Rule of necessitation: a non-contingent truthity, but not a tautology

© Copyright 2018 by Colin James III All rights reserved.

1. The axiom or rule of necessitation \(\text{N} \) states that if \(p \) is a theorem, then necessarily \(p \) is a theorem:

\[
\text{If } \vdash p \text{ then } \vdash \Box p.
\]

We show this is non-contingent (a truthity), but not tautologous (a proof). We evaluate axioms (in bold) of \(\text{N}, \text{K}, \text{T}, \text{4}, \text{B}, \text{D}, \text{5} \) to derive systems (in italics) of \(\text{K}, \text{M}, \text{T}, \text{S4}, \text{S5}, \text{D} \).

We assume the Meth8 apparatus implementing system variant \(\text{VL}4 \), where:

\[
\# \text{ necessity, universal quantifier; } \% \text{ possibility, existential quantifier; } \\
\Rightarrow \text{ Imply; } = \text{ Equivalent to; } (p=p) \text{ Tautology}
\]

<table>
<thead>
<tr>
<th>Definition</th>
<th>Axiom</th>
<th>Symbol</th>
<th>Name</th>
<th>Meaning</th>
<th>2-tuple</th>
<th>Ordinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p=p)</td>
<td>T</td>
<td>Tautology</td>
<td>proof</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>(p@p)</td>
<td>F</td>
<td>Contradiction</td>
<td>absurdum</td>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(%p>#p)</td>
<td>N</td>
<td>Non-contingency</td>
<td>truthity</td>
<td>01</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>(%p<#p)</td>
<td>C</td>
<td>Contingency</td>
<td>falsity</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

The designated proof value is T tautology. Note the meaning of \((\%p>\#p) \): a possibility of \(p \) implies the necessity of \(p \); and some \(p \) implies all \(p \). In other words, if a possibility of \(p \) then the necessity of \(p \); and if some \(p \) then all \(p \). This shows equivalence and interchangeability of respective modal operators and quantified operators, as proved in Appendix. (That correspondence is proved by \(\text{VL}4 \) corrections to the vertices of the Square of Opposition and subsequent corrections to the syllogisms of Modus Cesare and Modus Camestros.)

Results are the 16-value truth table as row-major and horizontal; tautology is all "TTTT".

\[
\text{N: If } \vdash p \text{ then } \vdash \Box p. \\
\vdash p>\#p; \\
The necessity of \(p \) or \(\neg p \) is a theorem. \\
\vdash (p\neg \neg p)=(p=p); \\
\text{Tautology} \quad \text{TNTN TNTN TNTN TNTN} \quad \text{(N.1.1)} \\
\text{Non-contingency} \quad \text{NNNN NNNN NNNN NNNN} \quad \text{(N.2.1)}
\]

Eqs. N.1.2 and 2.2 are minimally tautologous at a level of non-contingency \((\text{NNNN NNNN NNNN NNNN}) \) as \textit{truthity}, but not a proof at a level of tautology \((\text{TTTT TTTT TTTT TTTT}) \).

The definitions of the other axioms are as follows (Steward, Stoupa, 2004):

\[
\text{K: } \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q); \text{ no conditions} \\
\vdash (p>q)>(\#p>\#q); \\
\text{Tautology} \quad \text{TTTT TTTT TTTT TTTT} \quad \text{(K.1.1)}
\]

\[
\text{D: } p \rightarrow (p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q); \text{ no conditions} \\
\vdash \neg p \rightarrow (\neg p \rightarrow \#q); \\
\text{Non-contingency} \quad \text{NNNN NNNN NNNN NNNN} \quad \text{(D.1.2)}
\]

\[
\text{B: } \Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q); \text{ no conditions} \\
\vdash p \rightarrow (p \rightarrow \#q); \\
\text{Non-contingency} \quad \text{NNNN NNNN NNNN NNNN} \quad \text{(B.1.2)}
\]
The definitions of systems are as follows:

\[K := \quad K \text{ (no conditions)} \]
\[
#(p \rightarrow q) \rightarrow (#p \rightarrow #q) ; \\
TTTT TTTT TTTT TTTT \\
(K.1.1)
\]
\[
#(p \rightarrow q) \rightarrow (#p \rightarrow #q) ; \\
TTTT TTTT TTTT TTTT \\
(K.1.2)
\]

alternatively, \(K \) & \(N \) is used (viz, en.wikipedia.org/wiki/Modal_logic) \]
\[
(#(p \rightarrow q) \rightarrow (#p \rightarrow #q)) \& (p \rightarrow #p) ; \\
TNTN TNTN TNTN TNTN \\
(K.2.1)
\]

Eq. \(K.2.2 \) subsequently taints all results as having some value of truth (TNTN), but not tautology (TTTT).

