
1 
 

ABOUT NON-CLOSEDNESS OF THE THREE-DIMENSIONAL NAVIER-STOKES 

EQUATIONS SYSTEM FOR THE VISCOUS INCOMPRESSIBLE FLUID 

 

 

Andrey Preobrazhenskiy 

 

 

ABSTRACT. In this paper it is shown that the system of four equations formed by 

three-dimensional Navier-Stokes equations system for incompressible fluid and 

equation of continuity, is not closed, equation of continuity is excessive. This is 

because the three-dimensional Navier-Stokes equations system cannot have a 

bounded at infinity solutions to the Cauchy problem with a non-zero velocity field 

divergence. 

 

 

 

The interest of the Navier-Stokes equations is so great that information about 

this question periodically appears in the newspaper news. The fact is that proven 

methods for analyzing partial differential equations in the case of the Navier-Stokes 

equations for the incompressible fluid do not work for an unknown reason. Equations 

remain elusively incomprehensible. 

In year 2000, seven problems named as major mathematical problems of the 

third millennium were published on the website http://claymath.org/, one of those 

problems – Navier-Stokes equations. This problem is formulated by C. L. Fefferman 

by a range of questions regarding the solution of these equations, because until now 

it’s not possible to understand what properties do they have. The question about how 

good the set of Navier-Stokes equations describes behavior of real viscous fluids 

also remains open. 

In the paper written by O.A. Ladyzhenskaya [1] and published in 2003 the 

problem of Navier-Stokes equations was formulated in the following way: «Do 

Navier-Stokes equations together with initial and boundary conditions give 

determining description of incompressible fluid dynamics or not?» 

As of 2014, the situation with the problem of the Navier-Stokes equations 

became almost mystical. It is described in the paper by one of the leading researchers 

of this problem, Terence Tao [2]. In his paper, he actually comes to the conclusion 

that the existing methods of analysis cannot solve the problem. To date, no important 

results have been achieved in solving the problem of the Navier-Stokes equations. 

Really mystical situation: the Navier-Stokes equations must describe real 

fluids, which behavior has a certain set of properties. These properties should be 

visible during the analysis of the equations, but this does not happen. More precisely, 

it happens only for the plane case of fluid motion, but not for the three-dimensional 

one. Suspicion occurs that the Navier-Stokes equations have something that goes 

unnoticed, some unique feature … 

http://claymath.org/
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Let’s consider the system of four equations formed by the three Navier-Stokes 

equations system 

 

𝜕𝑉𝑥

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑥

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑥

𝜕𝑦
+ 𝑉𝑧

𝜕𝑉𝑥

𝜕𝑧
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝜈 (

𝜕2𝑉𝑥

𝜕2𝑥
+

𝜕2𝑉𝑥

𝜕2𝑦
+

𝜕2𝑉𝑥

𝜕2𝑧
) 

 

𝜕𝑉𝑦

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑦

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑦

𝜕𝑦
+ 𝑉𝑧

𝜕𝑉𝑦

𝜕𝑧
= −

1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝜈 (

𝜕2𝑉𝑦

𝜕2𝑥
+

𝜕2𝑉𝑦

𝜕2𝑦
+

𝜕2𝑉𝑦

𝜕2𝑧
)            (1) 

 

𝜕𝑉𝑧

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑧

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑧

𝜕𝑦
+ 𝑉𝑧

𝜕𝑉𝑧

𝜕𝑧
= −

1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝜈 (

𝜕2𝑉𝑧

𝜕2𝑥
+

𝜕2𝑉𝑧

𝜕2𝑦
+

𝜕2𝑉𝑧

𝜕2𝑧
) 

 

and the equation of continuity (the incompressibility condition of fluid) 

 
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= 0                                                            (2) 

 

Four equations include four unknown functions, and apparently, the given equations 

system is closed, however this impression is deceptive. Here it will be very useful to 

recall systems of linear algebraic equations. As is well known, in this case, the 

equality of the number of equations to the number of unknowns does not mean at all 

that the equations system is closed and uniquely solvable. 

