ELEMENTARY SET THEORY CAN BE USED TO PROVE
FERMAT’S LAST THEOREM (FLT) V.2

PHIL A. BLOOM; ELLENB2357@GMAIL.COM

Abstract. An open problem is proving FLT simply for each integral \(n > 2 \).
Our proof of FLT is based on our algebraic identity, denoted, for convenience,
as \(r^n + s^n = t^n \). For \(n \geq 1 \) we relate \(r, s, t \) > 0, each a different function
of variables comprising \(r^n + s^n = t^n \), with \(x, y, z > 0 \) for which \(x^n + y^n = z^n \)
holds. We infer as true by direct argument (not BWOC), for any given \(n > 2 \),
that \(\{(x, y, z) | x, y, z \in \mathbb{Z}, x^n + y^n = z^n \} = \{(r, s, t) | r, s, t \in \mathbb{Z}, r^n + s^n = t^n \} \).
In addition, we show, for \(n > 2 \), that \(\{(r, s, t) | r, s, t \in \mathbb{Z}, r^n + s^n = t^n \} = \emptyset \).
Thus, for \(n \in \mathbb{Z}, n > 2 \), it is true that \(\{(x, y, z) | x, y, z \in \mathbb{Z}, x^n + y^n = z^n \} = \emptyset \).

1. Introduction

FLT states, for \(n \in \mathbb{Z}, n > 2 \), \(x, y, z \in \mathbb{Z}, x, y, z \geq 1 \) that \(x^n + y^n = z^n \) does not hold.
It is well known that a simple proof of FLT for every \(n \in \mathbb{Z}, n > 2 \) is lacking.
For \(n \in \mathbb{Z}, n > 2 \) : Using basics, we devise a direct proof, not the expected BWOC.
Per Sect. 3, an identity with very restricted integral triples for \(n \in \mathbb{Z}, n > 2 \) is :

\[
\left((4q^n)^{\frac{1}{n}} \right)^n + \left((p - 2q^n)^{\frac{1}{n}} \right)^n = \left((p + 2q^n)^{\frac{1}{n}} \right)^n.
\]

Basic conditions : \(n \in \mathbb{Z}, n \geq 1 \), \(p \in \mathbb{R}, p > 0 \), \(q \in \mathbb{Q}, q > 0 \) such that \(p > 2q^n \).
For convenience : Denote \(r \) for \((4q^n)^{\frac{1}{n}} \); \(s \) for \((p - 2q^n)^{\frac{1}{n}} \); and \(t \) for \((p + 2q^n)^{\frac{1}{n}} \).

We begin, in Sect. 2, below, with such \(r, s, t \in \mathbb{R} \) to infer a relationship between included \(r, s, t \in \mathbb{Z} \) and the \(x, y, z \in \mathbb{Z} \) comprising the Fermat equation \(x^n + y^n = z^n \).

We argue from an equality of two sets to an equality of the two respective subsets since an equality of two sets, with both sets nonempty or both sets empty, implies that the respective two subsets are equal, with both nonempty or both empty.

A consistent argument in Sect. 2 requires, for \(n = 1, 2 \), that the statement \(\{(r, s, t) | r, s, t \in \mathbb{Z}, r, s, t > 0, r^n + s^n = t^n \} = \{(x, y, z) | x, y, z \in \mathbb{Z}, x^n + y^n = z^n \} \) be true; it is clearly true for \(n = 1, 2 \), but solely with \(q \in \mathbb{Q}, q = \frac{3}{4} \) respectively. So, \(\{(r, s, t) | r, s, t \in \mathbb{Z}, r^n + s^n = t^n \} = \{(x, y, z) | x, y, z \in \mathbb{Z}, x^n + y^n = z^n \} \) would be false should, instead, \(q \in \mathbb{R} - \mathbb{Q} \). So, we must exclude \(q \in \mathbb{R} - \mathbb{Q} \) from our proof.

