
An optimization approach to the Riemann Hypothesis 

Introduction 

A great deal of research has been and still is being devoted to the zeros of the Riemann Zeta function (RZF) 

that are in the critical strip1 and known as the nontrivial zeros of RZF. The Riemann Hypothesis (RH) states 

that these zeros are all located on the critical line2. Although a large number of nontrivial zeros have proved 

to be located on the critical line through numerical computation methods, starting with Riemann’s manual 

computation of the first few zeros [1], no analytical proof or disproof of RH has been found since its 

conjecture by Riemann in 1859.  In this paper, we implement a novel analytical approach to RH based on 

optimization. This analysis tool proved successful in deriving some important scientific theories and        

laws [2]. Such a success prompted us to use this tool to analytically derive the location of RZF’s nontrivial 

zeros in order to either prove or disprove the Riemann Hypothesis. This was achieved by formulating and 

solving the appropriate location optimization problem.  

 

Problem formulation 

We denote the Riemann Zeta function as ζ(s) =U(σ,t )+iV(σ,t ), for complex s=σ+it. To simplify the 

notation, we define: Lσ = ∂L/ ∂σ, Lμ = ∂L/ ∂μ, Zσ = ∂Z/ ∂σ, Lσσ = ∂2L/ ∂σ2 , Lμμ = ∂2L/ ∂μ2,                                   

Also, the values of some functions at (σ *, μ*, t*) are upper-scripted with a  *, e.g. U*, V*, Zσ
*. 

 

As a consequence of the properties of RZF and the properties of its nontrivial zeros3, the search for the 

location (the real part) of these zeros at imaginary part t = t* where RZF vanishes, can be limited to the left 

half of the critical strip (0≤ σ≤1/2) since zeros on the right half (1/2≤ σ<1) can be derived by symmetry 

about the critical line (σ=1/2) as per RZF’s property (6)4.  

 

If RZF has a nontrivial zero at some height t = t*, this search entails finding the value σ* where                     

ζ (σ+ it*), or equivalently │ζ (σ, t*) │2, vanishes. Hence, this task can be accomplished by minimizing 

the univariate function │ζ (σ; t*) │2 under the constraint   0 ≤ σ ≤ ½, with t* being a constant. 

 

The optimization problem (P) of interest is then to: 

Minimize     f(σ) = Z(σ; t*) = │ζ (σ; t*) │2 = U2(σ; t*) + V2(σ; t*) 

Subject to:  g(σ) = σ  – 1/2 ≤  0                                     (P) 

                σ ≥ 0, with f(σ) and g(σ) infinitely differentiable, (RZF property (1), for σ in [0,1/2]. 

 

To solve the inequality-constrained problem (P), we use the Karush-Kuhn-Tucker (KKT) method with 

a nonnegativity condition on the variable σ [3]. The Lagrange function associated with (P) is then: 

      L(σ, μ; t*) = Z(σ; t*) + μ(σ – ½) ,  μ being the KKT/Lagrange multiplier for constraint g(σ). 

 

For inequality-constrained optimization problems such as problem (P), with continuously differentiable 

functions, nonnegative variables (σ in our case), and under a regularity qualification of the constraints5, 

which is of no concern since we have only one constraint, the necessary optimality conditions are the 

so called KKT necessary conditions with σ ≥ 0, [3]. For problem (P), these conditions are the following: 

                                                             
1 A strip in the complex plane defined by 0 ≤ σ ≤  1 
2 The critical line is the line in the complex plane defined by σ = 1/2 
3 See Appendix for the list of properties 
4 See Appendix for the list of properties 
5 The gradients of the equality and binding nonequality constraints have to be linearly independent at the stationary/critical 
point(s) of the Lagrangian function. This requirement is of no concern here since we have one constraint only.  
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1. Complementary slackness conditions: 

σ*Lσ(σ*, μ*, t*) = σ*(Zσ
* + μ*) = 0                                                         (1) 

μ*Lμ (σ*, μ*,t*) =  μ*(σ* – ½) = 0                   (2) 

2. Feasibility conditions : 

Lσ (σ*, μ*
, t*) = Zσ

* + μ* ≥ 0                                                      (3) 

Lμ (σ*, μ*
, t*) =   g(σ* – ½) ≤ 0                           (4) 

μ 
* ≥ 0                              (5)  

σ* ≥ 0                                   (6)   

Each possible combinations of active/binding (equality) constraints derived from the KKT necessary 

conditions may enable the identification of candidate solutions to problem (P). To be feasible, candidate 

solutions have to meet additional feasibility conditions required by the properties6 of RZF and the 

properties of its nontrivial zeros as listed below. Feasible candidate solutions, a.k.a critical points, can 

be minima, maxima or saddle points. Those which meet the sufficient optimality conditions are the 

sought after minima for problem (P), and therefore are the locations of the nontrivial zeros for t = t* 

where RZF vanishes. Candidate and optimal solutions are upper scripted with a  *, e.g. σ*, μ*. 

