Cohen-Macaulay of Ideal \(I_2(G) \)

Abbas Alilou

(Department of Mathematics Azarbaijan Shahid, Madani University Tabriz, Iran)

E-mail: abbasalilou@yahoo.com

Abstract: In this paper, we study the Cohen-Macaulay of ideal \(I_2(G) \), where \(I_2(G) = \langle xyz \mid x - y - z \text{ is a 2-path in } G \rangle \). Also, we determined the 2-projective dimension \(R \)-module, \(R/I_2(G) \) denoted by \(pd_2(G) \) of some graphs.

Key Words: Cohen-Macaulay, projective dimension, ideal, path.

AMS(2010): 05E15

§1. Introduction

A simple graph is a pair \(G = (V, E) \), where \(V = V(G) \) and \(E = E(G) \) are the sets of vertices and edges of \(G \), respectively. A walk is an alternating sequence of vertices and connecting edges. A path is a walk that does not include any vertex twice, except that its first vertex might be the same as its last. A path with length \(n \) denotes by \(P_n \). In a graph \(G \), the distance between two distinct vertices \(x \) and \(y \), denoted by \(d(x, y) \), is the length of the shortest path connecting \(x \) and \(y \), if such a path exists: otherwise, we set \(d(x, y) = \infty \). The diameter of a graph \(G \) is \(\text{diam}(G) = \sup \{d(x, y) : x \text{ and } y \text{ are distinct vertices of } G\} \). Also, a cycle is a path that begins and ends on the same vertex. A cycle with length \(n \) denotes by \(C_n \). A graph \(G \) is said to be connected if there exists a path between any two distinct vertices, and it is complete if it is connected with diameter one. We use \(K_n \) to denote the complete graph with \(n \) vertices. For a positive integer \(r \), a complete \(r \)-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The complete bipartite graph with part sizes \(m \) and \(n \) is denoted by \(K_{m,n} \). The graph \(K_{1,n-1} \) is called a star graph in which the vertex with degree \(n - 1 \) is called the center of the graph. For any graph \(G \), we denote \(N(x) = \{y \in V(G) : (x, y) \text{ is an edge of } G\} \). Recall that the projective dimension of an \(R \)-module \(M \), denoted by \(pd(M) \), is the length of the minimal free resolution of \(M \), that is, \(pd(M) = \max \{ I \mid \beta_{i,j}(M) \neq 0 \text{ for some } j \} \). There is a strong connection between the topology of the simplicial complex and the structure of the free resolution of \(K[\Delta] \). Let \(\beta_{i,j}(\Delta) \) denotes the \(N \)-graded Betti numbers of the Stanley-Reisner ring \(K[\Delta] \).

To any finite simple graph \(G \) with the vertex set \(V(G) = \{x_1, \ldots, x_n\} \) and the edge set \(E(G) \), one can attach an ideal in the Polynomial rings \(R = K[x_1, \ldots, x_n] \) over the field \(K \), where ideal \(l_2(G) \) is called the edge ideal of \(G \) such that \(l_2(G) = \langle xyz \mid x - y - z \text{ is a 2-path in } G \rangle \).

\(^1\)Received December 19, 2016, Accepted August 13, 2017.
path in $G >$. Also the edge ring of G, denoted by $K(G)$ is defined to be the quotient ring $K(G) = R/I_2(G)$. Edge ideals and edge rings were first introduced by Villarreal [9] and then they have been studied by many authors in order to examine their algebraic properties according to the combinatorial data of graphs. In this paper, we denote S_n for a star graph with $n + 1$ vertices. Let $R = K[x_1, \cdots, x_n]$ be a polynomial ring over a field K with the grading induced by $\deg(x_i) = d_i$, where d_i is a positive integer. If $M = \bigoplus_{i=0}^{\infty} M_i$ is a finitely generated R-graded module over R, its Hilbert function and Hilbert series are defined by $H(M, i) = l(M_i)$ and $F(M, t) = \sum_{i=0}^{\infty} H(M, i)t^i$ respectively, where $l(M_i)$ denotes the length of M_i as a K-module, in our case $l(M_i) = \dim_{K}(M_i)$.