We show \(\{(x, y, z) | x, y, z \in \mathbb{Z}, x^n + y^n = z^n \} = \{(r, s, t) | r, s, t \in \mathbb{Z}, r^n + s^n = t^n \} \) to be true, in Sect. 2, below, for \(n = 3, 4, 5... \) with \(p \in \mathbb{R}, q \in \mathbb{Q} \). Thus, it is true for \(n \in \mathbb{Z}, n > 2 \) that \(\{(x, y, z) | x, y, z \in \mathbb{Z}, x^n + y^n = z^n \} = \emptyset \) (which is FLT) since, for \(n \in \mathbb{Z}, n > 2 \) we show in Sec. 3, below, that \(\{(r, s, t) | r, s, t \in \mathbb{Z}, r^n + s^n = t^n \} = \emptyset \).

Date: November 3, 2018.
For any given $n \in \mathbb{Z}, n \geq 1$, with r, s, t each being a distinct function of (p, q):

Let A be \{$(r, s, t) \mid r, s, t \in \mathbb{R}, r, s, t > 0, r^n + s^n = t^n$\}.

Let B be \{$(r, s, t) \mid r, s, t \in \mathbb{Z}, r, s, t \geq 1, r^n + s^n = t^n$\}.

Let C be \{$(r, s, t) \mid r, s, t \in \mathbb{Z}, r, s, t \geq 1, r \cdot s, t$ are coprime, $r^n + s^n = t^n$\}.

Let D be \{$(x, y, z) \mid x, y, z \in \mathbb{R}, x, y, z > 0, x^n + y^n = z^n$\}.

For any given $n \in \mathbb{Z}, n \geq 1$, with r, s, t are coprime, $r^n + s^n = t^n$.

Proof.

For any given $r, s, t \in \mathbb{Z}, r, s, t \geq 1, r^n + s^n = t^n$.

Therefore, \{$(x, y, z) \mid x, y, z \geq 1, x^n + y^n = z^n$\}.

Let F be \{$(x, y, z) \mid x, y, z \in \mathbb{Z}, x, y, z \geq 1, x \cdot y, z$ are coprime, $x^n + y^n = z^n$\}.

Let G be \{$(r, s, t) \in \mathbb{R}, (r, s, t) \in A$\}.

Let H be \{$(r, s, t) \in \mathbb{Q}, (r, s, t) \in B$\}.

Let J be \{$(r, s, t) \in \mathbb{Q}, (r, s, t) \in C$\}.

Let K be \{$(r, s, t) \in \mathbb{Q}, (r, s, t) \in D$\}.

Let L be \{$(r, s, t) \in \mathbb{Q}, (x, y, z) \in E$\}.

Let M be \{$(r, s, t) \in \mathbb{Q}, (x, y, z) \in F$\}.

2. Our Direct Proof With Sets and Respective Subsets

Our big idea is : For any given $n \in \mathbb{Z}, n > 2$ with $p \in \mathbb{R}, q \in \mathbb{Q}$, we can prove

the truth of \{$(4q^n)^{\frac{1}{p}}(p-2q^n)^{\frac{1}{p}} \in G$\} = \{$(\frac{x+y}{2})^{\frac{1}{n}} \in K$\} so, we can infer the truth of

\{$(r, s, t) \mid r, s, t \in \mathbb{Z}, r^n + s^n = t^n$\} = \{$(x, y, z) \mid x, y, z \in \mathbb{Z}, x^n + y^n = z^n$\}.

Proposition 2.1. For any given $n > 2 : H = L$, with $H, L \neq \emptyset$, or $H, L = \emptyset$.

