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81. Introduction

In set theory, repetition of objects are not allowed in a collection. This perspective rendered set
almost irrelevant because many real life problems admit repetition. To remedy the handicap in
the idea of sets, the concept of multiset was introduced in [10] as a generalization of set wherein
objects repeat in a collection. Multiset is very promising in mathematics, computer science,
website design, etc. See [14, 15] for details.

Since algebraic structures like groupoids, semigroups, monoids and groups were built from
the idea of sets, it is then natural to introduce the algebraic notions of multiset. In [12], the term
multigroup was proposed as a generalization of group in analogous to some non-classical groups
such as fuzzy groups [13], intuitionistic fuzzy groups [3], etc. Although the term multigroup
was earlier used in [4, 11] as an extension of group theory, it is only the idea of multigroup in
[12] that captures multiset and relates to other non-classical groups. In fact, every multigroup
is a multiset but the converse is not necessarily true and the concept of classical groups is a
specialize multigroup with a unit count [5].

In furtherance of the study of multigroups, some properties of multigroups and the anal-
ogous of isomorphism theorems were presented in [2]. Subsequently, in [1], the idea of order
of an element with respect to multigroup and some of its related properties were discussed.
A complete account on the concept of multigroups from different algebraic perspectives was

outlined in [8]. The notions of upper and lower cuts of multigroups were proposed and some of
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their algebraic properties were explicated in [5]. In continuation to the study of homomorphism
in multigroup setting (cf. [2, 12]), some homomorphic properties of multigroups were explored
in [6]. In [9], the notion of multigroup actions on multiset was proposed and some results were
established. An extensive work on normal submultigroups and comultisets of a multigroup were
presented in [7].

In this paper, we explicate the notion of direct product of multigroups and its generaliza-
tion. Some homomorphic properties of direct product of multigroups are also presented. This
paper is organized as follows; in Section 2, some preliminary definitions and results are pre-
sented to be used in the sequel. Section 3 introduces the concept of direct product between two
multigroups and Section 4 considers the case of direct product of k" multigroups. Meanwhile,

Section 5 contains some homomorphic properties of direct product of multigroups.

§82. Preliminaries

Definition 2.1([14]) Let X = {x1,x2, - ,&p, - } be a set. A multiset A over X is a cardinal-
valued function, that is, Ca : X — N such that for x € Dom(A) implies A(zx) is a cardinal
and A(x) = Ca(z) > 0, where Ca(z) denoted the number of times an object x occur in A.
Whenever Ca(z) = 0, implies x ¢ Dom(A).

The set of all multisets over X is denoted by MS(X).

Definition 2.2([15]) Let A,B € MS(X), A is called a submultiset of B written as A C B if
Ca(z) < Cpg(x) for Ve € X. Also, if AC B and A # B, then A is called a proper submultiset

of B and denoted as A C B. A multiset is called the parent in relation to its submultiset.

Definition 2.3([12]) Let X be a group. A multiset G is called a multigroup of X if it satisfies

the following conditions:

(1) Ca(zy) > Ca(z) A Ca(y)Ve,y € X;
(ii) Ca(z™1) = Cg(z)Vz € X,

where Ca denotes count function of G from X into a natural number N and A denotes minimum,

respectively.
By implication, a multiset G is called a multigroup of a group X if
Ca(zy™) > Ca(z) A Caly), Va,ye X.
It follows immediately from the definition that,
Cale) z Ca(x), Vre X,

where e is the identity element of X.

The count of an element in G is the number of occurrence of the element in G. While the
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order of G is the sum of the count of each of the elements in GG, and is given by
|G| = ZCG(LL'l), Va; € X.
i=1

We denote the set of all multigroups of X by MG(X).

Definition 2.4([5]) Let A € MG(X). A nonempty submultiset B of A is called a submulti-
group of A denoted by B T A if B form a multigroup. A submultigroup B of A is a proper
submultigroup denoted by B Z A, if BC A and A # B.

