1. Through the development of his General Relativity Theory Einstein discovered a relationship between the rate at which time flows and the manner in which space is characterised: time passes more slowly when the force of a gravitational field, that is, the curvature of space-time, is greater. I propose that we seek to obtain something similar using the concept of temperature.

2. In my view, this may be understood by reference to Einstein’s theory, as compared with the traditional (statistical) approach. For this to hold, we must be able to state: just as \(t^* = f_2(d) \) in the General Theory of Relativity, so also \(T = f_3(d) \) for the theory to be expounded, where \(T \) is temperature, \(t^* \) the velocity of the passage of time and \(d \) is length.

3. We must therefore characterise processes of diffusion of heat in order to make them compatible with a thermodynamic interpretation of the Theory of General Relativity. In order to do this, we must seek a system of equivalences between thermal aspects and pliable aspects of reality by elucidating the meaning of the above-mentioned relationship between temperature and the passage of time in the Theory of Relativity.

4. Here we have two clocks that need to be standardised: processes of diffusion of heat and so-called gravitational processes (the trajectories of bodies in motion in a field of gravity) represent the passage of time in two distinct ways. The criterion that enables their comparison – through the clarification of the equivalence posited – enables us to understand time as the unifying bridge linking the two theoretical frameworks of Physics.

5. Thermometers and rulers, diffusion of heat and trajectories of bodies in motion, thermal energy and kinetic energy, etc. characterise in a range of ways the object that Physics seeks to describe using the heuristic principle – the method – that lies in its origin. "Time" is, as mentioned above, the name that may be assigned to the problem that must be solved in order to establish a degree of coherence in Physics.

6. In order to establish the above relationship between \(T \) and \(t^* \), that is, between \(f_2(d) \) and \(f_1(d) \), we propose to define \(T \) as previously stated, on the basis of the value of the constant \(K_n = Td^2 \), to be determined. Thus, it follows that: \(T = f_0(t^*) = f_0[f_1(d)] = f_2(d) = K_n/d^2 \). But we have also seen that the constant \(K_n = Td^2 \) enables the following equation to be formulated: \(S \cdot M \cdot K_n = H^2 \), where \(S \) is entropy, \(M \) is mass and \(H \) is action.

7. Using the Boltzman formula for entropy, we obtain: \(K_n (k \log \Omega) M = H^2 \), which gives: \(\log \Omega = H^2/M K_n k \). If we replace \(H \) with Einstein’s formula for action, we are able to establish, by this means, a method for quantifying space-time, which also means for us: a method for the geometrisation of heat diffusion processes.

8. If \(K_n = Td^2 = Td^2/d = K/d \), where \(K = (G/k) (h/c)^2 \), with \(h \) expressing an action and \(G, k \) and \(c \) being the other three fundamental constants of Physics. If we consider that \(G \) can be expressed as \(G = c^2 (d_0/m_0) \), it follows that \(\log \Omega = H^2(d_0/m_0) (1/Kk) \), for \(d = d_0 \) and \(M = m_0 \), of known quotient \(d_0/m_0 = G/c^2 \). And, for \(\log \Omega = 1 \), we obtain \(H^2 = h^2 \). That is: \(h \), Planck’s constant, can be understood as the lower limit of Einstein’s action, its smallest part. Thus, in Quantum Mechanics we have an expression for the unification of the different branches of Physics, which, when rendered explicit, displays a degree of fundamental simplicity.