Proof. For any given $n \in \mathbb{Z}, n > 2$, expressions $(4q^n)^{\frac{1}{p}}(p-2q^n)^{\frac{1}{p}} \in G$, so, $\frac{x+y}{2} \in G$,

and $\frac{x+y}{2} \in K$ are equally restricted, as follows : Terms $rs/t < r$, and $xy/z < x$, but primarily, with any given $q \in \mathbb{Q}, q > 0$, unrestricted $p \in \mathbb{R}, p > 0$ varies such that $\frac{x+y}{2} \in G$ takes any given $\frac{x+y}{2} \in K$. Thus, G includes K. Set K includes G since $x^n + y^n = z^n$, with (x, y, z) for which $x, y, z \in \mathbb{R}$, is the most general such triple-nth-power form. Hence, for any given $n > 2$ it is true that \{$(\frac{x+y}{2})^{\frac{1}{n}} \in G$\} = \{$(\frac{x+y}{2})^{\frac{1}{n}} \in K$\}.

Therefore, \{$(\frac{x+y}{2})^{\frac{1}{n}} \in H \subset G$\} = \{$(\frac{x+y}{2})^{\frac{1}{n}} \in L \subset K$\} with $H, L \neq \emptyset$, or $H, L = \emptyset$. □

Proposition 2.2. For any given $n > 2$: \{$(r, s, t) \mid (r, s, t) \in C$\} = \{$(x, y, z) \mid (x, y, z) \in F$\}.

Proof. Prop. 2.1 implies that \{$(\frac{x+y}{2})^{\frac{1}{n}} \in J \subset H$\} = \{$(\frac{x+y}{2})^{\frac{1}{n}} \in M \subset L$\} with $J, M \neq \emptyset$,

or $J, M = \emptyset$. Therefore, \{$(r, s, t) \mid (r, s, t) \in C \subset B$\} = \{$(x, y, z) \mid (x, y, z) \in F \subset E$\} is
true, and, \(\{ t | (r, s, t) \in C \} = \{ z | (x, y, z) \in F \} \) is true with \(C \neq \emptyset \) and \(F \neq \emptyset \) simultaneously, or with \(C = \emptyset \) and \(F = \emptyset \) simultaneously.

\(\Box \)

Proposition 2.3. : For any given \(n \in \mathbb{Z}, n > 2 \), solution \((r, s, t) \in C\) as a function of \(v, w \) is identical to solution \((x, y, z) \in F\) as a function of the same values of \(v, w \).

For convenience: Denote \(v \) for \(r \cdot s \in \mathbb{Z} \), and \(w \) for \(t \in \mathbb{Z} \) so \(\frac{t \xi}{w} \in J = \frac{z}{w} \) holds.

Denote \(v \) for \(x \cdot y \in \mathbb{Z} \) and denote \(w \) for \(z \in \mathbb{Z} \) (per Prop. 2.2, with the same values of \(v, w \) as with \(r \cdot s \in \mathbb{Z}, t \in \mathbb{Z} \), respectively) such that \(\frac{z}{w} \in M = \frac{z}{w} \) holds.

\(\Box \)

Proof. Solving \(t = w \) and \(r \cdot s = v \) simultaneously with \(r^n + s^n = t^n \) results in:

\[(r^n)^2 - (w^n)(u^n) + v^n = 0 \text{ and } (s^n)^2 - (w^n)(u^n) + v^n = 0.\]

The solution in \(B \) is \(r = \left(\frac{u^n + \sqrt{w^n - 4v^n}}{2} \right)^\frac{1}{n}, s = \left(\frac{u^n - \sqrt{w^n - 4v^n}}{2} \right)^\frac{1}{n}, t = w. \)

Solving \(x = w \) and \(x \cdot y = v \) simultaneously with \(x^n + y^n = z^n \) results in the similar equations:

\[(x^n)^2 - (y^n)(u^n) + v^n = 0 \text{ and } (y^n)^2 - (y^n)(u^n) + v^n = 0.\]

The solution in \(F \) is \(x = \left(\frac{u^n + \sqrt{w^n - 4v^n}}{2} \right)^\frac{1}{n}, y = \left(\frac{u^n - \sqrt{w^n - 4v^n}}{2} \right)^\frac{1}{n}, z = w. \)

\(\Box \)

Proposition 2.4. For any given \(n > 2 : B = E \), with \(B, E \neq \emptyset \), or \(B, E = \emptyset \).

