2) in the 33-block and spin (1/2, 0) in the 44-block. There is no way the 41-block in Pµ8a can see
the 33 block of Mµν ; i.e. the 33 block does not contribute to the matrix product of Pµ8a and Mµν . Therefore,
Pµ8a must transform with spin (1/2, 0), the spin of the 44 Mµν block. Similar comments apply to Pµ8b, but
resulting in spin (0, 1/2).

There is a general rule that applies here, see Theorem in Appendix A. Given a quantity Q and a generator
X, if the products QX and XQ both vanish then the transformation R = exp(iθX) acts trivially on Q, and
we have RQ = QR = Q.

Loosely speaking, since the matrix products of Pµ8a and the 33 block of Mµν , vanish, Pµ8a does not
transform with the spinM (0, 1/2) generated by the 33 block of Mµν . The 44 block contributes to the matrix
product of Mµν with Pµ8a, and Pµ8a transforms with spinM (1/2, 0).

In contrast, the Jµν8 Lorentz rep has two spin (0, 1/2) blocks, 11 and 33, and it has two spin (1/2, 0)
blocks, 22 and 44. The nonzero 41 block of Pµ8a has nonvanishing matrix products with the 11 and 44 blocks
of Jµν8 , which results in Pµ8a transforming with spin8 (1/2, 1/2) for the Jµν8 Lorentz rep.

The angular momenta Mµν and quantities {QµK , Q
µ
P , P

µ
8a, P

µ
8b}, have commutation relations (12), (13),

(A.23), and (A.24) that are prototypical of quantities that have nonvanishing matrix products with just one
spin generator, either the spin (0, 1/2) generator or the spin (1/2, 0) generator.

We can now identify three types of transformation behavior under spacetime rotations of the Lorentz
group. For a Lorentz rep with generators jµν , one compares the commutator of the quantity Q, [jµν , Q], with
prototypes. Those like [Jµν8 ,Mρσ] in (A.15) signal tensor, those like [Jµν8 , P ρ8 ] in (2) signal vector, and those
like [Mµν , P ρ8a] in (A.23) or [Mµν , P ρ8b] in (A.24) signal that Q is a vector-looking quantity that nevertheless
transforms with spin 1/2.

In the following section, these properties are reinterpreted with the adjoint rep of the combined algebra.

3 Adjoint rep

The adjoint rep of a given algebra has no more information than the commutation relations. However, it
offers a different perspective, since the properties of the commutation relations are reinterpreted as properties
of the matrices of the adjoint rep. We suggest that a discussion of the adjoint rep may be an interesting way
to view the properties of the combined algebra.

The adjoint rep of the combined algebra has 37 basis matrix generators T a constructed from the structure
constants sabd in (A.1),

(T a)bd ≡ −isabd , (14)

where b, d are the row and column indices of the matrix T a with a, b, d ∈ {1, 2, ..., N = 37}. The sequence of
the 37 basis matrices T a is set in detail in Appendix A, Table 5. Roughly, tensors are followed by vectors
and then scalars, {Jµν8 , Mµν , J ijK , J

ij
P , P

µ
8a, P

µ
8b, P

µ, Kµ, D, DK , DP }. One can show that the matrices T a

obey the commutation relations in Appendix B.[6]
We repeat here that there are two Lorentz subalgebras, one generated by the Jµν8 introduced with the

Poincaré group and the conformal group version generated by the Mµν ; see (A.14) and (A.20), respectively.
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Spins referenced to the Jµν8 based Lorentz rep are indicated by a subscript “8”, as in spin (A,B)8 or similar.
The subscript M indicates Mµν-rep spins, e.g. spin (A,B)M .

