ELEMENTARY SET THEORY USED TO PROVE FLT

PHIL A. BLOOM; BRAINEMAIL1@GMAIL.COM : VERSION A

ABSTRACT. An open problem is proving FLT simply (as Fermat might have) for each $n \in \mathbb{N}, n > 2$. Our direct proof (not BWOC) of FLT is based on our algebraic identity $((r^n + 2q^n)^{\frac{1}{n}})^n - ((r^n - 2q^n)^{\frac{1}{n}})^n = (2^{\frac{2}{n}}q)^n$ for which n is any given positive natural number, r is unrestricted positive real and q is all positive rationals such that the set of triples $\{((r^n + 2q^n)^{\frac{1}{n}}, (r^n - 2q^n)^{\frac{1}{n}}, 2^{\frac{2}{n}}q\}$ is not empty with $(r^n + 2q^n)^{\frac{1}{n}}, (r^n - 2q^n)^{\frac{1}{n}}, (2^{\frac{2}{n}}q) \in \mathbb{N}$. We relate this identity to the transposed Fermat equation $z^n - y^n = x^n$ for which z, y, x are natural numbers. We demonstrate, for any given value of n, that $2^{\frac{2}{n}}q = x$. Clearly, for n > 2, the term $2^{\frac{2}{n}}q$ with $q \in \mathbb{Q}$ is not rational. Consequently, for values of $n \in \mathbb{N}, n > 2$, it is true that $\{(x, y, z) | x, y, z \in \mathbb{N}, x^n + y^n = z^n\} = \emptyset$.

1. INTRODUCTION

FLT states, for $n \in \mathbb{N}$, n > 2, $x, y, z \in \mathbb{N}$, x, y, z > 0 that $x^n + y^n = z^n$ does not hold. A *simple* (using Fermat's tools) proof of FLT for each $n \in \mathbb{N}$, n > 2 is lacking.

For $n \in \mathbb{N}$, n > 2: We propose a simple direct proof (not the expected BWOC). We want an algebraic identity to relate with the traditional Fermat equation $x^n + y^n = z^n \ (x, y, z \in \mathbb{N})$, which, for convenience, we transpose as $z^n - y^n = x^n$. The simplest algebraic identity we have considered that contains $2^{\frac{2}{n}}q$, a term that is irrational for n > 2, is $((r^n + q^n)^{\frac{1}{n}})^n - ((r^n - q^n)^{\frac{1}{n}})^n = ((2^{\frac{1}{n}}q)^n, \text{ with } r \text{ being unrestricted positive real and } q \text{ being all positive rationals such that the equation <math>((r^n + q^n)^{\frac{1}{n}})^n - ((r^n - q^n)^{\frac{1}{n}})^n = (2^{\frac{1}{n}}q)^n \text{ holds for } (r^n + q^n)^{\frac{1}{n}}, (r^n - q^n)^{\frac{1}{n}}, 2^{\frac{1}{n}}q \in \mathbb{N}$. For n = 2: Eqn. $((r^n + q^n)^{\frac{1}{n}})^n - ((r^n - q^n)^{\frac{1}{n}})^n = (2^{\frac{1}{n}}q)^n \text{ does not hold for } (r^n + q^n)^{\frac{1}{n}}, (r^n - q^n)^{\frac{1}{n}}, 2^{\frac{1}{n}}q \in \mathbb{N}$. So, $((r^n + q^n)^{\frac{1}{n}})^n - ((r^n - q^n)^{\frac{1}{n}})^n = (2^{\frac{1}{n}}q)^n$ would be a false premise from which nothing would follow logically in our argument, below.

We decided to use $((r^n + 2q^n)^{\frac{1}{n}})^n - ((r^n - 2q^n)^{\frac{1}{n}})^n = (2^{\frac{2}{n}}q)^n$ such that n is any given positive natural number, r is unrestricted positive real numbers, and q is all positive rationals, such that $((r^n + 2q^n)^{\frac{1}{n}})^n - ((r^n - 2q^n)^{\frac{1}{n}})^n = (2^{\frac{2}{n}}q)^n$ holds for $(r^n + 2q^n)^{\frac{1}{n}}, (r^n - 2q^n)^{\frac{1}{n}}, 2^{\frac{2}{n}}q \in \mathbb{N}.$

Identity $((r^n + 2q^n)^{\frac{1}{n}})^n - ((r^n - 2q^n)^{\frac{1}{n}})^n = ((2^{\frac{2}{n}}q)^n \text{ clearly holds for } n = 1, 2.$ We have considered identities with the following general form :

For any given n > 0: $((r^n + 2^p q^n)^{\frac{1}{n}})^n - ((r^n - 2^p q^n)^{\frac{1}{n}})^n = (2^{\frac{p+1}{n}}q)^n$ such that $p \in \mathbb{I}, p \ge 0, r \in \mathbb{R}, q \in \mathbb{Q}$, with r, q > 0 for which the respective triples hold.

We reject identities with even $p \ge 0, q \in \mathbb{Q}$ since these identities *exclude* (which we define as "fails to hold for") n = 2. We reject identities with odd $p > 1, q \in \mathbb{Q}$ since these equally valid identities yield, with each value of odd $p > 1, q \in \mathbb{Q}$, a *different set of excluded* n. Our chosen identity with $p = 1, q \in \mathbb{Q}$ yields the composite set of all elements contained in these different sets of excluded n.