Proof. Per Prop. 2.3, for any given \(n \in \mathbb{Z}, n > 2 \), with \(C, F \neq \emptyset \) or \(C, F = \emptyset \):

\(\{ r | (r, s, t) \in C \} = \{ x | (x, y, z) \in F \} ; \{ s | (r, s, t) \in C \} = \{ y | (x, y, z) \in F \} ; \text{ and} \)

\(\{ t | (r, s, t) \in C \} = \{ z | (x, y, z) \in F \}. \)

So, for any given \(n \in \mathbb{Z}, n > 2 \) : Sets \(\{ (r, s, t) \in B \cap C \} = \{ (x, y, z) \in E \cap F \}, \text{ with} \)

\(B, E \neq \emptyset \) or \(B, E = \emptyset \).

\(\Box \)

For \(n \in \mathbb{Z}, n > 2 \) we succeed in proving Props. 2.1- 2.4 with \(p \in \mathbb{R} \), and \(q \in \mathbb{Q} \).

3. Results and Conclusion

With \((4q^n)^\frac{1}{2}, (p - 2q^n)^\frac{1}{2}, (p + 2q^n)^\frac{1}{2} \in \mathbb{R} \), or \(r, s, t \in \mathbb{R} \), respectively, of Sect. 1 : Term \((4q^n)^\frac{1}{2} \in \mathbb{R} \) reduces to \(2^{\frac{1}{2}}q \in \mathbb{R} \). So, such \(2^{\frac{1}{2}}q \in \mathbb{R} \) and \(r \in \mathbb{R} \) are identical.

Thus, for \(n \in \mathbb{Z}, n > 2 \) : There are no values, with \(q \in \mathbb{Q} \), for \(2^{\frac{1}{2}}q \in \mathbb{Q} \subset \mathbb{R} \).

Hence, for \(n \in \mathbb{Z}, n > 2 \) : There are no values, with \(q \in \mathbb{Q} \), for \(2^{\frac{1}{2}}q \in \mathbb{Z} \subset \mathbb{Q} \).

For \(n \in \mathbb{Z}, n > 2 \), with \(q \in \mathbb{Q}, p \in \mathbb{R} \) : The fact that \(2^{\frac{1}{2}}q \in \mathbb{Z} \) is impossible shows the truth of \(\{ (r, s, t) | r, s, t \in \mathbb{R}, r^n + s^n = t^n \} \neq \{ (x, y, z) | x, y, z \in \mathbb{R}, x^n + y^n = z^n \}. \)

More importantly, for \(n \in \mathbb{Z}, n > 2 \), with \(q \in \mathbb{Q}, p \in \mathbb{R} \) : The fact that \(2^{\frac{1}{2}}q \in \mathbb{Z} \) or \(r \in \mathbb{Z} \) are (each) impossible demonstrates the truth of the statement : For \(n \in \mathbb{Z}, n > 2 \) : \(r^n + s^n = t^n \) does not hold for \((r, s, t) \) such that \(r, s, t \in \mathbb{Z}, r, s, t \geq 1. \)

For \(n \in \mathbb{Z}, n > 2 \), with \(q \in \mathbb{Q}, p \in \mathbb{R}, x, y, z, r, s, t \geq 1 \), per Prop. 2.4, above, it is true that \(\{ (x, y, z) | x, y, z \in \mathbb{Z}, x^n + y^n = z^n \} = \{ (r, s, t) | r, s, t \in \mathbb{Z}, r^n + s^n = t^n \}. \)

Consequently, a necessarily true conclusion for \(n \in \mathbb{Z}, n > 2 \) is, as follows :

Equation \(x^n + y^n = z^n \) does not hold for \((x, y, z) \) such that \(x, y, z \in \mathbb{Z} \), \(x, y, z \geq 1. \)

\textbf{QED}