Let the three arbitrarily chosen functions 𝑉𝑥 = 𝑉𝑥(𝑥, 𝑦, 𝑧, 𝑡), 𝑉𝑦 = 𝑉𝑦(𝑥, 𝑦, 𝑧, 𝑡), 

𝑉𝑧 = 𝑉𝑧(𝑥, 𝑦, 𝑧, 𝑡) describe the velocity field. Further, it is assumed that the functions 

𝑉𝑥, 𝑉𝑦, 𝑉𝑧 are continuous together with their partial derivatives in coordinates to the 

third order inclusive. The second partial derivatives of these functions with respect 

to time and one of the coordinates are also continuous. Substituting these functions 

into the first equation (or any other equation, as the first equation is chosen for 

definiteness) of the system (1), it is possible by appropriate choice of the pressure 

function 𝑃 = 𝑃(𝑥, 𝑦, 𝑧, 𝑡) to achieve the fulfillment of this equation. Thus, it can be 

said that one of the equations of the system (1) will always be satisfied for an 

arbitrarily specified velocity field 𝑉𝑥, 𝑉𝑦, 𝑉𝑧. 

Let’s rotate the velocity field 𝑉𝑥, 𝑉𝑦, 𝑉𝑧 and the pressure field 𝑃 relative to the 

coordinate system 𝑋𝑌𝑍 around the 𝑍 axis, at an arbitrary angle 𝛼 (hereinafter, 

speaking of the rotation of the velocity field, it is always assumed that this also 

causes the rotation of the pressure field 𝑃, the rotation of the velocity field is 

considered for a fixed point in time). In this case, for an arbitrarily chosen velocity 

field, the first equation of the system (1) will no longer be satisfied. What conditions 

must the velocity field satisfy so that when it is rotated the first equation continues 

to be satisfied? The answer is very simple: in the initial state, the velocity field must 

satisfy the system of two equations, namely, the first and second equations of system 

(1). In this case, the two equations mentioned will be fulfilled after the rotation of 
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the velocity field relative to the 𝑍 axis by an arbitrary angle 𝛼. This is possible to 

prove by the analysis of the field turning process. This analysis is not complicated, 

but very cumbersome, so further it will be described only in general terms. Turning 

the field around the 𝑍 axis at a small angle 𝑑𝛼, we use the field continuity property 

and require the fulfillment of the first equation. The scheme of the velocity field 

rotation is shown in Figure 1. The rotation of the velocity field occurs around the 𝑍 

axis counterclockwise. 

 

 

Figure 1. Velocity field rotation scheme. 

 

After rotation of the velocity field, point 1 is in the position of point 2, for this point 

the values of all functions included in the first equation of system (1) are calculated. 

From the beginning, the velocities 𝑉𝑥, 𝑉𝑦, 𝑉𝑧  and the derivative of the pressure 

𝜕𝑃/𝜕𝑥 are calculated. Further, the values of the functions after the velocity field 

rotation are taken to write with a line above, for example, 𝑉̅𝑥, 𝜕𝑃̅/𝜕𝑥, etc. The 

functions values at point 2 before the velocity field rotation are written in ordinary 

letters, for example, 𝑉𝑥, 𝜕𝑃/𝜕𝑥, etc. As can be clearly seen from Figure 1, the value 

of any function at point 2 after rotation,  𝑓(̅𝑥, 𝑦, 𝑧)  is determined by the value of this 

function at point 1 before the velocity field rotation, 𝑓(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧). In this 

case, it is also necessary to take into account the rotation of the vectors by the angle 

𝑑𝛼. The following result will be obtained: 

 

𝑉̅𝑥 = 𝑉𝑥 +
𝜕𝑉𝑥

𝜕𝑥
𝑑𝑥 +

𝜕𝑉𝑥

𝜕𝑦
𝑑𝑦 − 𝑉𝑦𝑑𝛼 = 𝑉𝑥 +

𝜕𝑉𝑥

𝜕𝑥
𝑦𝑑𝛼 −

𝜕𝑉𝑥

𝜕𝑦
𝑥𝑑𝛼 − 𝑉𝑦𝑑𝛼 

(3) 

