ELEMENTARY SET THEORY USED TO PROVE FLT

PHIL A. BLOOM; BRAINEMAIL1@GMAIL.COM; VERSION F

Abstract. An open problem is proving FLT simply (using Fermat’s toolbox) for each \(n \in \mathbb{N}, n > 2 \). Our direct proof (not BWOC) of FLT is based on our algebraic identity \((r + 2p^n)^\frac{1}{n} - (2\sqrt[p]{q}^n)^n = ((r - 2p^n)^\frac{1}{n})^n \) with arbitrary values of \(n \in \mathbb{N} \), and with \(r \in \mathbb{R}, q \in \mathbb{Q}, n, q, r > 0 \). For convenience, we denote \((r + 2p^n)^\frac{1}{n} \) by \(s \); we denote \(2\sqrt[p]{q}^n \) by \(t \); and, we denote \((r - 2p^n)^\frac{1}{n} \) by \(u \). For any given \(n > 2 \), the term \(t \) or \(2\sqrt[p]{q}^n \) with \(q \in \mathbb{Q} \) is not rational, this identity allows us to relate null sets \(\{ (s, t, u) \mid s, t, u \in \mathbb{N}, s, t, u > 0, s^n - t^n = u^n \} \) with subsequently proven null sets \(\{ z, y, x \mid z, y, x \in \mathbb{N}, z, y, x > 0, z^n - y^n = x^n \} \). We show it is true, for \(n > 0 \), that \(\{ (s, t, u) \mid s, t, u \in \mathbb{N}, s, t, u > 0, s^n - t^n = u^n \} = \{ (y, z, x) \mid y, z, x \in \mathbb{N}, y, z, x > 0, z^n - y^n = x^n \} \). Hence, for any given \(n \in \mathbb{N}, n > 2 \), it is a true statement that \(\{ (x, y, z) \mid x, y, z \in \mathbb{N}, x, y, z > 0, x^n + y^n = z^n \} = \emptyset \).

1. Introduction

FLT states: \(x^n + y^n = z^n \) does not hold for \(n > 2, n, x, y, z \in \mathbb{N}, x, y, z > 0 \).

A simple (using Fermat’s tools) proof of FLT for each \(n \in \mathbb{N}, n > 2 \) is lacking.

For \(n \in \mathbb{N}, n > 2 \): We propose a simple direct proof (not the expected BWOC).

(A) \(z^n - y^n = x^n \), for \(n > 0 \), with \(n, z, y, x \in \mathbb{N}, z, y, x > 0 \) for which (A) holds.

We want an algebraic identity with an irrational term for \(n > 2 \) to relate to (A).

(1) \((r + 2p^n)^\frac{1}{n} - (2\sqrt[p]{q}^n)^n = ((r - 2p^n)^\frac{1}{n})^n \) for \(n > 0, q \in \mathbb{Q}, r \in \mathbb{R}, n, q, r > 0 \) such that \((r + 2p^n)^\frac{1}{n}, 2\sqrt[p]{q}^n, (r - 2p^n)^\frac{1}{n} \in \mathbb{N} \) for which (1) holds. From an infinity of identities, we choose (1): For values of \(n > 2 \), equation (1) clearly does not hold for \((r + 2p^n)^\frac{1}{n}, 2\sqrt[p]{q}^n, (r - 2p^n)^\frac{1}{n} \in \mathbb{N}, q \in \mathbb{Q}, r \in \mathbb{R} \), but, (1) is logically consistent with (A) since no \(z, y, z \in \mathbb{N} \) is known for which (A) holds. Denoting \((r + 2p^n)^\frac{1}{n} \) in (1) by \(s; 2\sqrt[p]{q}^n \) in (1) by \(t; (r - 2p^n)^\frac{1}{n} \) in (1) by \(u \): We show, below, for \(n > 2 \), with both sets empty, that \(\{ (s, t, u) \mid s, t, u \in \mathbb{N}, s^n - t^n = u^n \} = \{ (z, y, x) \mid z, y, x \in \mathbb{N}, z^n - y^n = x^n \} \).