3.1 Spins via the Jµν
8 Lorentz rep

Let us start with the Jµν8 rep of the Lorentz algebra, (A.14). The first six generators T a, a ∈ {1, 2, ..., 6}, are
the basis generators for Jµν8 . To decompose the spin of these 37× 37 matrices, follow the reduction process
in Appendix C. A similarity transformation, S8, is found that yields new, but equivalent, matrices T̃ a,

T̃ a = S−18 T aS8 . (15)

The new Jµν8 basis generators, T̃ a for a ∈ {1, 2, ..., 6}, are block-wise diagonal, having been decomposed into
irreps of the Lorentz algebra by the standard process. One finds that the irreps have spins (An, Bn)8,

3(1, 0)⊕ 3(0, 1)⊕ 4(
1

2
,

1

2
)⊕ 3(0, 0) . (16)

There are 13 irreps.
As discussed in Appendix C, the similarity transformation S8 is composed of eigenvectors vm of two

matrices, called A2 and B2 in the Appendix. By inspecting the nonzero components of the eigenvectors vm,
one can associate generators with each irrep in (16). The results are collected in Table 1.

Generator Jµν8 irrep(s) Irrep spin8 Generator Jµν8 Irreps irrep spin8

Jµν8 I, IV (1, 0), (0, 1) Pµ8a, Pµ8b V II,V III 2(1/2, 1/2)
Mµν II, V (1, 0), (0, 1) Kµ, Pµ IX,X 2(1/2, 1/2)

J ijK III (1, 0) D, DK , DP X1, XII, XIII 3(0, 0)

J ijP V I (0, 1)

Table 1: Generators and spins associated with the irreps composing the adjoint rep of Jµν8 . The order of irreps
is as in (16), i.e. irreps I, II, III have spin (1, 0), IV, V, V I have (0, 1), V II, V III, IX,X have (1/2, 1/2),
XI,XII,XIII have spin (0, 0). All these irreps have integer spin, since, for every (An, Bn), one has An+Bn
equal to an integer. The irrep spins reflect the type of generator, i.e. (0, 1) and (1, 0) for tensors, (1/2, 1/2)
for vectors, and (0, 0) for scalars.

The results could have been anticipated based on the way the adjoint rep is constructed and the fact that
all basis generators transform as either tensors, vectors or scalars under the Jµν8 Lorentz transformations.

Consider, for example, the commutation relation (A.18). There the commutator [Jµν8 , P ρ8a] is a sum of
Pµ8a generators. By Table 5, the six basis generators Jµν8 are given the six indices a = 1 − 6, while the Pµ8a
have the four indices a = 19 − 22. Thus the adjoint rep of all six basis generators, a = 1 − 6, for Jµν8 have
nonzero components with P ρ8a row and column indices b = 19−22 and d = 19−22. This makes a 4×4 block
in the same location along the diagonal of each of the six basis generators. From the table, we see that this
is irrep V II, one of the 4-dimensional irreps with spin8 (1/2, 1/2).

Similar statements apply to the commutation relations of Jµν8 with all the basis generators.
However one gets there, the spin8 (1, 0) and (0, 1) irreps are 3-dimensional, the (1/2, 1/2) irreps are 4-

dimensional, and the scalars (0, 0) are 1-dimensional, so the total from (16) checks, 3(3) + 3(3) + 4(4) + 1(3)
= 37, as it must.
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Next, check the new vector matrices T̃ a, (15), for {Pµ8a, P
µ
8b, P

µ, Kµ}. It is known that vector matrices
connect Lorentz irreps with spins (A,B;C,D)8 where C = A ± 1/2 and D = B ± 1/2. [9, 10] With the
T̃ a one can determine the (A,B;C,D)8 by inspection. The nonzero components of these matrices occur in
blocks aligned with the irreps of the six basis generators. Simply locate the nonzero blocks and see which
two irreps are connected. The results are collected in Table 2.