𝑉̅𝑦 = 𝑉𝑦 +
𝜕𝑉𝑦

𝜕𝑥
𝑑𝑥 +

𝜕𝑉𝑦

𝜕𝑦
𝑑𝑦 + 𝑉𝑥𝑑𝛼 = 𝑉𝑦 +

𝜕𝑉𝑦

𝜕𝑥
𝑦𝑑𝛼 −

𝜕𝑉𝑦

𝜕𝑦
𝑥𝑑𝛼 + 𝑉𝑥𝑑𝛼 
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𝑉̅𝑧 = 𝑉𝑧 +
𝜕𝑉𝑧

𝜕𝑥
𝑑𝑥 +

𝜕𝑉𝑧

𝜕𝑦
𝑑𝑦 = 𝑉𝑧 +

𝜕𝑉𝑧

𝜕𝑥
𝑦𝑑𝛼 −

𝜕𝑉𝑧

𝜕𝑦
𝑥𝑑𝛼 

(3) 
𝜕𝑃̅

𝜕𝑥
=

𝜕𝑃

𝜕𝑥
+

𝜕2𝑃

𝜕𝑥2
𝑑𝑥 +

𝜕2𝑃

𝜕𝑥𝜕𝑦
𝑑𝑦 −

𝜕𝑃

𝜕𝑦
𝑑𝛼 =

𝜕𝑃

𝜕𝑥
+

𝜕2𝑃

𝜕𝑥2
𝑦𝑑𝛼 −

𝜕2𝑃

𝜕𝑥𝜕𝑦
𝑥𝑑𝛼 −

𝜕𝑃

𝜕𝑦
𝑑𝛼 

 

Derivatives of the velocities with respect to coordinates and time, for example 

𝜕𝑉̅𝑥/𝜕𝑥, 𝜕𝑉̅𝑥/𝜕𝑡, are calculated by differentiating formulas (3). All functions 

calculated in this way are substituted into the first equation of system (1). After the 

multiplication operation, in this equation only the members of zero and first order of 

smallness in 𝑑𝛼 are left, similar members are grouped. Demanding the fulfillment 

of the first equation of system (1), we obtain the condition: in the initial state, the 

velocity field must satisfy the first and second equation of system (1). 

Physically, this result is absolutely clear. The equations system (1) is the record 

of the impulse conservation law for the three components of impulse. If the velocity 

field satisfies only the first equation of the system (1), this means that in this field 

the impulse conservation law is realized only for 𝑋 component of impulse. When 

the velocity field rotates around the 𝑍 axis, the contribution of the 𝑌 component of 

impulse will be made in the 𝑋 component. Hence it is clear that the conservation law 

of the 𝑋 component of the impulse can be fulfilled after the field is rotated only if 

the conservation law of the 𝑋 and 𝑌 components of impulse were fulfilled before the 

field was rotated. 

Similarly, if the first equation of the system (1) is satisfied when the field is 

rotated around the 𝑌 axis, then this field will satisfy the first and third equations of 

system (1). And finally, if the first equation of the system (1) is satisfied when the 

field is rotated around to any arbitrary directional axis, then such a field will satisfy 

all three equations of system (1).  

Two conclusions can be drawn from the above. The first conclusion: system 

of equations (1) is invariant to the velocity field rotation with respect to the 𝑋𝑌𝑍 

coordinate system. 

The second conclusion: the system of equations (1) can be replaced by one of 

the equations of this system (any), and the requirement of its implementation for an 

arbitrary position of the velocity field relative to the 𝑋𝑌𝑍 coordinate system. 

So far nothing has been said about the velocity field divergence. Consider 

velocity field with nonzero divergence, i.e. 

 

div 𝑽 =
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
≠ 0 

 

Nonzero divergence of the velocity field in the incompressible fluid means that the 

sources (sinks) of the fluid are continuously distributed throughout the fluid volume. 

This will violate the mass conservation law, which from a physical point of view 

looks absolutely ridiculous. Consequently, there are no physical principles 
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explaining nonzero divergence in incompressible fluid. Then, abstracting from the 

physical sense, mathematically, in the most general form it can be written as 

 
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
+

𝜕𝑉𝑧

𝜕𝑧
= 𝐷(𝑥, 𝑦, 𝑧, 𝑡)                                    (4) 

where 𝐷(𝑥, 𝑦, 𝑧, 𝑡) - is arbitrarily given, continuous function of coordinates and time. 