Definition 2.5([5]) Let A € MG(X). Then the sets Ay, and A,y defined as
(i) Ay ={r € X | Ca(z) > n,n € N} and
(i1) Ay ={z € X | Ca(x) > n,n € N}

are called strong upper cut and weak upper cut of A.

Definition 2.6([5]) Let A € MG(X). Then the sets A"l and A™ defined as

(i) A"l ={x € X | C4(x) <n,n €N} and
(1) A ={z € X | Ca(z) < n,n € N}

are called strong lower cut and weak lower cut of A.

Definition 2.7([12]) Let A € MG(X). Then the sets A, and A* are defined as
(1) Ax={x € X | Ca(z) >0} and
(11) A* ={z € X | Ca(x) = Cale)}, where e is the identity element of X.

Proposition 2.8([12]) Let A € MG(X). Then A, and A* are subgroups of X.

Theorem 2.9([5]) Let A € MG(X). Then Ay, is a subgroup of X Vn < Ca(e) and A is a
subgroup of X ¥Yn > Ca(e), where e is the identity element of X and n € N.

Definition 2.10([7]) Let A,B € MG(X) such that A C B. Then A is called a normal
submultigroup of B if for all x,y € X, it satisfies Ca(xyz—1) > Ca(y).

Proposition 2.11([7]) Let A,B € MG(X). Then the following statements are equivalent:

(i) A is a normal submultigroup of B;
(ii) Ca(zyz™") = Caly)Va,y € X;
(7i1) Ca(zy) = Ca(yx)Va,y € X.

Definition 2.12([7]) Two multigroups A and B of X are conjugate to each other if for all
2,y € X, Ca(z) = Cplyay™") and Cp(y) = Calzya™").

Definition 2.13([6]) Let X and Y be groups and let f : X — Y be a homomorphism. Suppose
A and B are multigroups of X and Y, respectively. Then f induces a homomorphism from A
to B which satisfies
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(i) Ca(f yiy2)) = Ca(f~ (y1)) ACaA(fHy2)) Yy1,y2 € Y;
(i4) Cp(f(z122)) = Cp(f(21)) A CB(f(22)) Vo1,22 € X,

where

(1) the image of A under f, denoted by f(A), is a multiset of Y defined by

Vaies-1(p Calz), [~Hy) #0

Cray) =
) 0, otherwise

for each y €Y and
(i1) the inverse image of B under f, denoted by f~1(B), is a multiset of X defined by

Cf—l(B)(,T) = CB(f(LL')) Ve e X.
Proposition 2.14([12]) Let X and Y be groups and f : X — Y be a homomorphism. If
A€ MG(X), then f(A) €e MG(Y).

Corollary 2.15([12]) Let X and Y be groups and f : X — Y be a homomorphism. If B €
MG(Y), then f~1(B) € MG(X).

§3. Direct Product of Multigroups

Given two groups X and Y, the direct product, X x Y is the Cartesian product of ordered pair

(z,y) such that x € X and y € Y, and the group operation is component-wise, so

(z1,y1) X (22,Y2) = (T172, Y1Y2)-

The resulting algebraic structure satisfies the axioms for a group. Since the ordered pair
(x,y) such that x € X and y € YV is an element of X x Y, we simply write (x,y) € X x Y. In
this section, we discuss the notion of direct product of two multigroups defined over X and Y,

respectively.

Definition 3.1 Let X and Y be groups, A € MG(X) and B € MG(Y), respectively. The
direct product of A and B depicted by A x B is a function

Cuxp: X xY — N

defined by
Caxp((z,y)) = Ca(x) A Cp(y)Vr € X,Vy €Y.

Example 3.2 Let X = {e,a} be a group, where a®> = e and Y = {¢/, x,y, 2} be a Klein 4-group,
where 22 = y2 = 22 = ¢’. Then
A =[5 a
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and
B=[(e)% " y°, 2"

are multigroups of X and Y by Definition 2.3. Now
X xY ={(e.€). (e.2), (e,9), (€, 2), (a, €'), (a,2), (a,), (a, 2)}
is a group such that
(e,2)* = (e,9)* = (€,2)* = (a,€¢')* = (a,2)* = (a,9)* = (a,2)* = (e, )
is the identity element of X x Y. Then using Definition 3.1,
Ax B ={(e,e), (e,2)",(e,9)°, (e, 2)", (a,¢), (a,2), (a,9), (a, 2)]

is a multigroup of X x Y satisfying the conditions in Definition 2.3.