§2. Cohen-Macaulay of Ideal $I_2(G)$ and $pd_2(G)$ of Some Graph G

Definition 2.1 Let G be a graph with vertex set V. Then a subset $A \subseteq V$ is a 2-vertex cover for G if for every path xyz of G we have $\{x, y, z\} \cap A \neq \emptyset$. A 2-minimal vertex cover of G is a subset A of V such that A is a 2-vertex cover, and no proper subset of A is a vertex cover for G. The smallest cardinality of a 2-vertex cover of G is called the 2-vertex covering number of G and is denoted by $\alpha_{02}(G)$.

Example 2.2 Let G be a graph shown in the figure. Then the set $\{x_2, x_4, x_7\}$ is a 2-minimal vertex cover of G and $\alpha_{02}(G) = 3$.

![Figure 1](image_url)

Definition 2.3 Let G be a graph with vertex set V. A subset $A \subseteq V$ is a k-independent if for every x of A we have $\deg_{G[A]} \leq k - 1$. The maximum possible cardinality of an k-independent set of G, denoted $\beta_{0k}(G)$, is called the k-independence number of G. It is easy see that

$$\alpha_{02}(G) + \beta_{02}(G) = |V(G)|.$$

Definition 2.4 Let G be a graph without isolated vertices. Let $S = K[x_1, \cdots, x_n]$ the polynomial ring on the vertices of G over some fixed field K. The 2-paths ideal $I_2(G)$ associated to the graph G is the ideal of S generated by the set of square-free monomials $x_i x_j x_r$ such that $\nu_i \nu_j \nu_r$.
Proposition 2.5 Let $\mathcal{S} = K[x_1, \cdots, x_n]$ be a polynomial ring over a field K and G a graph with vertices ν_1, \cdots, ν_n. If P is an ideal of R generated by $A = \{x_{i_1}, \cdots, x_{i_k}\}$ then P is a minimal prime of $I_2(G)$ if and only if A is a 2-minimal vertex cover of G.

Proof It is easy see that $I_2(G) \subseteq P$ if and only if A is a 2-vertex cover of G. Now, let A is a 2-minimal vertex cover of G. By Proposition 5.1.3 [9] any minimal prime ideal of $I_2(G)$ is a face ideal thus P is a minimal prime of $I_2(G)$. The converse is clear. □

Corollary 2.6 If G is a graph and $I_2(G)$ its 2-path ideal, then

$$ht(I_2(G)) = \alpha_{02}(G).$$

Proof It follows from Proposition 5 and the definition of $\alpha_{02}(G)$. □

Definition 2.7 A graph G is 2-unmixed if all of its 2-minimal vertex covers have the same cardinality.

Definition 2.8 A graph G with vertex set $V(G) = \{\nu_1, \nu_2, \cdots, \nu_n\}$ is 2- Cohen-Macaulay over field K if the quotient ring $K[x_1, \cdots, x_n]/I_2(G)$ is Cohen-Macaulay.

Proposition 2.9 If G is a 2-Cohen-Macaulay graph, then G is 2-unmixed.

Proof By Corollary 1.3.6 [9], $I_2(G) = \bigcap_{P \in \text{min}(I_2(G))} P$. Since $R/I_2(G)$ is Cohen-Macaulay, all minimal prime ideals of $I_2(G)$ have the same height. Then, by Proposition 5, all 2-minimal vertex cover of G have the same cardinality, as desired. □

Proposition 2.10 If G is a graph and G_1, \cdots, G_s are its connected components, then G is 2-Cohen-Macaulay if and only if for all i, G_i is Cohen-Macaulay.

