Finite-time Lyapunov exponent field in the infinitesimal time limit

Peter J. Nolan, Shane D. Ross

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Setup and Notation</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Eigenvalues of S as FTLE limit as integration time goes to zero for $n = 2$</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>Correction to formula to first order in integration time</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>S-Ridges as Infinitesimal-time LCS</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Geophysical Flow Examples</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Extension to Higher Dimensions</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Appendix</td>
<td>7</td>
</tr>
<tr>
<td>8.1</td>
<td>Proof of Eq. (12)</td>
<td>7</td>
</tr>
</tbody>
</table>

1 Introduction

Lagrangian analysis using techniques such as the finite-time Lyapunov exponent (FTLE) field or Lagrangian coherent structures can be very informative as to the dynamics of a system, however these methods can be time consuming to integrate and tricky to interpret. Recent developments in dynamical systems theory have generated new Eulerian methods, such as objective Eulerian coherent structures (OECS), for the analysis of dynamical systems. In this paper we will build upon this previous work by connecting the Eulerian diagnostics to FTLE, and defining a new diagnostic tool infinitesimal-time LCS (iLCS).
2 Setup and Notation

The dynamical system
\[
\frac{d}{dt} x(t) = v(x(t), t),
\]
\[x_0 = x(t_0).\]

(1)
(2)

Is often analyzed using Lagrangian methods, using the flow map for some time period of interest, \([t_0, t]\) given by,
\[
F_{t_0}^t(x_0) = x_0 + \int_{t_0}^{t} v(x(t), t) \, dt.
\]

(3)

Taking the gradient of the flow map we can calculate the right Cauchy-Green strain tensor for the time period of interest,
\[
C_{t_0}^t(x_0) = \nabla F_{t_0}^t(x_0)^T \cdot \nabla F_{t_0}^t(x_0),
\]

(4)

the eigenvalues of which are
\[
\lambda_1 < \lambda_2 < \ldots < \lambda_n,
\]

(5)

and are associated with the normalized eigenvectors
\[
\xi_{\lambda_i} \quad i \in \{1, \ldots, n\}.
\]

(6)

From the maximum eigenvalue of the Cauchy-Green tensor we get the FTLE
\[
\sigma_{t_0}^t(x_0) = \frac{1}{2|T|} \log(\lambda_n)
\]

(7)

where \(T = t - t_0\) is the (signed) elapsed time, often called the integration time.

The Eulerian strain tensor is defined as
\[
S(x, t) = \frac{1}{2} \left(\nabla v(x, t) + \nabla v(x, t)^T \right),
\]

(8)

the eigenvalues of which are
\[
s_1 < s_2 < \ldots < s_n,
\]

(9)

and are associated with the normalized eigenvectors
\[
\xi_{s_i} \quad i \in \{1, \ldots, n\}.
\]

(10)

Using the eigenvalues of the Eulerian strain tensor is a new method for the analysis of fluid flows. The minimum eigenvalue, \(s_1\), was shown to provide a measure of instantaneous hyperbolic attraction, with minima of \(s_1\) providing the cores of attracting objective Eulerian coherent structures.
3 Eigenvalues of S as FTLE limit as integration time goes to zero for $n = 2$

For small $|T|$, we Taylor expand $C_{t_0}^t(x)$ as

$$C_{t_0}^t(x) = 1 + 2TS(x, t_0) + T^2 \left(\dot{S}(x, t_0) + \frac{1}{2} \nabla v(x, t_0)^T \cdot \nabla v(x, t_0) \right) + O(|T|^3) \quad (11)$$

where I is the $n \times n$ identity.

