A NEW PROOF OF THE STRONG
GOLDBACH CONJECTURE

Es-said En-naoui

University Sultan Moulay Slimane
Beni mellal -Morocco

Hay lamsalla aghbala
essaidennaoui1@gmail.com

Abstract

The Goldbach conjecture dates back to 1742; we refer the reader to [1]-[2] for a history of the conjecture. Christian Goldbach stated that every odd integer greater than seven can be written as the sum of at most three prime numbers. Leonhard Euler then made a stronger conjecture that every even integer greater than four can be written as the sum of two primes. Since then, no one has been able to prove the Strong Goldbach Conjecture.

The only best known result so far is that of Chen [3], proving that every sufficiently large even integer N can be written as the sum of a prime number and the product of at most two prime numbers. Additionally, the conjecture has been verified to be true for all even integers up to 4×10^{18} in 2014, Jërg [4] and Tomás [5]. In this paper, we prove that the conjecture is true for all even integers greater than 8.

Key words: prime number, Goldbach Function, Goldbach Set, Strong Goldbach Conjecture, Sebastian Martin Ruiz Conjecture

Introduction

The Goldbach conjecture asserts that every even integer greater than 4 is equal to the sum of two primes, for example $10 = 3 + 7 = 5 + 5$ and $16 = 3 + 13 = 5 + 11$. At present there is no proof of this conjecture in sight.

Preprint submitted to Elsevier November 10, 2018
for every integer positive n we have $2n = (n - k) + (n + k)$, So let

$$S_n = \{k \in \mathbb{N} : 0 \leq k \leq n \mid n - k \in \mathbb{P} \text{ and } n + k \in \mathbb{P}\}$$

In this paper we yield the more detailed proofs of the binary Goldbach's theorem using only this set S_n.

1. About new set S_n

Corollary 1 Let n be positive integer greater than 4, and let:

$$S_n^m = \{k \in \mathbb{N} : 0 \leq k \leq n \mid n - k \in \mathbb{P}\} (1)$$

Then for every positive integer n greater than 4 we have : $S_n^m \neq \emptyset$

PROOF. Let n be positive integer greater than 4. So if we pose $k = n - 2$ then $n - k = 2 \in \mathbb{P}$ □

Corollary 2 Let n be positive integer greater than 4, and let:

$$S_n^M = \{k \in \mathbb{N} : 0 \leq k \leq n \mid n + k \in \mathbb{P}\} (2)$$

Then for every positive integer n greater than 4 we have : $S_n^M \neq \emptyset$

To prove this corollary we need to used Bertrand's postulate

Lemma 3 Bertrand's postulate

for every positive integer n great than 2 there is always at least one prime p such that $n < p < 2n$.

PROOF. There are many proofs of Bertrand's postulate, First proved by Chebyshev (1850) and we refer to read Erdos's proof [6] and Ramanujan proof [7] □

PROOF. Of corollary 2

For every positive integer k between 0 and n we have always $n \leq n + k \leq 2n$, and from Lemma 3 there is always at least one prime p such that $n < p < 2n$

So if we pose $k = p - n$ then $n + k = p \in \mathbb{P}$. □
Example 4 For \(n = 40 \) and \(n = 29 \) we have:

\[
S_m^{40} = \{3, 9, 11, 17, 21, 23, 27, 29, 33, 35, 37\} \quad \text{and} \quad S_M^{40} = \{1, 3, 7, 13, 19, 21, 27, 31, 33, 39\}
S_m^{29} = \{6, 10, 12, 16, 18, 22, 24, 26\} \quad \text{and} \quad S_M^{29} = \{2, 8, 12, 14, 18, 24\}
\]

Remark 5 For every integer \(n \geq 2 \) we have:

\[
S_m^{2n+1} \subset 2\mathbb{N} \quad \text{and} \quad S_m^{2n} \subset 2\mathbb{N} + 1
S_M^{2n+1} \subset 2\mathbb{N} \quad \text{and} \quad S_M^{2n} \subset 2\mathbb{N} + 1
\]

Proposition 6 Let \(n \) be positive integer greater than 4, and let \(\delta_m(n) = \text{card}(S_m^n) \), then:

\[
\delta_m(n) = \pi(n)
\]

with: \(\pi(n) = \{\text{Number of numbers prime less than } n\} \)

PROOF. Let \(n \) be positive integer greater than 4, then:

\[
\delta_m(n) = \sum_{k=0}^{n-1} 1 = \sum_{n-k \in \mathbb{P}} 1 = \pi(n) \quad \square
\]

Proposition 7 Let \(n \) be positive integer greater than 4, and let \(\delta_M(n) = \text{card}(S_M^n) \), then:

\[
\delta_m(n) = \pi(2n) - \pi(n)
\]

with: \(\pi(n) = \{\text{Number of numbers prime less than } n\} \)

PROOF. Let \(n \) be positive integer greater than 4, then:

\[
\delta_M(n) = \sum_{k=0}^{n-1} 1 = \sum_{n+k \in \mathbb{P}} 1 - \sum_{n+k \in \mathbb{P}} 1 = \pi(2n) - \pi(n) \quad \square
\]

Theorem 8 (Principal) Let \(n \) be positive integer greater than 4, and let:

\[
S_n = \left\{ k \in \mathbb{N} : 0 \leq k \leq n \mid n - k \in \mathbb{P} \text{ and } n + k \in \mathbb{P} \right\} = S_m^n \cap S_M^n
\]

Then for every positive integer \(n \geq 4 \) we have: \(S_n \neq \emptyset \).
PROOF. Let \(n \) be positive integer greater than 4, and we put :
\[
\mathcal{C}_n = \left\{ k \in \mathbb{N} : 0 \leq k \leq n \mid k \not\in \mathbb{P} \right\}
\]
and \(\mathbb{P}_n = \left\{ p \in \mathbb{N} : 0 \leq p \leq n \mid p \in \mathbb{P} \right\} \).
Suppose we have that : \(S_n = \emptyset \), then : \(\forall k \in S^M_n \Rightarrow k \not\in S^m_n \)
and as \(\forall i \in \{1,2,...,\pi(2n) - \pi(n)\} \)
We have : \(k_i \in S^M_n \implies n + k_i \in \mathbb{P} \) i.e \(n + k_i \) is an odd number.

since \(\forall i \in \{1,2,...,\pi(2n) - \pi(n)\} \) we have : \(0 \leq n - k_i \leq n \).
So according to the assumed hypothesis we have \(n - k_i \in \mathbb{C}_n \)
Now, if \(n \) is an even number, then every number \(n, n-2, n-4, ..., n-n \) is the element of \(\in \mathbb{C}_n \)
if \(n \) is an odd number, then every number \(n-1, n-3, ..., n-n+1 \) is in \(\mathbb{C}_n \)
Hence : \(\text{Card}(\mathbb{C}_n) = \frac{n}{2} + \pi(2n) - \pi(n) \), Since \([0,n]) = \mathbb{C}_n \cup \mathbb{P}_n \)
Then : \(\text{Card}([1,n]) = \text{Card}(\mathbb{C}_n \cup \mathbb{P}_n) = \text{Card}(\mathbb{C}_n) + \text{Card}(\mathbb{P}_n) = n + 1 \)
Finally :
\[
\frac{n}{2} + \pi(2n) - \pi(n) + \pi(n) = n + 1
\]
then \(2\pi(2n) - 2 = n \) which is absurd.
So \(\exists i \in \{1, 2, ..., \pi(2n) - \pi(n)\} \) such that \(n + k_i \in \mathbb{P} \) and \(n - k_i \in \mathbb{P} \).
as a result for any positive integer \(n \geq 4 \), we have \(S^M_n \neq \emptyset \). \(\square \)

2 Proof of Goldbach Conjecture and Sebastian Martin Ruiz Conjecture

Conjecture 9 (GoldBacch Conjecture) Let \(n \in \mathbb{N} \) such that \(n \geq 3 \).
Then : \(\exists p, q \in \mathbb{P} \) such that \(2n = p + q \).

PROOF. Let \(n \in \mathbb{N} \) Such that \(n \geq 4 \).
Then from theorem 8 : \(\exists k \in S_n \ such that \ n - k \in \mathbb{P} \ et \ n + k \in \mathbb{P} \) since \(n - k + n + k = 2n \).
Then for every positive integer \(n \geq 4 \) they exist two prime numbers \(p \) et \(q \) such that :
\[
2n = p + q \text{ with } p = n - k \text{ and } p = n + k , k \in S_n
\]
\(\square \)

Conjecture 10 (Sebastian Martin Ruiz Conjecture) Let \(n \in \mathbb{N} \) Such that \(n \geq 3 \).
Then : \(\exists k \in \{1, 2, ..., n - 1\} \ such that \ \phi(n^2 - k^2) = (n - 1)^2 - k^2 \).
with \(\phi \) is Euler's totient : \(\phi(n) = \text{Card}\{k \in \mathbb{N} : n \leq n/ \text{pgcd}(n,k) = 1\} \).
\textbf{PROOF.} Let $n \in \mathbb{N}$ such that $n \geq 4$.
Then: $\exists k \in \mathcal{S}_n$ 8 such that $n - k \in \mathbb{P}$ and $n + k \in \mathbb{P}$.
Then: $\phi((n - k)(n + k)) = \phi(n - k)\phi(n + k)$ (because $gcd(n - k, n + k) = 1$).
Since $n - k$ and $n + k$ are prime numbers
then $\phi(n - k) = n - k - 1$ and $\phi(n + k) = n + k - 1$.
So we have: $\phi((n - k)(n + k)) = (n - k - 1)(n + k - 1) = (n - 1)^2 - k^2$ \hfill \square

\section*{References}