Vector8 Irreps8 (A,B;C,D)8 Irreps8 (A,B;C,D)8
Pµ8a (I, V II) (1, 0; 1/2, 1/2) (II, V II) (1, 0; 1/2, 1/2)

(IV, V II) (0, 1; 1/2, 1/2) (XI, V II) (0, 0; 1/2, 1/2)

Pµ8b (I, V III) (1, 0; 1/2, 1/2) (IV, V III) (0, 1; 1/2, 1/2)
(V, V III) (0, 1; 1/2, 1/2) (XI, V III) (0, 0; 1/2, 1/2)

Kµ (I, IX) (1, 0; 1/2, 1/2) (II, IX) (1, 0; 1/2, 1/2)
(IV, IX) (0, 1; 1/2, 1/2) (V, IX) (0, 0; 1/2, 1/2)
(XI, IX) (0, 0; 1/2, 1/2)

Pµ (I,X) (1, 0; 1/2, 1/2) (II,X) (1, 0; 1/2, 1/2)
(IV,X) (0, 1; 1/2, 1/2) (V,X) (0, 0; 1/2, 1/2)
(XI,X) (0, 0; 1/2, 1/2)

Table 2: Vector matrices Pµ8a, P
µ
8b, K

µ, Pµ connect the Lorentz irreps in (16). Note that the spins
(A,B;C,D)8 obey C = A ± 1/2 and D = B ± 1/2, as required for vector and momentum matrices.[9, 10]
The subscript “8” mean that these spins and the term “vector” refer to the spacetime rotations generated
by Jµν8 .

By Table 1, all the irreps I−XIII have integer spins, meaning An +Bn is an integer, which are suitable
for their associated generators, either tensors, vectors, or scalars. This changes for the adjoint rep of the
Mµν Lorentz group, which is discussed next.

3.2 Spins via the Mµν Lorentz rep

The evaluation of the spinsM of the adjoint rep with respect to the set of Mµν generators is more complicated.
The spin 1/2 behavior discussed in Sec. 2.1 has consequences in this section.

The irreps of the adjoint rep for the Mµν Lorentz algebra are found with eigendecomposition as described
in Appendix C. Starting with the six Mµν basis generators T a for a ∈ {7, 8, ..., 12}, one finds a similarity
transformation, SM , that gives a new, primed set of basis generators,

T a
′

= S−1M T aSM . (17)

The primed rep satisfies the algebra in Appendix B, just like the unprimed and tilde bases before it. But,
now the six primed Mµν basis generators are reduced to block diagonal form.

The spins (An, Bn)M of the irreps are found to be

I ⊕ II ⊕ (III, IV )⊕ (V − V III)⊕ (IX −XII)⊕ (XIII −XIX) =

(1, 0)⊕ (0, 1)⊕ 2

[
(
1

2
,

1

2
)

]
⊕ 4

[
(
1

2
, 0)

]
⊕ 4

[
(0,

1

2
)

]
⊕ 7 [(0, 0)] . (18)



3 ADJOINT REP 8

Just as we saw before with Jµν8 , the nonzero components of the process’s eigenvectors betray their association
with the irreps. For example, the first eigenvector is found to have nonzero components at a = 7 and 12.
By the sequence in Table 5, these indices identify M12 and M34. Thus the structure constants for the
commutation relations of Mµν with M12 and M34 contribute to the spinM (1, 0) irrep, which is the first
irrep in (18) with spinM (1, 0). See Table 3.

Generator Mµν irreps Irrep spinM Generator Mµν irreps Irrep spinM
Jµν8 I, II (1, 0), (0, 1) Pµ8a V II,V III 2(1/2, 0)
Mµν I, II (1, 0), (0, 1) Pµ8b XI,XII 2(0, 1/2)

J ijK ,DK IX, X 2(0, 1/2) Kµ, Pµ IV , III 2(1/2, 1/2)

J ijP ,DP V , V I 2(1/2, 0) Jµν8 , D XIII-XIX 7(0, 0)

Table 3: Generators and spins associated with the irreps in (18) composing the reducible adjoint rep of Mµν .
To be identify a generator with an irrep, the irrep’s eigenvectors must have nonzero components at the index
corresponding to the generator. Note that the generators {Pµ8a, Pµ8b, J

ij
K , J

ij
P , DK , DP } discussed in Sec. 2.1

are related to spin 1/2 irreps.