Proof Let $R = K[V(G)]$ and $R_i = K[V(G_i)]$ for all i. Since

$$R/I_2(G) \cong R_1/I_2(G_1) \otimes_K \cdots \otimes_K R_s/I_2(G_s).$$

Hence the results follow from Corollary 2.2.22 [9]. □

Definition 2.11 For any graph G one associates the complementary simplicial complex $\Delta_2(G)$, which is defined as

$$\Delta_2(G) := \{A \subseteq V | A \text{ is 2-independent set in } G\}.$$

This means that the facets of $\Delta_2(G)$ are precisely the maximal 2-independent sets in G, that is the complements in V of the minimal 2-vertex covers. Thus $\Delta_2(G)$ precisely the Stanley-Reisner complex of $I_2(G)$.
It is easy see that \(\omega(\Delta_2(G)) = \{(x, y, z) \mid xyz \in P_3(G)\} \). Therefore \(I_2(G) = I_{\Delta_2(G)} \), and so \(G \) is \(2 - C - M \) graph if and only if the simplicial complex \(\Delta_2(G) \) is cohen-Macaulay.

Now, we can show the following propositiori.

Proposition 2.12 The following statements hold:

(a) For any \(n \geq 1 \) the complete graph \(K_n \) is cohen-Macaulay;

(b) The complete bipartite graph \(K_{m,n} \) is cohen-Macaulay if and only if \(m + n \leq 4 \).

Proof (a) Since \(\Delta_2(K_n) = \langle \{x, y\} \mid x, y \in V(K_n) \rangle \), thus \(\Delta_2(K_n) \) is connected \(l \)-dimensional simplicial complex, then by Cororary 5.3.7 [9], \(\Delta_2(K_n) \) is cohen-Macaulay so \(K_n \) is cohen-Macaulay.

(b) If \(m + n \leq 4 \), then \(K_{m,n} \cong P_2, P_3, C_4 \). It is easy to see that \(\Delta_2(K_{m,n}) \) is c. So \(K_{m,n} \) is cohen-Macaulay.

Conversely, let \(K_{m,n} \) is cohen-Macaulay and \(m + n \geq 5 \). Take \(V_1 = \{x_1, \cdots, x_n\} \) and \(V_2 = \{y_1, \cdots, y_m\} \) are the partite sets of \(K_{m,n} \). One has

\[
\Delta_2(K_{m,n}) = \langle \{x_1, \cdots, x_n\}, \{y_1, \cdots, y_m\}, \{x_i, y_j\} \mid 1 \leq i \leq n, 1 \leq j \leq m \rangle.
\]

Since \(m + n \geq 5 \), \(\Delta_2(K_{m,n}) \) is not pure simplicial complex. Then, by 5.3.12 [9] \(\Delta_2(K_{m,n}) \) is not cohen-Macaulay, a contradiction, as desired.

Now, we present a result about the Hilbert series of \(K[\Delta_2(K_n)] \) and \(K[\Delta_2(K_{m,n})] \).

Proposition 2.13 If \(\Delta_2(K_n) \) and \(\Delta_2(K_{m,n}) \) are the complemenary simplicial complexes \(K_n \) and \(K_{m,n} \) respectively, then

(a) \(F(K[\Delta_2(K_n)], z) = 1 + nz/(1 - z) + n(n - 1)/2(1 - z)^2 \);

(b) \(F(K[\Delta_2(K_{m,n})], z) = 1/(1 - z)^n + 1/(1 - z)^m + mnz^2/(1 - z)^2 - 1 \).