In what follows, we limit ourselves to the case $n = 2$. We note the following general result for the 2 eigenvalues, $\lambda^\pm(A)$, of 2×2 matrices A and scalar $\varepsilon \neq 0$,

$$\lambda^\pm(I + \varepsilon A) = 1 + \lambda^\pm(\varepsilon A) \quad (12)$$

where

$$\lambda^\pm(\varepsilon A) = \begin{cases}
\varepsilon \lambda^\pm(A), & \text{for } \varepsilon > 0 \\
\varepsilon \lambda^\mp(A), & \text{for } \varepsilon < 0
\end{cases} \quad (13)$$

In (7), $\lambda_2 = \lambda^+(C_{t_0}^t(x))$. For small $T > 0$, we have

$$\lambda^+(C_{t_0}^t(x)) = 1 + 2T \lambda^+(S(x, t_0)) + O(T^2) \quad (14)$$

Thus,

$$\log(\lambda_2) = \log(1 + 2T \lambda^+(S(x, t_0))) = 2T \lambda^+(S(x, t_0)) = 2Ts_2(x, t_0) \quad (15)$$

in the limit of small T using the Taylor expansion $\log(1 + \varepsilon) = \varepsilon + O(\varepsilon^2)$.

From (7), and noting that $|T| = T$ for $T > 0$, we have,

$$\sigma^t_{t_0}(x) = \frac{1}{2|T|} \log(\lambda_2) = \frac{1}{2T} 2Ts_2(x, t_0) = s_2(x, t_0) \quad (16)$$

Therefore, the largest eigenvalue of $S(x, t_0)$ is the limit of the FTLE value for forward time as $T \to 0^+$.

For $T < 0$ with small T, we have

$$\lambda^+(C_{t_0}^t(x)) = 1 + 2T \lambda^- (S(x, t_0)) + O(T^2) \quad (17)$$

Thus,

$$\log(\lambda_2) = 2T \lambda^- (S(x, t_0)) = 2Ts_1(x, t_0) \quad (18)$$

From (7), and noting that $|T| = -T$ for $T < 0$, we have,

$$\sigma^t_{t_0}(x) = \frac{1}{2|T|} \log(\lambda_2) = -\frac{1}{2T} 2Ts_1(x, t_0) = -s_1(x, t_0) \quad (19)$$

Therefore, the negative of the smallest eigenvalue of $S(x, t_0)$ is the limit of the FTLE value for backward time as $T \to 0^-$.

If we denote s_1 and s_2 as s^- and s^+, respectively, we can summarize the above result as

$$\sigma^t_{t_0}(x) = \pm s^\pm(x, t_0) \quad \text{as } t - t_0 \to 0^\pm \quad (20)$$
3.1 Correction to formula to first order in integration time

If we consider now the third term, the order T^2 term, of (11), then (14) becomes

$$\lambda^+(C^t_{t_0}(x)) = 1 + 2T\lambda^+ \left(S(x, t_0) + \frac{1}{2}TB(x, t_0) \right) + O(|T|^3)$$

where

$$B(x, t_0) = \dot{S}(x, t_0) + \frac{1}{2} \nabla v(x, t_0)^T \cdot \nabla v(x, t_0)$$

Note that $B(x, t_0)$, like $S(x, t_0)$, is symmetric, i.e., $B(x, t_0)^T = B(x, t_0)$. It can be shown that,

$$\lambda^+ \left(S(x, t_0) + \frac{1}{2}TB(x, t_0) \right) = s_2 + \frac{1}{2}T \xi^T \xi_{s_2} + O(T^2)$$

Using the Taylor expansion $\log(1 + \varepsilon) = \varepsilon - \frac{1}{2}\varepsilon^2 + O(\varepsilon^3)$, by a similar argument as before, for small T, we have,

$$\log(\lambda^+(C^t_{t_0}(x))) = \log \left(1 + 2T \left[s_2 + \frac{1}{2}T \xi^T \xi_{s_2} + O(T^2) \right] \right)$$

$$= 2T \left[s_2 + \frac{1}{2}T \xi^T \xi_{s_2} + O(T^2) \right] - \frac{1}{2}4T^2 s_2^2 + O(T^3)$$

Therefore, for $T > 0$ with small $|T|$, we have,

$$\sigma^t_{t_0}(x) = s_2(x, t_0) + T \left(-s_2(x, t_0)^2 + \frac{1}{2} \xi_{s_2}(x, t_0)^T B(x, t_0) \xi_{s_2}(x, t_0) \right) + O(T^2)$$