The spin (1, 0) and (0, 1) irreps are 3-dimensional, the (1/2, 1/2) irreps are 4-dimensional, the (1/2, 0)
and (0, 1/2) irreps are 2-dimensional, and the scalars (0, 0) are 1-dimensional, so one can check that the total
adds up to 37. We have 2(3) + 2(4) + 4(2) + 4(2) + 1(7) = 37, as it must.

The vector matrices connect spins (A,B;C,D)M where C = A ± 1/2 and D = B ± 1/2. With the

transformed set of adjoint matrices, T a
′
, one can determine the spins (A,B;C,D)M by inspection. By

locating the nonzero components of the vector matrices, one can see which two irrep blocks are connected.
The results are collected in Table 4.

VectorM Irreps8 (A,B;C,D)8 Irreps8 (A,B;C,D)8
Kµ (I, IV ) (1, 0; 1/2, 1/2) (II, IV ) (0, 1; 1/2, 1/2)

(XIX, IV ) (0, 0; 1/2, 1/2)

Pµ (I, III) (1, 0; 1/2, 1/2) (II, III) (0, 1; 1/2, 1/2)
(XIX, III) (0, 0; 1/2, 1/2)

Table 4: Vector matrices Kµ and Pµ connect the irreps in (18). Note that the spins (A,B;C,D)M obey
C = A± 1/2 and D = B ± 1/2 which is required for vector and momentum matrices. The subscript “M”s
mean that these spins and the term “vector” reference the spacetime rotations generated by Mµν .

By Table 3, integer and half-integer spin irreps are mixed in the decomposition of the adjoint rep of
the Mµν Lorentz subalgebra. These spin types are associated with particles obeying the identical particle
statistics of bosons and fermions. By Table 1, the Jµν8 Lorentz subalgebra consists entirely of boson-associated
spins.
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A Generator Matrices

This appendix gives the algebra members’ definitions as 8-dimensional matrices. The section also contains
convention settings and some background. A notebook detailing the construction, verifying the claims
of the previous sections and the commutation relations of the following section is available on-line or by
request.[13, 14]

Let the spacetime metric ηµν be ηµν = ηµν = diag{+1,+1,+1,−1}. The indices µ, ν ∈ {1, 2, 3, 4} refer to
Minkowski spacetime with µ = 4 as the time index. The metric raises and lowers indices, e.g. σµ = ηµνσν .
The summation convention for repeated indices is in force, unless otherwise stated.

The Lie algebra discussed in the text has a basis of N = 37 generators. The generators are 8×8 matrices
with complex components and the transformations R act on 8-component quantities ψ called “8-spinors”,
ψ ′ = Rψ. Many of the generators are not Hermitian, X 6= X† its complex conjugate transpose, so the group
they generate is not unitary. The distinction separating “members” of the algebra and “generators” of group
transformations is often disregarded.

Recall some concepts.[6, 11, 12] Consider an n×n matrix Lie algebra that has a basis of N generators Xa,
{X1, X2, ..., XN}, and uses the commutator between any two member matrices Ma, M b, i.e.

[
Ma,M b

]
,

as the “product” operation in the algebra. Linear combinations of members with complex coefficients are
members. And the commutator of two member matrices is a member of the algebra. Thus the commutators
of generators are expressible as linear combinations of the generators, called commutation relations,

[
Xa, Xb

]
≡ XaXb −XbXa =

N∑
c=1

isabcX
c , (A.1)

where matrix multiplication is understood. The coefficients sabc are called “structure constants.” Generators
are identified by superscripts such as a, b, c, with a, b, c ∈ {1, 2, ..., N}. In the associated transformation group,
each generator, say Xa, generates a transformation Ra(θ) = exp (±iθXa), where θ is a real valued parameter.
The sign is conventionally negative when a momentum generates a translation and positive otherwise.

