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Abstract

The generic single-particle relativistic dynamical principle is usually taken to be that the time derivative
of the particle’s momentum is equal to the applied force. That relativistic momentum itself, however, is
the particle’s rest mass times the proper-time derivative of its position, so this dynamical principle is easily
reverted to the original Newtonian one of the particle’s mass times acceleration being equal to the force,
provided that the time derivatives always refer to proper time and the force is amended by a relativistic
factor of gamma, which we denote as proper force; the Lorentz covariance of the result is greatly aided
by the Lorentz invariance of proper time. It is shown that the purely relativistic fourth component of
this Lorentz-covariant Second Law extension pertains to the particle’s power, as would be expected. Its
full electromagnetic case emerges directly from a certain entirely Lorentz-invariant Lagrangian.

Proper versus perceived velocity in special relativity

An implicit ingredient in the perceived speed |dx/dt| of a relativistic moving object in one spatial dimension
is its length contraction by the factor γ−1 [1],

γ−1
def
=
(
1− ((dx/dt)/c)2

) 1
2 ; 0 < γ−1 ≤ 1. (1a)

The degree of length contraction is completely dependent on the inertial reference frame, so perceived speed
|dx/dt| is unsuitable for some applications. The effect of length contraction on a moving object’s perceived
speed is removed by multiplying that speed by γ, which produces the higher speed γ|dx/dt|. So doing
is equivalent to replacing the moving object’s perceived speed |dx/dt| by its proper speed |dx/dτ |, where
Lorentz-transformation invariant proper differential time dτ is defined as,

dτ
def
=
(
(dt)2 − (dx/c)2

) 1
2 =

(
1− ((dx/dt)/c)2

) 1
2 dt = γ−1dt ⇒ (dt/dτ) = γ ⇒ |dx/dτ | = γ|dx/dt|. (1b)

The Lorentz-transformation invariant differential proper time dτ of Eq. (1b) is somewhat analogous to the
Galilean-transformation invariant differential time dt of Newtonian physics. Also, despite strict adherence
of perceived speed to |dx/dt| < c, proper speed |dx/dτ | = γ|dx/dt| is unbounded because γ is unbounded.
Thus proper speed |dx/dτ | is somewhat analogous to the unbounded speed |dx/dt| of Newtonian physics.

The extension to three spatial dimensions of Eq. (1b) with regard to dτ and proper velocity (dr/dτ) is,

dτ
def
=
(
(dt)2 − |dr/c|2

) 1
2 =

(
1− |ṙ/c|2

) 1
2 dt = γ−1dt ⇒ (dt/dτ) = γ ⇒ (dr/dτ) = γṙ. (2)

The Lorentz-transformation invariant differential proper time dτ of Eq. (2) is somewhat analogous to the
Galilean-transformation invariant dt of Newtonian physics. Also, despite |ṙ| < c, the Eq. (2) proper speed
|dr/dτ | = γ|ṙ| is unbounded ; thus it is somewhat analogous to the unbounded speed |ṙ| of Newtonian physics.

Proper time produces the Lorentz-covariant extension of Newton’s Second Law

The usual presentation of single-particle relativistic dynamics is,

(dp/dt) = f , (3a)

where f is the force and the relativistic single-particle momentum p is given by,

p = mγṙ. (3b)

From Eq. (2) we see that Eq. (3b) can be rewritten,

p = m(dr/dτ), (3c)

so Eq. (3a) becomes,
m(d(dr/dτ)/dt) = f . (3d)
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From Eq. (2), (dt/dτ) = γ, so we multiply the left side of Eq. (3d) by (dt/dτ) and its right side by γ, yielding,

m(d(dr/dτ)/dt)(dt/dτ) = γf . (3e)

We simplify the expression on the left side of Eq. (3e) and we denote γf as the proper force F to obtain,

m(d2r/dτ2) = F, (3f)

the three ordinary force components of the relativistic extension of Newton’s Second Law. An example of
Eq. (3f) pertains to the proper force exerted by an electromagnetic field on a particle of charge e, namely,

F = eγ (E + ((ṙ/c)×B)) . (3g)

The still missing fourth component of the Lorentz-covariant four-vector completion of Eq. (3f) must read ,

m(d2x0/dτ2) = F 0, where, of course, x0 = ct. (3h)

Relativistically,
(
F 0c

)
should relate to particle power (F · ṙ). To test this, we first boil down Eq. (3h) to,(
F 0c

)
= mc(d2x0/dτ2) = mc2(d(dt/dτ)/dτ) = mc2(dγ/dτ) =

mc2(dγ/dt)(dt/dτ) = mc2γ
(
d
(
1−

(
ṙ · ṙ/c2

))− 1
2 /dt

)
= γ4m(r̈ · ṙ),

(3i)

then we next similarly boil down Eq. (3f) to,

F = m(d2r/dτ2) = m(d(γṙ)/dτ) = mγ(d(γṙ)/dt) = mγ((dγ/dt)ṙ + γr̈) = mγ
(
γ3(r̈ · ṙ)

(
ṙ/c2

)
+ γr̈

)
, (3j)

from which we obtain that,

(F · ṙ) = γ2m(r̈ · ṙ)
(
γ2|ṙ/c|2 + 1

)
= γ2m(r̈ · ṙ)

(
γ2
(
1− γ−2

)
+ 1
)