(B) \((r + q^n)^\frac{1}{n} - (2\sqrt[p]{q}^n)^n = ((r - q^n)^\frac{1}{n})^n \). For relating to (A): A simpler such identity is (B), for \(n > 0 \) with \((r + q^n)^\frac{1}{n}, 2\sqrt[p]{q}^n, (r - q^n)^\frac{1}{n} \in \mathbb{N}, r \in \mathbb{R}, q \in \mathbb{Q}, r, q > 0 \) for which (B) holds. But, for the values of \(n = 2, q \in \mathbb{Q} \), equation (B) does not hold for \((r + q^n)^\frac{1}{n}, 2\sqrt[p]{q}^n, (r - q^n)^\frac{1}{n} \in \mathbb{N} \). So, (B) is logically inconsistent with (A), making statement (B) a false premise from which nothing follows in our argument.

(C) \((r + 2p^n)^\frac{1}{n} - (2\sqrt[p]{q}^n)^n = ((r - 2p^n)^\frac{1}{n})^n \), for \(n > 0 \), with \(n \in \mathbb{N} \), and \(p \in \mathbb{N}, p \geq 0 \), and \(r \in \mathbb{R}, q \in \mathbb{Q}, n, r, q > 0 \), and \((r + 2p^n)^\frac{1}{n}, 2\sqrt[p]{q}^n, (r - 2p^n)^\frac{1}{n} \in \mathbb{N} \) for which the family of identities (C) holds. We have considered (C) for usefulness.

We reject (C) with even \(p \geq 0, q \in \mathbb{Q} \) since, for \(n = 2 \), the middle part, \(2\sqrt[p]{q}^n \), is not rational. We reject (C) with odd \(p > 1, q \in \mathbb{Q} \) since for \(2\sqrt[p]{q}^n, q \in \mathbb{Q} \), equation (1) yields the composite set of all elements contained in every set that (C) yields.
2. Our Direct Proof

Our argument is a direct proof, not deriving a contradiction as is generally expected in proofs. We start in the real realm, ending in the realm of natural numbers.

The algebraic identity we eventually relate to \(z^n - y^n = x^n \), (A), is (1), below:

\[
(r + 2q^n)^{\frac{1}{n}} - (2^{\frac{q}{n}}q)^n = \left((r - 2q^n)^{\frac{1}{n}}\right)^n.
\]

For all \(n \in \mathbb{N}, n > 0 \), identity (1) holds for all \(r, q \in \mathbb{R}, r > 0, r > 2q^n \).

\[
(r + 2q^n)^{\frac{1}{n}} + 2^{\frac{q}{n}}q, (r - 2q^n)^{\frac{1}{n}} - 2^{\frac{q}{n}}q \) is the triple for which (1) holds, such that \(r + 2q^n)^{\frac{1}{n}} + 2^{\frac{q}{n}}q, (r - 2q^n)^{\frac{1}{n}} - 2^{\frac{q}{n}}q, r, q \in \mathbb{R}, r > 0, r > 2q^n \).

Initially, we need to relate equation (2) with equation (3), below:

\[
z^n - y^n = x^n \quad \text{for all values of } n \in \mathbb{N}, n > 0 \text{, equation (3) holds for triple } (z, y, x) \text{ with } z, y, x \in \mathbb{R}, z, y, x > 0.\]

The n-th triple for which (3) holds is (4):

\[
\{z^n, y^n, x^n|z, y, x \in \mathbb{R}, z, y, x > 0, z^n - y^n = x^n\}.\]

Expanding (1) yields (5):

\[
\left((r + 2q^n)^{\frac{1}{n}} - (2^{\frac{q}{n}}q)^n = \left((r - 2q^n)^{\frac{1}{n}} \right)^n.\right.
\]

For some values of \(n > 0 \) : (5) holds for \(r + 2q^n, 4q^n, r - 2q^n \) such that \(r, q \in \mathbb{R}, r > 2q^n \). So, per (5):

\[
\{r + 2q^n, 4q^n, r = 2q^n\} = \{r + 2q^n, 4q^n, r - 2q^n\} = \{r - 2q^n\}
\]

Thus, \(r + 2q^n = z^n \), \(r - 2q^n = x^n \). From (5), we substitute \(r + 2q^n = z^n \) \(r - 2q^n = x^n \) and \(4q^n = y^n \) yielding \(r = \frac{z^n + x^n}{2}, \) and, \(q^n = \frac{z^n - x^n}{2}. \)

Since \(r, q \in (5) \) holds and \(\frac{z^n - x^n}{2} = 0 \) for \(r \) in (5), and we can substitute \(\frac{z^n - x^n}{2} \) for \(q^n \) in (5) to transform (5) into (3).