Theorem: Given a quantity Q and a generator X, if the products QX and XQ both vanish then the
transformation R = exp(iθX) acts trivially on Q, RQ = QR = Q. The proof is left for the interested reader.

Type8 Generator # Xa Generator # Xa Notes
Tensors 1 ≤ a ≤ 6 Jµν8 7 ≤ a ≤ 12 Mµν µν = (12, 13, 14, 23, 24, 34)

13 ≤ a ≤ 15 J ijK 16 ≤ a ≤ 18 J ijP ij = (12, 13, 23)

Vectors 19 ≤ a ≤ 22 Pµ8a 23 ≤ a ≤ 26 Pµ8b µ = (1, 2, 3, 4)
27 ≤ a ≤ 30 Kµ 31 ≤ a ≤ 34 Pµ

Scalars a = 35 D a = 36 DK No spacetime index for scalars
a = 37 DP

Table 5: The sequence of 37 basis generators. The “8” in “type8” is a reminder that the terms “Tensor”,
“Vector”, and “Scalar” refer to how the quantities transform under the spacetime rotations generated with
Jµν8 , not Mµν . For examples, with a = 11, 19, 36, the generators are X11 = M24, X19 = P 1

8a, X
36 = DK .
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A.1 Define matrices

The matrices are all 8 × 8 matrices, with complex components. To define the matrices, it is convenient to
address 2 × 2 matrix blocks in a 4-by-4 array. Thus the“41-block means the first 2 × 2 block in the fourth
row and the “32-block” is the second block in the third row, etc. The nonzero 2× 2 blocks of the matrices
are defined in terms of the Pauli matrices, σµ, given by

σx =

(
0 1
1 0

)
; σy =

(
0 −i

+i 0

)
; σz =

(
+1 0
0 −1

)
; σt =

(
+1 0
0 +1

)
. (A.2)

In some expressions we use indices {1, 2, 3, 4} instead of {x, y, z, t}.
We now give nonzero 2 × 2 blocks of the matrices, starting with the tensors, Jµν8 , Mµν , JµνK , and JµνP .

We define (
J ij8

)
11

=
(
J ij8

)
22

=
(
J ij8

)
33

=
(
J ij8

)
44

=
1

2
εijkσk , (A.3)

(
Jk48

)
11

= −
(
Jk48

)
22

=
(
Jk48

)
33

= −
(
Jk48

)
44

=
i

2
σk ,

(
M ij

)
33

=
(
M ij

)
44

=
1

2
εijkσk ;

(
Mk4

)
33

= −
(
Mk4

)
44

=
i

2
σk , (A.4)(

J ijK

)
K

= −1

2
εijkσk ;

(
Jk4K
)
K

= − i
2
σk ;

(
J ijP

)
P

= −1

2
εijkσk ;

(
Jk4P
)
P

= +
i

2
σk . (A.5)

While there are 16 matrices Jµν8 for 1 ≤ µ, ν ≤ 4, antisymmetry, i.e. Jνµ8 = −Jµν8 , makes just six nontrivial
and independent. For our basis we choose the 6 pairs µν ∈ {12, 13, 14, 23, 24, 34} of nonrepeated integers
from 1 to 4. Thus Jµν8 and Mµν each has 6 linearly independent generators.

But JµνK and JµνP have nonzero components only in one 2× 2 matrix, the 31 and 42 block, respectively.
At most four can be linearly independent. Inspection of (A.5) shows that the generator with space-space
indices ij and the generator with indices k4, k 6= i, j, are proportional to the same matrix σk, k ∈ {1, 2, 3}.
Thus just three of the JµνK and three of the JµνP are linearly independent. There are a total of 6 + 6 + 3 + 3
= 18 linearly independent tensor generators J.