And similarly, for $T < 0$ with small $|T|$, we have,

$$\sigma^t_{t_0}(x) = -s_1(x, t_0) - T \left(-s_1(x, t_0)^2 + \frac{1}{2} \xi_{s_1}(x, t_0)^T B(x, t_0) \xi_{s_1}(x, t_0) \right) + O(T^2)$$

4 S-Ridges as Infinitesimal-time LCS

Previous work [1-5, 7-9] has demonstrated that LCS can be identified as Ridges of the FTLE field. Since s_1 and s_2 are the limits of the backward and forward time FTLE fields we propose to seek hyperbolic iLCS as troughs of s_1 and ridges of s_2. This is in contrast to the definition proposed in [6] which focuses on saddle-type hyperbolic OECS as ξ_2 and ξ_1 tensor lines emanating from isolated minima and maxima of s_1 and s_2 respectively. This new definition expands the definition of OECS by looking at a broader class of attracting and repelling structures beyond saddle-type features.

In particular we propose iLCS a new type of ridge we call an S-Ridge. S-Ridges are the limit of C-Ridges as integration time goes to 0. C-Ridges of the FTLE field have been proven to be mathematically equivalent to LCS. S ridges / troughs are material lines in the fluid flow which are locally orthogonal to the
direction of maximal stretching. Since the direction of stretching is given by
the eigenvectors of the Eulerian strain tensor, S, they are material lines who’s
gradient is locally orthogonal to the fields associated eigenvalue.

Mathematically we define attracting hyperbolic iLCS as a trough line of the
minimum eigenvalue field of S, s_1.

$$s_1 < 0 \quad (27)$$
$$\nabla s_1 \cdot \xi_1 = 0 \quad (28)$$
$$(H_{s_1} \cdot \xi_1) \cdot \xi_1 > 0 \quad (29)$$

further define repelling hyperbolic iLCS as a ridge-line of the maximum
These definitions, are mathematically consistent with the previous definition of a hyperbolic OECS, however, they form superset of the previous definition, as we are no longer reliant of isolated minima.

5 Geophysical Flow Examples

For a demonstration in a realistic flow, we look at a WRF simulation over the South Eastern United States.
6 Extension to Higher Dimensions

We conjecture that it is possible to extend hyperbolic iLCS to higher dimensions using the definitions, by exchanging s_2 and ξ_2 for s_n and ξ_n, where n is the dimension of the system being examined.

\begin{align*}
 s_n &> 0 \quad (35) \\
 \nabla s_n \cdot \xi_n &= 0 \quad (36) \\
 (H_{s_n} \cdot \xi_n) \cdot \xi_n &< 0 \quad (37)
\end{align*}

As an example we analyze the ABC flow. A simulation of inertial particles around an iLCS in 3D can be found at, \url{https://youtu.be/fmXFcpUEfaI}

7 Conclusion

We conclude that for flows with spatial complexity of real world flows. Future work will look for indicators of how the fields related to S change in time, better determining the extent of the time period over which iLCS can be expected to give accurate predictions, and extending the proof of the FTLE field to higher dimensions.

8 Appendix

8.1 Proof of Eq. 12

Let

\[A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \]

where $a, b, c, d \in \mathbb{R}$, then the eigenvalues of A are,

\[\lambda^{\pm}(A) = \frac{1}{2}(a + d) \pm \frac{1}{2} \sqrt{(a + d)^2 - 4(ad - bc)}. \]

(40)

Now for $I + A$,

\[I + A = \begin{bmatrix} 1 + a & b \\ c & 1 + d \end{bmatrix}, \]

(41)

the eigenvalues are,

\begin{align*}
\lambda^{\pm}(I + A) &= 1 + \frac{1}{2}(a + d) \pm \frac{1}{2} \sqrt{(2 + a + d)^2 - 4(ad - bc + 1 + a + d)} \quad (42) \\
&= 1 + \frac{1}{2}(a + d) \pm \frac{1}{2} \sqrt{4 + 4(a + d) + (a + d)^2 - 4 - 4(a + d) - 4(ad - bc)} \quad (44) \\
&= 1 + \frac{1}{2}(a + d) \pm \frac{1}{2} \sqrt{(a + d)^2 - 4(ad - bc)} \quad (45)
\end{align*}
References