Proof (a) Since \(\Delta_2(K_n) = \langle \{x, y\} \mid x, y \in V(K_n) \rangle \) hence dime \(\Delta_2(K_n) = 1 \) and \(f_{-1}(K_n) = 1 \), \(f_0(K_n) = n \) and \(f_1(K_n) = \binom{n}{2} = n(n - 1)/2 \). By Corollary 5.4.5 [9]. We have

\[
F(K[\Delta_2(K_n)], z) = 1 + nz/1 - z + n(n - 1)/2. z^2/2(1 - z)^2.
\]

(b) Let \(\{x_1, \cdots, x_n\} \) and \(\{y_1, \cdots, y_m\} \) are the parties sets of \(K_{m,n} \). Since

\[
\Delta_2(K_{m,n}) = \langle \{x_1, \cdots, x_n\}, \{y_1, \cdots, y_m\}, \{x_i, y_j\} \mid 1 \leq i \leq n, 1 \leq j \leq m \rangle
\]

Then it is easy see that \(f_1(\Delta_2(K_{m,n})) = f_1(\Delta(K_{m,n}))+ mn \) and \(f_i(\Delta_2(K_{m,n})) = f_i(\Delta(K_{m,n})) \) for all \(i \neq 1 \). In the other hand, by 6.6.6[9], \(F(K[\Delta_2(K_n)], z) = 1/(1 - z)^n - 1 \). Thus

\[
F(K[\Delta_2(K_{m,n})], z) = 1/(1 - z)^n + 1/(1 - z)^m + mnz^2/(1 - z)^2 - 1.
\]

This completes the proof.

Corollary 2.14 \(F(K[\Delta_2(S_n)], z) = 1/(1 - z)^n + nz^2/(1 - z)^2 + z/(1 - z) \).
Proof It follows from Proposition 2.13 with assume $m = 1$. \qed

In this section we mainly present basic properties of 2-shellable graphs.

Lemma 2.15 Let G be a graph and x be a vertex of degree 1 in G and let $y \in N(x)$ and $G' = G - (\{y\} \cup N(y))$. Then $\Delta_2(G') = lK_{\Delta_2(G)}(\{x, y\})$. Moreover F is a facet of $\Delta_2(G')$ if and only if $F \cup \{x, y\}$ is a facet of $\Delta_2(G)$.

Proof (a) Let $F \in lK_{\Delta_2(G)}(\{x, y\})$. Then $F \in \Delta_2(G)$, $x, y \notin F$ and $F \cup \{x, y\} \in \Delta_2(G)$. This implies that $(F \cup \{x, y\}) \cap N[y] = \emptyset$ and $F \subseteq (V - \{x, y\}) \cup N[y] = (V - y) \cup N[y] = V(G')$. Thus F is 2-independent in G', it follows that $F \in \Delta_2(G')$. Conversely let $F \in \Delta_2(G')$, then F is 2-independent in G' and $F \cap (x \cup [y]) = \emptyset$. Therefore $F \cup \{x, y\}$ is 2-independent in G and so $F \cup \{x, y\} \in \Delta_2(G)$, $F \cup \{x, y\} = \emptyset$. Thus $F \in lK_{\Delta_2(G)}(\{x, y\})$. Finally from part one follows that F is a facet of $\Delta_2(G')$ if and only if $F \cup \{x, y\}$ is a facet of $\Delta_2(G)$. \qed

Definition 2.16 Fix a field K and set $R = K[x_1, \ldots, x_n]$. If G is a graph with vertex set $V(G) = \{x_1, x_2, \ldots, x_n\}$, we define the projective dimension of G to be the 2-projective dimension R-module $R/I_2(G)$, and we will write $pd_2(G) = pd(R/I_2(G))$.

Proposition 2.17 If G is a graph and $\{x, y\}$ is an edge of G, then

$$P_2(G) \leq \max \{P_2(G - (N[x] \cup N[y])) + \deg(x) + \deg(y), |N[x] \cap N[y]|, P_2(G - x) + 1, P_2(G - y) + 1\}.$$

Proof Let $N[x] = \{x_1, \ldots, x_ξ\}$ and $N[y] = \{y_1, \ldots, y_ξ\}$. It is easy to see that

$$I_2(G) : xy = (I_2(G) - (N[x] \cup N[y]), x_1, \ldots, x_ξ, y_1, \ldots, y_ξ).$$