Taking a rational subset of each side of (7) : \((r + 2q^n, 4q^n, r - 2q^n) \in \mathbb{Q} \) implies \(q^n, r \in \mathbb{Q} \), resulting in (8) with both subsets empty, or both subsets nonempty:

\[
\{r + 2q^n, 4q^n, r - 2q^n\} = \{z^n, y^n, x^n|z, y, x \in \mathbb{R}, z^n - y^n = x^n\}.\]

Taking the n-th root on each side of (8) yields (9) with both sets empty, or both nonempty:

\[
\{((r + 2q^n)^{\frac{1}{n}}, (4q^n)^{\frac{1}{n}}, (r - 2q^n)^{\frac{1}{n}})q \in \mathbb{R}, (r + 2q^n)^{\frac{1}{n}}, (4q^n)^{\frac{1}{n}}, (r - 2q^n)^{\frac{1}{n}}, r, q^n \in \mathbb{Q}, (r + 2q^n)^{\frac{1}{n}}, (4q^n)^{\frac{1}{n}}, (r - 2q^n)^{\frac{1}{n}}\} = \{z, y, x|z, y, x \in \mathbb{R}, z^n - y^n = x^n\},\]

for \(n > 0 \).

Taking a further rational subset, now with each side of (9) yields (10), below, with both subsets empty, or both subsets nonempty, for \(n > 0 \), with \(r > 2q^n \):

\[
\{((r + 2q^n)^{\frac{1}{n}}, (4q^n)^{\frac{1}{n}}, (r - 2q^n)^{\frac{1}{n}})q, r, (r + 2q^n)^{\frac{1}{n}}, (4q^n)^{\frac{1}{n}}, (r - 2q^n)^{\frac{1}{n}} \in \mathbb{Q}, (r + 2q^n)^{\frac{1}{n}}, (4q^n)^{\frac{1}{n}}, (r - 2q^n)^{\frac{1}{n}}\} = \{z, y, x|z, y, x \in \mathbb{Q}, z^n - y^n = x^n\}.\]
3. Results and Conclusion

Hence, per (10), values of \(q \) that are solely \(q \in \mathbb{Q} \) are sufficient for our proof.

Expand \((4q^n)^{\frac{1}{n}} \) in (10) to yield \(2^{\frac{2}{n}} q \in (10) \).

In this section, as with section (1), above, for convenience only:
(11) Let \((r + 2q^n)^{\frac{1}{n}} \in (10) \) be \(s \).
(12) Let \(2^{\frac{2}{n}} q \in (10) \) be \(t \).
(13) Let \((r - 2q^n)^{\frac{1}{n}} \in (10) \) be \(u \).

(14) \{ (s, t, u) | s, t, u \in (10) \} = \{ (z, y, x) | z, y, x \in (10) \} \text{ per (10),(11),(12),(13).}

Taking the integral subset of each side of (14) results in (15), below:
(15) \{ (s, t, u) | s, t, u \in \mathbb{N}, s^n - t^n = u^n \} = \{ (z, y, x) | z, y, x \in \mathbb{N}, z^n - y^n = x^n \}.

Some concrete examples of (15) : For \(n = 2 \), with \(z = 5, y = 4, x = 3 \), there is a corresponding \(s = 5, t = 4, u = 3 \) resulting from \(r \in (B) = 17 \) and \(q \) in (B)= 2. For \(n = 1 \), with \(z = 13, y = 12, x = 1 \) in (A), there is a corresponding \(s = 13, t = 12, u = 1 \) resulting from \(r \in (B) = 7 \) and \(q \) in (B) = 3.

(16) \{ t | t \in \mathbb{Q}, s, t, u \in \mathbb{R}, s, t, u > 0, s^n - t^n = u^n \} = \emptyset \text{ for } n > 2, \text{ which is true since } t \text{ is } 2^{\frac{2}{n}} q, \text{ per (12), so, } 2^{\frac{2}{n}} q \text{ is irrational with } q \in \mathbb{Q}, \text{ per (15),(16).}

(17) \{ y | z, y, x \in \mathbb{N}, z, y, x > 0, z^n - y^n = x^n \} = \emptyset \text{ for } n > 2, \text{ Thus, per (A),(17):}
(18) \{ (z, y, x) | z, y, x \in \mathbb{N}, z, y, x > 0, z^n - y^n = x^n \} = \emptyset \text{ for } n > 2, \text{ So, per (18):}
(19) \{ x^n + y^n = z^n \} \text{ for } n \in \mathbb{N}, n > 2, \text{ does not hold for } x, y, z \in \mathbb{N}, x, y, z > 0.

(20) QED.