The Seiberg-Witten equations for vector fields

A.Balan

October 12, 2018

Abstract

By analogy with the Seiberg-Witten equations, we define equations for a spinor and a vector field.

1 Recalls of differential geometry

The SpinC-structures are reductions of a $SO(n).S^1$- fiber bundle to the group $Spin^C(n) = Spin(n) \times \{1, -1\} S^1$. For a four-manifold it exists always a SpinC-structure for the tangent fiber bundle [F].

The Dirac operator is defined over the SpinC-structure with help of a connection A for the associated line bundle.

$$D_A = \sum_i \epsilon_i \nabla^A_{\epsilon_i}$$

with ∇^A the connection defined by the Levi-Civita connection and the connection A of the determinant fiber bundle of the SpinC-structure.

The self-dual part of the curvature (which is a 2-form) of the connection A is considered:

$$\Omega^+_A$$

A self-dual 2-form with imaginary values, bound to a spinor $\psi \in S^+$ is also defined by [F]:

$$\omega(\psi)(X,Y) = <X.Y, \psi> + <Y, X> |\psi|^2$$

2 Recalls of the Seiberg-Witten equations

The Seiberg-Witten equations are the following ones [F] [M]:

1) $$D_A(\psi) = 0$$

2) $$\Omega^+_A = -(1/4)\omega(\psi)$$
3 The SWX equations

3.1 Definition

By analogy with the usual Seiberg-Witten equations, we are tempted to define equations for a spinor ψ and a vector field X:

1) \[\mathcal{D}_X(\psi) = (\mathcal{D} + iX)(\psi) = 0 \]

2) \[id(X^*)^+ = -(1/4)\omega(\psi) \]

with X^* the dual form of X, d is the differential of the forms. The first equation makes use of the Clifford multiplication. We call these two equations, the SWX equations.

3.2 The gauge group

The gaug group acts:

\[f.(X, \psi) = (X + i(df)^*, f\psi) \]

3.3 The moduli spaces

We verify that we can define the quotient of the solutions of the SWX equations by the gauge group, it is the moduli space.

References