Date: January 10, 2019.

2. Our Direct Proof

Our argument, below, is a *direct proof*, one that does not rely on the deriving of a contradiction as is generally expected. Instead, we attempt to infer a series of true statements (conclusions) from justified statements (premises).

Per Sect. 1, the *identity* that, below, we relate to $z^n - y^n = x^n$ is :

(1)
$$\left((r+2q^n)^{\frac{1}{n}} \right)^n - \left((r-2q^n)^{\frac{1}{n}} \right)^n = (2^{\frac{2}{n}}q)^n.$$

For any given value of $n \in \mathbb{N}$, $n > 0 : r \in \mathbb{R}$, $q \in \mathbb{Q}$, n, q, r > 0 such that $r > 2q^n$.

Variable q must be be rational for our proof to work since we want term $2^{\frac{2}{n}}q$ of (1) to be irrational for n > 2. Also, we must exclude $q \in \mathbb{R} - \mathbb{Q}$ from our argument (based upon (1)) since, for n = 2, if $q \in \mathbb{R} - \mathbb{Q}$, then, term $2^{\frac{2}{n}}q$ is not rational. Luckily, our use of solely rational q is sufficient for our argument, as shown, below.

Note, for n = 2, with $q \in \mathbb{R} - \mathbb{Q}$, identity $((r^n + q^n)^{\frac{1}{n}})^n - ((r^n - q^n)^{\frac{1}{n}})^n = (2^{\frac{1}{n}}q)^n$, which we have rejected, above, does hold for $(r^n + q^n)^{\frac{1}{n}}, (r^n - q^n)^{\frac{1}{n}}, 2^{\frac{1}{n}}q \in \mathbb{N}$. However, for n > 2, with $q \in \mathbb{R} - \mathbb{Q}$, term $2^{\frac{1}{n}}q$ gives us no useful new information.

Temporarily, we generalize equation (1) so that this equation (also an algebraic identity) holds for $(r^n + 2q^n)^{\frac{1}{n}}, (r^n - 2q^n)^{\frac{1}{n}}, 2^{\frac{2}{n}}q \in \mathbb{R}$, with $r \in \mathbb{R}, q \in \mathbb{Q}, r, q > 0$. So, for n > 0, such $((r^n + 2q^n)^{\frac{1}{n}})^n - ((r^n + 2q^n)^{\frac{1}{n}})^n = (2^{\frac{2}{n}}q)^n$ is a true statement.

Temporarily, generalize $z^n - y^n = x^n$ so that this equation holds for $z, y, x \in \mathbb{R}$. Hence, for any given n > 0, such $z^n - y^n = x^n$ is a *true statement*.

For any given $n \in \mathbb{N}, n > 0$: With any given $q \in \mathbb{Q}, q > 0$, unrestricted $r \in \mathbb{R}, r > 0$ varies such that positive real $((r^n + 2q^n)^{\frac{1}{n}})^n - ((r^n - 2q^n)^{\frac{1}{n}})^n$ of (1) takes every positive real value of $z^n - y^n$ of $z^n - y^n = x^n$. By definition, positive real $z^n - y^n$ takes every value of positive real $((r^n + 2q^n)^{\frac{1}{n}})^n - ((r^n - 2q^n)^{\frac{1}{n}})^n$. Thus, for any given value of n > 0: $((r^n + 2q^n)^{\frac{1}{n}})^n - ((r^n - 2q^n)^{\frac{1}{n}})^n = z^n - y^n$.

So, for any given value of $n \ge 0$. $((n + 2q)^n) = ((n - 2q)^n) = 2$ g = 2.

Consequently, for any given value of n, it is true that $2^{\frac{2}{n}}q \in \mathbb{R} = x \in \mathbb{R}$.

3. Results and Conclusion

Hence, for $n \in \mathbb{N}, n > 2$: $\{2^{\frac{2}{n}}q \in \mathbb{R} | q \in \mathbb{Q}, (1) \text{ holds }\} = \{x \in \mathbb{R} | z^n - y^n = x^n\}.$

So, the respective subsets are also equal, with both sides of the equation being empty sets, or with both sides of the equation being non-empty sets, as follows : For $n \in \mathbb{N}, n > 2$: $\{2^{\frac{2}{n}}q \in \mathbb{N} | q \in \mathbb{Q}, (1) \text{ holds }\} = \{x \in \mathbb{N} | z^n - y^n = x^n\}$. Per above, for $n \in \mathbb{N}, n > 2$: $\{2^{\frac{2}{n}}q \in \mathbb{N} | q \in \mathbb{Q}, (1) \text{ holds }\} = \emptyset$. Consequently, for any given value of $n \in \mathbb{N}, n > 2$: $\{x \in \mathbb{N} | z^n - y^n = x^n\} = \emptyset$. It logically follows, for $n \in \mathbb{N}, n > 2$, that the following statement is true : Equation $x^n + y^n = z^n$ does not hold for (x, y, z) with $x, y, z \in \mathbb{N}, x, y, z > 0$.

QED.