Problem solution  

A. Relevant properties of RZF and its nontrivial zeros 

The following properties are relevant for solving problem (P): 

1. For any nontrivial zero at t = t* and σ = σ* we have: 

U* = U(σ*, t*) = 0 and  V* = V(σ*, t*) = 0,  

2. Since RZF is differentiable for σ in [0,1), its derivatives exist, and we have: 

U*U*σ + V*V*σ = 0, so that Z*
σ =2(U*U*σ + V*V*σ ) = 0, and                       (7a)  

U*U*σσ + V*V*σσ, = 0                                                                                        (7b) 

3. RZF’s property (7) requires  that σ* > 0                                     (8) 

4. “Nontrivial zeros occur Either on the critical line Or in pairs7” off of  it            (9) 

 

B. Solution 

From condition (8) above, (σ* > 0), and KKT condition (1) we get:  

Z*
σ + μ* = 0                                                   (10) 

Then, from (7a) and (10) we get μ*= 0 as the value for μ that meets KKT necessary conditions. 

Constraint g(σ) can be either active or inactive at a given σ* . When active, it provides the equality constraint 

σ*–½=0 and the feasible candidate solution σ*= ½ which meets the KKT necessary conditions.  

 

It remains to prove that this candidate solution is a minimum for problem (P) and not a maximum or a 

saddle point. To do so entails proving that the Hessian of the Lagrangian, Lσσ (σ*, μ*; t*), is positive 

definite at σ*=1/2 and μ*= 0 for all directions   u ≠ 0 that are defined by ugσ(σ*) ≥ 0  [4] , that is for all       

u > 0, since  gσ(σ) = 1 and u ≠ 0. Hence, the sufficient optimality condition for problem (P) requires  that 

                                                             
6 Properties  of RZF and those of its nontrivial zeros are listed in the appendix 
7 As per property 6 and per Saidak, F, On the Modulus of the Riemann Zeta function, Mathematica Slovaca, 53 (2003) Vol. 2, pp. 
147-148 
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for any u > 0 we have uTL*
σσ u > 0. In our case, the u directions are univariate since there is only one 

variable in problem (P), namely σ. The sufficient condition is then: u2L*
σσ > 0.  Since we have:                                                                                     

L(σ, μ; t*) = U2(σ; t*) + V2(σ; t*)+ μ(σ – ½); Lσ = 2(UUσ + VVσ) + μ, then:                                                                            
Lσσ = 2(Uσ

2 + UUσσ + Vσ
2 + VVσσ).                  

Based on (7b): U*U*σσ + V*V*σσ, = 0, the Hessian reduces to L*
σσ (σ*, μ*) = 2u2 (U*

σ
2 + V*

σ
2), thus 

strictly positive for any direction u > 0 as required. This proves that the sufficient condition for 

optimality is also satisfied for problem (P) at σ*=1/2. Hence σ* = ½ is a minimum point for (P). This 

solution being on the critical line rules out the case where g(σ) is inactive, i.e. σ* - ½)< 0, as per 

property (9).  Hence, it is not possible to have any σ <½ as a minimizer of problem (P). Therefore, the 

only minimizer for (P) is σ*=1/2. The symmetric of this zero about the critical strip is also at σs
*=1/2.  

 

Conclusion 

The above analysis shows that if RZF were to have a nontrivial zero at any t=t*, then it is necessary 

and sufficient that σ* = ½. Hence, at t=t* , there is a single nontrivial zero located on the critical line. 

This result proves that all RZF’s nontrivial zeros are located on the critical line as stated by the Riemann 

Hypothesis which is therefore analytically proven true by our optimization approach. 

 

Appendix: Some relevant properties of RZF and its nontrivial zeros 

The most important and relevant properties of RZF [5] are listed below: 

1. Since RZF is analytic in the complex plane except for a pole at σ=1 , its real and its imaginary 

parts, U(s) and V(s) respectively, are infinitely differentiable in the critical strip, except for       

σ =1, hence: 

U*U*σ + V*V*σ = 0   (1a); and  U*U*σ σ + V*V*σ σ = 0   (1b)        

2. RZF has an infinite number of nontrivial zeros  

3. A huge number of nontrivial zeros proved to be located on the critical line 

4. Nontrivial zeros are located in the critical strip at different heights  t = t*    

5. Nontrivial zeros are symmetric about the real line t = 0, and about the critical line      

6. As per (5), if σ* is a location of a nontrivial zero at t = t*, then (1- σ*) is also a location of a 

nontrivial zero at t = t*. Hence noncritical zeros are defined by σ = ½ +/- α, and occur either in 

pairs off the critical line for 0 < α <0, or in singles on the critical line (for α=0) 

7. RZF has no zeros on the line σ = 1. Thus, by symmetry about the critical line, RZF has no zero 

on the line σ = 0, hence for nontrivial zeros: σ > 0    

8. Uσ (σ = ½) ≠  0 and  Vσ (σ = ½) ≠  0   

9. Property (3) and (6) limit the search for nontrivial zeros to the left half of the critical strip. This 

leads to the constraint: σ ≤ ½         
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