= γ4m(r̈ · ṙ) =
(
F 0c

)
, (3k)

where the last equality follows from Eq. (3i). Inserting the Eq. (3k) value for F 0 into Eq. (3h) then yields,

m(d2x0/dτ2) = (F · (ṙ/c)) , (3l)

which combined with Eq. (3f) is the full Lorentz-covariant four-vector extension of Newton’s Second Law ,

m(d2xµ/dτ2) = Fµ = ((F · (ṙ/c)), F) . (3m)

Since (dt/dτ) = γ =
(
1− |ṙ/c|2

)− 1
2 → 1 in the nonrelativistic limit that |ṙ/c| → 0, it is transparent that

Eq. (3m) reduces to the Newtonian Second Law three-vector equation system,

mr̈ = f , (3n)

in the nonrelativistic limit that |ṙ/c| → 0.
Eq. (3m) shows that the concept of inertial mass, which is the same as relativistic rest mass, is just as

relevant to special-relativistic physics as it is to Newtonian physics. Indeed, the development of Higgs field
physics [2] has put considerable flesh on the bones of the inertial mass concept. An interesting relativistic
issue is the existence of particles, such as photons, which have zero inertial mass (these are asserted to not
couple at all to the Higgs field). A zero-inertial-mass particle which has nonzero momentum |p| > 0 has
infinite proper speed |dr/dτ | = limm→0(|p|/m) = ∞ that corresponds to perceived speed c. To demonstrate
the last fact , we invert the Eq. (2) relation of proper velocity (dr/dτ) to perceived velocity ṙ, which is,

(dr/dτ) = γṙ =
(
1− |ṙ/c|2

)− 1
2 ṙ.

This relation’s inverse comes out to be,

ṙ = (dr/dτ)
(
1 + |(dr/dτ)/c|2

)− 1
2 , (3o)
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which has the asymptotic form,

ṙ ∼ c ((dr/dτ)/|dr/dτ |) as |(dr/dτ)/c| → ∞. (3p)

This result shows that zero-inertial-mass particles of nonzero momentum |p| > 0, which thus have infinite
proper speed |dr/dτ | = limm→0(|p|/m) =∞, must therefore have perceived speed |ṙ| equal to c.

Electromagnetic case of the Lorentz-covariant Newton’s Second Law extension

A case of the full Eq. (3m) Newton’s Second Law extension emerges directly from the following entirely
Lorentz-invariant Lagrangian for the interaction of a charged particle with the electromagnetic field,

L((dxν/dτ), xν) = − 1
2m(dxν/dτ)(dxν/dτ)− (e/c)(dxν/dτ)Aν , (4a)

whose equation-of-motion prescription is the natural,

(d (∂L/∂ (dxµ/dτ)) /dτ) = (∂L/∂xµ) . (4b)

Eqs. (4a) and (4b) yield the equation of motion,

−m
(
d2xµ/dτ2

)
− (e/c) (dAµ/dτ) = −(e/c) (dxν/dτ) (∂Aν/∂xµ) , (4c)

which we rearrange as,

m
(
d2xµ/dτ2

)
= (e/c) [(dxν/dτ) (∂Aν/∂xµ)− (dAµ/dτ)] . (4d)

We now apply the chain rule to calculate,

(dAµ/dτ) = (∂Aµ/∂xν) (dxν/dτ) , (4e)

a result we substitute into Eq. (4d), followed by taking the common factor of (dxν/dτ) outside of the square
brackets to obtain,

m
(
d2xµ/dτ2

)
= (e/c) (dxν/dτ) [(∂Aν/∂xµ)− (∂Aµ/∂xν)] . (4f)

This equation clearly has the relativistic format of Eq. (3m). We now boil down the right side of Eq. (4f) in
the cases where µ = i, where i takes on the values 1, 2 or 3. We will thus obtain precisely the proper force
described by Eqs. (3f) and (3g). Our first order of business with the right side of Eq. (4f) is to note that,

(dxν/dτ) = (dt/dτ) (dxν/dt) = γ (dxν/dt) =

{
γc if ν = 0,
γ
(
−ẋj

)
if ν = j, where j = 1, 2, 3.

(4g)

For µ = i, where i = 1, 2 or 3, Eqs. (4f) and (4g) yield,

m
(
d2xi/dτ2

)
= eγ

[
−
(
∂A0/∂xi

)
− (1/c)Ȧi

]
+ (e/c)γ

3∑
j=1

(
ẋj
) [(

∂Aj/∂xi
)
−
(
∂Ai/∂xj

)]
=

eγ
(
−
(
∇rA

0
)
− (1/c)Ȧ

)i
+ (e/c)γ ((∇r (ṙ ·A))− ((ṙ · ∇r)A))

i
=

eγ (E + ((ṙ/c)× (∇r ×A)))
i

= eγ (E + ((ṙ/c)×B))
i
,

(4h)

which accords with Eqs. (3f) and (3g). We likewise use Eqs. (4f) and (4g) to boil down the µ = 0 case,

m
(
d2x0/dτ2

)
= eγ

[
(1/c)Ȧ0 − (1/c)Ȧ0

]
+ (e/c)γ

3∑
j=1

(
−ẋj

) [
(1/c)Ȧj +

(
∂A0/∂xj

)]
=

(
eγ(ṙ/c) ·

(
−(1/c)Ȧ−

(
∇rA

0
)))

= (eγ (E) · (ṙ/c)) = (eγ (E + ((ṙ/c)×B)) · (ṙ/c)) ,

(4i)

since (((ṙ/c)×B) · (ṙ/c)) = 0. Eqs. (4i) and (4h) together accord with the fundamental Eqs. (3l) and (3m).
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