There are four sets of vector generators, Pµ8a, P
µ
8b, K

µ, Pµ. The nonzero 2× 2 blocks are

(Pµ8a)41 = i σµ ; (Pµ8b)32 = −i σµ ; (Kµ)43 = −i σµ ; (Pµ)34 = +iσµ . (A.6)

These are 4 + 4 + 4 + 4 = 16 linearly independent matrix generators.
The nonzero components of the three scalar generators, i.e. D, DK , DP , occupy different 2× 2 blocks,

(D)33 = − (D)44 = +
i

2
σ4 ; (DK)K = +

i

2
σ4 ; (DP )P = − i

2
σ4 . (A.7)

The three generators are linearly independent.
The tensors, vectors, and scalars defined above contribute to the basis generators. The total number

of linearly independent generators is 18 + 16 + 3 = 37. By construction, a linear combination of all 37
basis generators vanishes only for a set of null coefficients, confirming that the 37 generators are linearly
independent.
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A.2 Spacial inversion, parity

When acting on spacetime coordinates xµ, spacial inversion, i.e. parity, produces −xµ = −ηµνxν , since our
spacetime metric ηµν is the diagonal matrix diag{+1,+1,+1,−1}. Also, note that left- and right-handed
quantities exchange under parity. The 8× 8 parity matrix β we use has the following nonzero blocks,

β(12) = β(21) = β(34) = β(43) = σ4 . (A.8)

The inverse of the parity matrix β is β, i.e. β2 = 1.
The tensors Jµν8 and Mµν behave properly,

βJµν8 β−1 = +J8µν ; βMµνβ−1 = +Mµν . (A.9)

The tensors JµνK and JµνP behave understandably, but not properly. One has

βJµνK β−1 = +JP µν ; βJµνP β−1 = +JK µν . (A.10)

These two, JµνK and JµνP , are nonzero in small 2×2 blocks and have opposite handedness. They switch places
under parity.

Much the same happens with momenta. One finds that βPµ8 β
−1 = −P8µ, as a vector should, but

βPµ8aβ
−1 = −P8b µ ; βPµ8bβ

−1 = −P8aµ , (A.11)

βKµβ−1 = −Pµ ; βPµβ−1 = −Kµ . (A.12)

The momenta Pµ8a, P
µ
8b, K

µ, Pµ each has definite handedness. They react pairwise to spacial inversion.
Parity preserves “true” scalars, such as the scalar product of two vectors xµy

µ. “Pseudoscalars” change
sign under spacial inversion. For the generators that are scalars under Lorentz transformations, one finds
that

βDβ−1 = −D ; βDKβ
−1 = −DP ; βDPβ

−1 = −DK , (A.13)

so there is the pair DK and DP , each with definite handedness. Only D acts as a pseudoscalar under parity,
the two others have pseudoscalar like behavior, but pairwise.

B Commutation relations

The Lie algebra results from combining a Poincaré algebra and a conformal algebra. The 10 plus 15 basis
generators of these two algebras are taken as given matrices.

Finding the commutators of the initial 25 Poincaré/conformal generators is straightforward. Some of the
commutators require introducing new members of the algebra so that the commutators can be written as
linear combinations of generators. The new members are introduced as required to keep the algebra closed.

The basis of the combined algebra contains 37 linearly independent generators. The algebra consists of
linear combinations of the generators {Jµν8 , Mµν , JµνK , JµνP , Pµ8a, P

µ
8b, K

µ, Pµ, D, DK , DP }. The commutator
of any two members of the algebra is a member of the algebra.

