In an ordered field, there is an important mapping \(| - | \) called absolute value function. We shall define \(| - | \) for \(\mathbb{R} \).

The absolute value function is defined by \(| - | : \mathbb{R} \rightarrow [0, \infty) \).

Remarks: The image \(| a | \) of \(a \in \mathbb{R} \) is called the absolute of \(a \). We have the following simple but important properties of the absolute value function.

1. \(| a | \geq 0, \quad \forall \ a \in \mathbb{R} \)
2. \(| a | = 0, \quad iff \ a = 0 \)
3. \(-a \leq | a | \quad and \quad a \leq | a |, \quad \forall \ a \in \mathbb{R} \)
4. \(-| a | \leq a \leq | a |, \quad \forall \ a \in \mathbb{R} \)
5. \(| ab | = | a | | b |, \quad \forall \ a, b \in \mathbb{R} \)
6. \(\frac{a}{b} = \frac{|a|}{|b|}, \quad \forall \ a, b \in \mathbb{R} \)
7. \(a^2 = | a |^2, \quad \forall \ a \in \mathbb{R} \)

Triangle Inequality

Let \(a, b \in \mathbb{R} \). Show that \(| a + b | \leq | a | + | b | \).

Proof:
\[
(| a + b |)^2 = (a + b)^2 = a^2 + 2ab + b^2 \leq | a |^2 + 2 | ab | + | b |^2 = | a |^2 + 2 | a | | b | + | b |^2 = (| a | + | b |)^2
\]

Take positive square root
\[
| a + b | \leq | a | + | b |
\]

Remarks:

1. Extension of the above theorem to complex number.
 Show that \(| a + b | \leq | a | + | b |, \quad \text{where} \ a, b \in \mathbb{C} \).
 Proof:
 \[
 (| a + b |)^2 \leq | a |^2 + 2 | ab | + | b |^2
 = | a |^2 + 2 | a | | b | + | b |^2 = (| a | + | b |)^2
 \]
 Take positive square root
 \[
 | a + b | \leq | a | + | b |
 \]
 Note: Some steps are missing because \(\mathbb{C} \) is not an ordered field.

2. Extension of the above theorem to vector.
 Show that \(| a + b | \leq | a | + | b |, \quad \text{where} \ a, b \) are vectors.
 Proof:
 \[
 (| a + b |)^2 \leq | a |^2 + 2 | a | | b | + | b |^2
 = (| a | + | b |)^2
 \]
 Take positive square root
\[|a + b| \leq |a| + |b| \]

Note: Some steps are missing because vector is defined for dot and cross (undergraduate syllabus). In addition, vector is not ordered.

Further Examples

1. Show that \(|a| - |b| \leq |a-b|\)

 Proof:
 \[
 (|a| - |b|)^2 = |a|^2 - 2|a||b| + |b|^2 \\
 = |a|^2 - 2ab + |b|^2 \\
 \leq a^2 - 2ab + b^2 = (a-b)^2 = (|a-b|)^2
 \]

 Take positive square root

 \[|a| - |b| \leq |a-b| \]

2. Show that \(|\,|a| - |b|\,| \leq |a-b|\)

 Proof:
 \[
 (||a| - |b||)^2 = (|a| - |b|)^2 \\
 = |a|^2 - 2|a||b| + |b|^2 \\
 = |a|^2 - 2ab + |b|^2 \\
 \leq a^2 - 2ab + b^2 = (a-b)^2 = (|a-b|)^2
 \]

 Take positive square root

 \[||a| - |b|| \leq |a-b| \]

Reference: