(pk mk qk) or an Unexpected Inconsistency

Ralf Wüsthofen

Abstract. This note proves the inconsistency of the Peano arithmetic (PA) by deriving both a strengthened form of the strong Goldbach conjecture and its negation.

Notations. Let \(\mathbb{N} \) denote the natural numbers starting from 1 and let \(\mathbb{P}_3 \) denote the prime numbers starting from 3.

Theorem. *The Peano arithmetic (PA) is inconsistent.*

Proof. We define the set \(S_g := \{ (pk, mk, qk) \mid k, m \in \mathbb{N}; p, q \in \mathbb{P}_3, p < q; m = (p + q) / 2 \} \).

Then, \(S_g \) is the same under these two conditions:

(i) For each \(k \geq 1 \), there is an \(nk, n \geq 4 \), different from all the \(mk \).

(ii) For each \(k \geq 1 \), there is no \(nk, n \geq 4 \), different from all the \(mk \).

The reason is that for each \(k \geq 1 \) such an \(nk \) from (i) can be written as some \(pk \) when \(n \) is prime, as some \(pk' \) when \(n \) is composite and not a power of 2, or as \(4k' \) when \(n \) is a power of 2; \(p \in \mathbb{P}_3; k, k' \in \mathbb{N} \). As each of these expressions \(pk \), \(pk' \) and \(4k' \) for \(nk \) is a \(S_g \) triple component, \(S_g \) does not change regardless of whether (i) or (ii) applies.

We note that in the definition of \(S_g \) all pairs \((p, q), p < q, \) of odd primes are used. This excludes the possibility of an \(nk \) from (i) where \(nk = (p_nk + q_nk) / 2 \) with a pair of primes \((p_n, q_n) \) not used in \(S_g \).

So, if all the triples of \(S_g \) are the same in both cases, then all the \(mk \) are the same in both cases. This is a contradiction since the case "\(nk \) exists" means that the numbers \(m \) do not take all integer values \(x \geq 4 \) and the case "\(nk \) does not exist" means that the numbers \(m \) take all integer values \(x \geq 4 \). \(\square \)

Actually, the above argument uses a strengthened form of the strong Goldbach conjecture and its negation:

Strengthened strong Goldbach conjecture (SSGB): *Every even integer greater than 6 can be expressed as the sum of two different primes.*

\(\neg \text{SSGB}: \) *There is an even integer greater than 6 that cannot be expressed as the sum of two different primes.*

SSGB is equivalent to saying that all integers \(x \geq 4 \) appear as \(m \) in a component \(mk \) of \(S_g \). Therefore, SSGB is equivalent to the case (ii) and the negation \(\neg \text{SSGB} \) is equivalent to the case (i). We have seen above that the \(S_g \) triples are the same in these two cases. This means that both SSGB and \(\neg \text{SSGB} \) hold.