Now, let

$$R' = K \left[V \left(G - (N[x] \cup N[y]) \right) \right].$$

Then

$$\text{depth}(R/I_2(G) : xy) = \text{depth}(R'/I_2(G - (N[x] \cup N[y])).$$

And so by Auslander-Buchsbaum formula, we have

$$pd_2(R/I_2(x) : xy) = pd_2(G - (N[x] \cup N[y])) + \deg(x) + \deg(y) - |N[x] \cap N[y]|,$$

$$pd_2(R/I_2(x), x) = pd_2(G - x) + 1,$$

$$pd_2(R/I_2(x), y) = pd_2(G - y) + 1.$$
it follows that

\[P_2(G) \leq \max \{ P_2(G - (N[x] \cup N[y])) + \deg(x) + \deg(y) \]

\[- |N[x] \cap N[y]|, P_2(G - x) + 1, P_2(G - y) + 1 \}. \]

\[\Box \]

Proposition 2.18 Let \(G \) be a graph and \(I_2(G) \) is path ideal of \(G \). Then

\[\text{Bight}(I_2(G)) \leq \text{pd}_2(G). \]

Proof Let \(P \) be a minimal vertex cover with maximal cardinality. Then by Proposition 2.5, \(P \) is an associated prime of \(R/I_2(G) \), so

\[\text{pd}_2(G) = \text{pd}(R/I_2(G)) \geq \text{pd}_{R_p}(R_p/I_2(G)R_p) = \dim R_p = \text{ht}P. \]

\[\Box \]

Proposition 2.19 Let \(K_n \) denote the complete graph on \(n \) vertices and let \(K_{m,n} \) denote the complete bipartite graph on \(m + n \) vertices.

(a) \(\text{pd}_2(K_n) = n - 2 \);

(b) \(\text{pd}_2(K_{m,n}) = m + n - 2 \).

Proof (a) The proof is by induction on \(n \). If \(n = 2 \) or \(3 \), then the result easy follows. Let \(n \geq 4 \) and suppose that for every complete graphs \(K_n \) of other less than \(n \) the result is true. Since \(\text{Bight}(I_2(K_n)) = n - 2 \) then by Proposition \(\text{pd}_2(K_n) \geq n - 2 \). On the other hand by the inductive hypothesis, we have \(\text{pd}_2(K_{n-1}) = n - 3 \). So by Proposition 2.17,

\[\text{pd}_2(K_n) \leq \max \{ n - 2, n - 2 \}. \]

(b) Again we use by induction on \(m + n \). If \(m + n = 2 \) or \(3 \), then it is easy to see that \(\text{pd}_2(K_{m,n}) = 0 \) or \(1 \). Let \(m + n \geq 4 \) and suppose that for every complete bipartite graph \(K_{m,n} \) of order less than \(m + n \) the result is true. Since \(\text{Bight}(I_2(K_{m,n})) = m + n - 2 \) then \(\text{pd}_2(K_{m,n}) \geq m + n - 2 \). Also, by the inductive hypothesis we have \(\text{pd}_2(K_{m-1,n}) = m + n - 3 \) and \(\text{pd}_2(K_{m,n-1}) = m + n - 3 \). So by Proposition 2.17,

\[\text{pd}_2(K_{m,n}) \leq \max \{ m + n - 2, \text{pd}_2(K_{m-1,n}) + 1, \text{pd}_2(K_{m,n-1}) + 1 = m + n - 2 \}. \]

This completes the proof. \[\Box \]

Corollary 2.20 Let \(S_n \) denote the star graph on \(n + 1 \) vertices and \(S_{m,n} \) denote the double star, then \(\text{pd}_2(S_{m,n}) = m + n \).

Proof It follows from Proposition 2.19 with assume \(m = 1 \) and it is easy to see that \(\text{Bight}I_2(S_{m,n}) = m + n \), and so by Proposition 2.17, it follows that

\[\text{pd}_2(S_{m,n}) = m + n. \]

\[\Box \]
References