\[D := \quad K \& D \text{ (serial)} \]
\[
(#(p \rightarrow q) \rightarrow (#p \rightarrow #q)) \& (#p \rightarrow %p) ; \\
TTTT TTTT TTTT TTTT \\
(D.1.1)
\]

\[M := \quad K \& T \]
\[
(#(p \rightarrow q) \rightarrow (#p \rightarrow #q)) \& (#p \rightarrow p) ; \\
TCTT TCTT TCTT TCTT \\
(T.1.1)
\]

\[S4 := \quad M \& 4 \text{ ; reflexive and transitive} \]
\[
((#(p \rightarrow q) \rightarrow (#p \rightarrow #q)) \& (#p \rightarrow p)) \& (#p \rightarrow ##p) ; \\
TTTT TTTT TTTT TTTT \\
(S4.1.2)
\]

\[B := \quad M \& B \]
\[
((#(p \rightarrow q) \rightarrow (#p \rightarrow #q)) \& (#p \rightarrow p)) \& (p \rightarrow %p) ; \\
TTTT TTTT TTTT TTTT \\
(B.1.1)
\]

\[S5 := \quad M \& 5 \text{ ; reflexive and Euclidean} \]
\[
((#(p \rightarrow q) \rightarrow (#p \rightarrow #q)) \& (#p \rightarrow p)) \& (%p \rightarrow %p) ; \\
TTTT TTTT TTTT TTTT \\
(S5.1.1)
\]

alternatively, \(M \) & \(B \) & \(4 \)
\[
((#(p \rightarrow q) \rightarrow (#p \rightarrow #q)) \& (#p \rightarrow p)) \& (p \rightarrow %p) \& (#p \rightarrow ##p) ; \\
(S5.2.1)
\]
2. We also evaluated (Steward, Stouppa, 2004) to derive by replication some systems of interest.

\[\mathbf{K}: \square(p \supset q) \supset (\square p \supset \square q) \]
\[(p \supset q) > (#p > #q) ; \]
\[\text{(3.1.1)} \]
\[\text{TTTT TTTT TTTT TTTT} \]
\[\text{(3.1.2)} \]

Axion \(T \): \[p \supset p \]
\[#p > q ; \]
\[\text{(3.2.1)} \]
\[\text{TTTT TTTT TTTT TTTT} \]
\[\text{(3.2.2)} \]

\(\mathbf{M} \), obtained by extending system \(\mathbf{K} \) with rule \(T \) [not Gödel's system \(T \)]
\[(#p > q) > (#p > #q) > (#p > q) ; \]
\[\text{(3.3.1)} \]
\[\text{TCTT TCTT TCTT TCTT} \]
\[\text{(3.3.2)} \]

"The strongest system from these modal logics that is perfectly straightforward to formulate in a sequent system and to prove cut-free is system \(\mathbf{G-M} \) (for Gentzen system \(\mathbf{M} \))."

We remark that the subsequent derivations of \(S4 \), \(B \), and \(S5 \) are tautologous, as are \(\mathbf{K} \) and \(T \) as demonstrated in section 1.

2. We found other mistakes in (Steward, Stouppa, 2004).

2.1. "The following lemma is a straightforward exercise in theoremhood over \(\mathbf{K} \):

LEMMA 6 If \(A \supset B \) is a theorem of \(\mathbf{M} \), then so are:

\[\text{(L.6.0.1)} \]
\[\begin{align*}
1. & \, A \land C \supset \land C; \\
2. & \, A \lor C \supset \lor C; \\
3. & \, \square A \supset \square B; \\
4. & \, \langle\rangle A \supset \langle\rangle B.
\end{align*} \]

\[\text{(L.6.1)} \]
\[\text{TNTT TNTT TTTT TTTT} \]
\[\text{(L.6.2)} \]
\[\text{TNTT TTTT TTTT TTTT} \]
\[\text{(L.6.3)} \]
\[\text{TNTT TTTT TTTT TTTT} \]
\[\text{(L.6.4)} \]

To map Eq. L.6.0.1 we use Eq. 3.3.2.

\[((#(p > q) > (#p > #q)) > (#p > q)) > (p > q) ; \]
\[\text{TNTT TTTT TTTT TTTT} \]
\[\text{(L.6.0.2)} \]

We then reuse Eq. L.6.0.2 to map L.6.1.2 - 6.4.2.

\[(((#(p > q) > (#p > #q)) > (#p > q)) > (p > q)) > ((p & r) > (q & r)) ; \]
\[\text{TTTT TTTT TTTT TTTT} \]
\[\text{TCTT TCTT TCTT TCTT} \]
\[\text{(L.6.1)} \]
\[\text{TTTT TTTT TTTT TTTT} \]
\[\text{TCTT TCTT TCTT TCTT} \]
\[\text{(L.6.2)} \]
\[\text{TCTT TCTT TCTT TCTT} \]
\[\text{(L.6.3)} \]
\[\text{TCTT TCTT TCTT TCTT} \]
\[\text{(L.6.4)} \]

2.2. These inference rules were flagged by Meth8, with page number for equation.

LET: \(p \, \text{uc_Gamma} \); \(q \, \text{uc_Delta} \); \(r \, A \); \(s \, B \)

\((p & r) > (%p & #r) ; \)
\[\text{TNTT TTTT TTTT TTTT} \]
\[\text{(315, []1)} \]
\[\text{TTTT NTNN TTTT NTNN} \]
\[\text{(323, []2)} \]
\[\text{TNTT TTTT TTTT TTTT} \]
\[\text{(324, []5)} \]
"we recommend the reader works ... example (A ⊃ B ⊃ C) ⊃ (A ⊃ C) ⊃ B ⊃ C" (321.1)

((p>q)>r)>p)>q)>r ; TFFF TTTT TFFF TTTT (321.2)

We conclude that N the axiom or rule of necessitation is not tautologous. Because system M as derived and rendered is not tautologous, system G-M also not tautologous.

What follows is that systems derived from using M are tainted, regardless of the tautological status of the result so masking the defect, such as systems S4, B, and S5.

We also find that Gentzen-sequent proof is suspicious, perhaps due to its non bi-valent lattice basis in a vector space.

References

Steward, Charles; Stouppa, Phiniki. (2004). A systematic proof theory for several modal logics; also at textproof.com/supervision/phiniki04sbm.pdf