Only the commutators that don’t vanish are displayed in the following. Nonzero commutation relations
with Jµν8 :

[Jµν8 , Jρσ8 ] = −i (ηνρJµσ8 + ηµσJνρ8 − ηµρJνσ8 − ηνσJ
µρ
8 ) (A.14)

[Jµν8 ,Mρσ] = −i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) (A.15)
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[Jµν8 , JρσK ] = −i (ηνρJµσK + ηµσJνρK − η
µρJνσK − ηνσJ

µρ
K ) (A.16)

[Jµν8 , JρσP ] = −i (ηνρJµσP + ηµσJνρP − η
µρJνσP − ηνσJ

µρ
P ) (A.17)

[Jµν8 , P ρ8a] = −i (ηνρPµ8a − ηµρP ν8a) ; [Jµν8 , P ρ8b] = −i (ηνρPµ8b − η
µρP ν8b) (A.18)

[Jµν8 ,Kρ] = −i (ηνρKµ − ηµρKν) ; [Jµν8 , P ρ] = −i (ηνρPµ − ηµρP ν) (A.19)

The commutation relations of generators X with M,

[Mµν ,Mρσ] = −i (ηνρMµσ + ηµσMνρ − ηµρMνσ − ηνσMµρ) (A.20)

[Mµν , JρσK ] = − i
2

(ηνρJµσK + ηµσJνρK − η
µρJνσK − ηνσJ

µρ
K )

+
i

2
(ηµρηνσ − ηνρηµσ)DK −

1

2
εµνρσDK (A.21)

[Mµν , JρσP ] = − i
2

(ηνρJµσP + ηµσJνρP − η
µρJνσP − ηνσJ

µρ
P )

− i
2

(ηµρηνσ − ηνρηµσ)DP −
1

2
εµνρσDP (A.22)

[Mµν , P ρ8a] = − i
2

(ηνρPµ8a − ηµρP ν8a) +
1

2
εµνρσP8aσ (A.23)

[Mµν , P ρ8b] = − i
2

(ηνρPµ8b − η
µρP ν8b)−

1

2
εµνρσP8bσ (A.24)

[Mµν ,Kρ] = −i (ηνρKµ − ηµρKν) ; [Mµν , P ρ] = −i (ηνρPµ − ηµρP ν) (A.25)

[Mµν , DK ] = − i
2
JµνK ; [Mµν , DP ] = +

i

2
JµνP (A.26)

The commutation relations of generators with JK and JP not listed previously:

[JµνK ,Kρ] = − i
2

(ηνρPµ8a − ηµρP ν8a)− 1

2
εµνρσP8aσ (A.27)

[JµνP , P ρ] = − i
2

(ηνρPµ8b − η
µρP ν8b) +

1

2
εµνρσP8bσ (A.28)

[JµνK , D] = − i
2
JµνK ; [JµνP , D] = − i

2
JµνP (A.29)

The commutation relations of generators with Pµ8a and Pµ8b,

[Pµ8a, P
ν ] = −2i (ηµνDK − JµνK ) (A.30)

[Pµ8b,K
ν ] = +2i (ηµνDP + JµνP ) (A.31)

[Pµ8a, D] = +
i

2
Pµ8a ; [Pµ8b, D] = − i

2
Pµ8b (A.32)

The not-yet-listed commutation relations of generators with K and P,

[Kµ, P ν ] = +2i (ηµνD +Mµν) (A.33)

[Kµ, D] = +iKµ ; [Kµ, DK ] = − i
2
Pµ8a ; [Pµ, D] = −iPµ ; [Pµ, DP ] = +

i

2
Pµ8b (A.34)

Finally, the remaining nonzero commutation relations that involve D,

[D,DK ] = +
i

2
DK ; [D,DP ] = − i

2
DP (A.35)

Commutators that vanish are not displayed.
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C Reducing Lorentz reps

The standard process used to reduce Lorentz reps to their irreducible components, irreps, is outlined here
for convenience and completeness.[6, 12] The irreps making up the adjoint reps of the Jµν8 - and Mµν-Lorentz
algebra are displayed in (16) and (18). Results for the 8-dimensional matrix rep in Appendix A are provided
at the end of this appendix.