Let’s suppose that there is a velocity field that satisfies the three equations of 

system (1) and equation (4). This means that the first (or any other) equation of 

system (1) and equation (4) must both be fulfilled when the velocity field is rotated 

around an arbitrarily chosen axis. The first equation of system (1) will be satisfied 

due to the assumptions made, but will equation (4) be fulfilled in this case? 

The left side of equation (4) is the first invariant of the strain rate tensor, 𝐼1. 

For the point (𝑥, 𝑦, 𝑧) given in the velocity field, the value of the invariant 𝐼1 does 

not depend on the choice of coordinate system. Therefore, for the point in question, 

the divergence value will not change after the velocity field rotation. But this point 

will occupy a new position (𝑥1, 𝑦1, 𝑧1) in the 𝑋𝑌𝑍 coordinate system. It can be said 

that the divergence field will rotate as a whole with respect to the 𝑋𝑌𝑍 coordinate 

system together with the velocity field. But then, at the point in question (𝑥, 𝑦, 𝑧), 

the divergence value will change. In this case, the right side of the equation, the 

function 𝐷(𝑥, 𝑦, 𝑧, 𝑡), will not change. This function is initially given, it is tied to the 

𝑋𝑌𝑍 coordinate system and is not involved in the rotation. This shows that the 

implementation of equation (4) is possible only in one case, if 

 

𝐷(𝑥, 𝑦, 𝑧, 𝑡) = 𝑐𝑜𝑛𝑠𝑡 

 

(this constant may be a function only of time, but in this case, it doesn’t matter). 

Otherwise, equation (4) will not have the property of invariance to the velocity field 

rotation. Therefore, it cannot be simultaneously performed for all equations of 

system (1). In this case, in the system of equations (1) only one equation can be 

performed. 

The conclusion that 𝐷 = 𝑐𝑜𝑛𝑠𝑡 can be illustrated. The Figure 2 schematically 

shows the case of the velocity field (the divergence field) rotation. Color density 

characterizes the magnitude of the velocity field divergence. Left part (a), the initial 

position of the velocity field. Upper part is the divergence of the velocity field div 𝑽. 

Lower part is the divergence distribution defined by the function 𝐷(𝑥, 𝑦, 𝑧), equation 

(4) is satisfied. Right side (b), the velocity field is rotated by 180 °, equation (4) is 

not satisfied. It is clearly seen that equation (4) can be satisfied only if 𝐷(𝑥, 𝑦, 𝑧) =
𝑐𝑜𝑛𝑠𝑡. Here you can argue that the function 𝐷 may have a radial symmetry. 

However, the choice of a different position of the rotation axis makes this type of 

symmetry impossible. 
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Figure 2. Explanatory diagram. 

 

So div 𝑽 = 𝑐𝑜𝑛𝑠𝑡, this does not mean at all that there necessarily exist 

solutions of system (1) for which div 𝑽 = 𝑐𝑜𝑛𝑠𝑡. This means that they may exist, 

since the method used here does not allow such solutions to be cut off. However, 

there is another way to do that. As mentioned above, the constant divergence in the 

incompressible fluid is a continuous distribution of the sources (sinks) of the fluid 

itself by volume of the fluid. Moreover, the distribution density of sources is constant 

throughout the volume of the fluid. Applying the Cauchy problem, the presence of 

a velocity field with a constant divergence will lead to an unlimited increase in 

velocities (or any one velocity) with increasing distance from the origin. This means 

that all solutions of the system (1) that are bounded at infinity will have zero velocity 

field divergence. Thus, the solutions of the three-dimensional Cauchy problem for 

an incompressible fluid will be all solutions of system (1) bounded at infinity. All 

such solutions will automatically satisfy continuity equation (2), i.e. the continuity 

equation turns out to be unnecessary. 