Let the matrices Jµν generate a rep of the Lorentz algebra. These matrices satisfy the usual Lorentz
algebra commutation relations, similar to (A.14). Define generators J i and Ki as

(J1, J2, J3) ≡ (J23, J31, J12) ; (K1,K2,K3) ≡ (J14, J24, J34) . (A.36)

The J i and Ki generate rotations in space and boosts along coordinate axes. Next define Ai and Bi by

Ai ≡ 1

2

(
J i + iKi

)
; Bi ≡ 1

2

(
J i − iKi

)
. (A.37)

One can show that Ai and Bi each represent the group of rotations in 3-space. One finds that Ai and Bi

commute, so they are independent.
One calculates the square of the magnitude AiAi, which is the sum of the components squared because

repeated indices are summed. If the Ai form an irrep of the Lorentz group, then the eigenvalues of the square
AiAi are An(An + 1) for some integer or half integer An, i.e. 2An is an integer.

One also finds the square BiBi. Similar comments apply to Bi. Since Ai and Bi commute, they can
share eigenvectors. A note of caution: linear combinations of eigenvectors with the same eigenvalues may be
needed to get a collection of useful eigenvectors. This is especially true with eigenvectors whose eigenvalues
vanish.

For an irrep with spin (An, Bn), there are a number of eigenvectors vm of A2 = AiAi and B2 with
the same eigenvalues An(An + 1) and Bn(Bn + 1). The number of eigenvectors vm for a particular irrep is
(2An + 1)(2Bn + 1). The nonzero components of the vm tell us which generators contribute to the nth irrep.

The collection of eigenvectors can be organized as columns of a matrix S

Sin = vin . (A.38)

The similarity transformation determined by S, can be shown to reduce the matrices Jµν to block-diagonal
form, with a Lorentz irrep in each block.

Jµν ′ ≡ S−1JµνS . (A.39)

The nonzero components of the eigenvector vn occur in the range of indices for the corresponding block of
its irrep. And, with that comment, the process is concluded.

Applying the process to the 37× 37 matrices of the adjoint rep for Jµν8 yields the irreps in (16). For the
37× 37 matrices of the adjoint rep for Mµν , the result is presented in (18).

For the 8 × 8 matrix rep of the Lorentz group generated by the Jµν8 the above process determines its
spin8 reduction into irreps,

I ⊕ II ⊕ III ⊕ IV = (0, 1/2)⊕ (1/2, 0)⊕ (0, 1/2)⊕ (1/2, 0) . (A.40)

By the process of interrogating the eigenvectors of the irreps discussed in the text, one finds that Pµ8a connects
reps IV and I with spins (A,B;C,D) = (1/2, 0; 0, 1/2), while Pµ8b connects III and II with spins (A,B;C,D)
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= (0, 1/2; 1/2, 0). One finds that the momenta PµP and PK µ connect irreducible Lorentz reps III and IV
with spins (1/2, 0; 0, 1/2) for PµP and (0, 1/2; 1/2, 0) for PK µ. These spins satisfy the rules C = A± 1/2 and
D = B ± 1/2 for irreps connected by vector and momentum matrices.

One finds that the spins (An, Bn)M of the Mµν Lorentz rep are 4[(0, 0)] ⊕ (0, 1/2) ⊕ (1/2, 0), i.e. four
trivial reps plus a 4-dimensional rep based on the Dirac formalism. By the construction in Appendix A,
it makes sense that four irreps are trivial because Mµν has nonzero components only in a 4 × 4 corner of
otherwise null 8 × 8 matrices. The momentum Kµ connects spins (A,B;C,D)M = (0, 1/2; 1/2, 0) while
Pµ connects spins (A,B;C,D)M = (1/2, 0; 0, 1/2). The vector/momentum (A,B;C,D)M spin rule is again
confirmed.
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