An interesting result can be obtained when trying to solve some simplest 

boundary problem for the Navier-Stokes equations using a velocity field with 

constant divergence. So, for example, one-dimensional problem of fluid motion 

between flat walls in the case of a divergence-free velocity field becomes two-

dimensional in case of constant divergence. In the set of equations obtained in this 

case, internal contradictions arise, with the result that the solution of this problem 

simply does not exist. 

The system of equations (1) consists of three equations, containing four 

unknown functions, hence it is not closed. Solution for this equations system can be 

performed according to the following scheme, for example. You can arbitrarily 

choose one of the velocities, for example 𝑉𝑥(𝑥, 𝑦, 𝑧, 𝑡), choosing a function that tends 
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to zero at infinity and fades with the time and has integrals that are bounded for any 

points of time t 

∭ |𝑉𝑥|𝑑𝑥𝑑𝑦𝑑𝑧
+∞

−∞

 

 

∭ 𝑉𝑥
2𝑑𝑥𝑑𝑦𝑑𝑧

+∞

−∞

 

 

The boundedness of the first integral means the boundedness of the fluid impulse 

(momentum) associated with the velocity 𝑉𝑥. The boundedness of the second integral 

means the boundedness of the kinetic energy. The value of the integral 

 

∭ 𝑉𝑥𝑑𝑥𝑑𝑦𝑑𝑧
+∞

−∞

 

 

doesn’t have to depend from time, this is a requirement of the impulse conservation 

law. Perhaps there are some other restrictions on the function 𝑉𝑥, at the moment it 

does not matter. 

Substituting 𝑉𝑥 to equations system (1), we will get a closed system of three 

equations for three unknown functions 𝑉𝑦,  𝑉𝑧 and 𝑃. Since 𝑉𝑥 was chosen arbitrarily, 

it is clear that there are infinitely many solutions. Basically, it cannot be argued that 

absolutely all solutions obtained in this way will be limited at infinity. But it is also 

obvious that there will be solutions, and there will be infinitely many of them. A 

physically adequate system of equations (1) describing a dissipative process cannot 

respond to a localized and energetically limited effect by an unlimited increase in 

velocities at infinity. All said does not exclude a local unlimited growth of velocities 

(blowup), but with a limitation on the impulse and kinetic energy of the entire mass 

of the fluid. 

So, if the equations system (1) has infinitely many solutions, is there the only 

solution for three-dimensional Cauchy problem for a given initial velocity field? 

Maybe not, the loss of determinism is quite possible. This question remains open in 

this paper, it requires additional research. 

All mentioned above about non-closedness of equations system is relative also 

for two-dimensional case of fluid flow. Two-dimensional system of equations is 

non-closed as well, equation of continuity is excessive. However there is no such 

arbitrariness as in three-dimensional case. Let’s look at the two-dimensional system 

of equations: 

𝜕𝑉𝑥

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑥

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑥

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝜈 (

𝜕2𝑉𝑥

𝜕2𝑥
+

𝜕2𝑉𝑥

𝜕2𝑦
) 

(5) 

𝜕𝑉𝑦

𝜕𝑡
+ 𝑉𝑥

𝜕𝑉𝑦

𝜕𝑥
+ 𝑉𝑦

𝜕𝑉𝑦

𝜕𝑦
= −

1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝜈 (

𝜕2𝑉𝑦

𝜕2𝑥
+

𝜕2𝑉𝑦

𝜕2𝑦
) 
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This system of equations contain three unknown functions and it seems that it’s 

possible to choose one of velocities while second velocity and pressure can be found 

from system of equations (5). In this case, this can not be done, the obstacle is the 

equation of continuity 

 
𝜕𝑉𝑥

𝜕𝑥
+

𝜕𝑉𝑦

𝜕𝑦
= 0                                                            (6) 

 

All solutions of equations system (5) bounded at infinity satisfy the equation of 

continuity (6), but not all solutions of continuity equation (6) will satisfy the 

equations system (5). If arbitrarily choose one of velocities we can find the second 

velocity from equation of continuity (with accuracy of function of only one 

coordinate and time). Then we obtain the solution of the continuity equation (6), i.e. 

we find the velocity field. And it is not necessary that this velocity field will satisfy 

the system of equations (5). This equations system, for given initial conditions, has 

only one solution, as shown in [3]. 
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