Example 3.3 Let X and Y be groups as in Example 3.2. Let
A =[e° a%]

and
B=[(¢)7, 2% ¢°, 2"

be multisets of X and Y, respectively. Then
Ax B=[(e,e)?, (e,x)° (e,y)% (e, 2)°, (a,e)*, (a,2)*, (a,y)*, (a, 2)?].

By Definition 2.3, it follows that A x B is a multigroup of X x Y although B is not a
multigroup of Y while A is a multigroup of X.

From the notion of direct product in multigroup context, we observe that
|Ax B| < |A]|B|
unlike in classical group where | X x Y| = | X||Y].

Theorem 3.4 Let A€ MG(X) and B € MG(Y'), respectively. Then for alln € N, (Ax B)[,) =

Proof Let (x,y) € (A X B)[y). Using Definition 2.5, we have
Caxp((2,9)) = (Ca(z) A Cp(y)) = n.
This implies that C4(z) > n and Cg(y) > n, then x € A,y and y € Byy,). Thus,

(z,y) € Ay X By
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Also, let (x,y) € Apy x Bpy,). Then Ca(x) > n and Cp(y) > n. That is,
(Caw) A Ch(y)) > n.
This yields us (ZZ?, y) S (A X B)[n] Therefore, (A X B)[n] = A[n] X B[n] vn € N. o

Corollary 3.5 Let A € MG(X) and B € MG(Y), respectively. Then for alln € N, (Ax B)" =
Alnl « BIn,

Proof Straightforward from Theorem 3.4. O

Corollary 3.6 Let A€ MG(X) and B € MG(Y), respectively. Then

(i) (A X B)s = Ay X By;
(i) (A x B)* = A* x B*.

Proof Straightforward from Theorem 3.4. |

Theorem 3.7 Let A and B be multigroups of X andY , respectively, then A X B is a multigroup
of X XY.

Proof Let (x,y) € X xY and let x = (z1,22) and y = (y1,y2). We have

Caxp(zy) = Caxs((z1,22)(y1,92))

Caxp((T191, T2y2))

Ca(z1y1) A Cp(22y2)

ANCa(z1) A Ca(y1),Cp(z2) A Cp(y2))
= A(Ca(z1) A CB(22),Calyr) A CB(y2))
= Caxs((21,22)) A Caxs((y1,92))

= Caxp(®) A Caxp(y).

Y

Also,
Caxp(@™') = Caxp((z1,22)7") = Caxp((z7' 251))

= Calzy")ACp(ay ') = Calzr) A Cp(x2)
= Cax((z1,22)) = Caxp(x).

Hence, Ax Be MG(X xY). O

Corollary 3.8 Let A1,B1 € MG(X1) and A, By € MG(X3), respectively such that Ay C By
and As C Bs. If A1 and Az are normal submultigroups of By and Bs, then Ay X As is a normal
submultigroup of By x Ba.

Proof By Theorem 3.7, A; x As is a multigroup of X7 x Xs. Also, By X By is a multigroup
of X7 x Xo. We show that A; x A is a normal submultigroup of By X Bs. Let (z,y) € X1 x X»
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such that = (21, z2) and y = (y1,y2). Then we get

Carxas(zy) = Cayxar((@1,72)(y1,42))
= Ca,xa,((v1y1,7292))
= Ca,(z1y1) A Ca,(22y2)
= Ca,(y171) A Ca,(y222)
= Cayxa,((y121, y222))
= Cayxa,((y1,92)(21,72))
= Cu,xa,(yz).

Hence A; x As is a normal submultigroup of B; x By by Proposition 2.11. O

Theorem 3.9 Let A and B be multigroups of X and Y, respectively. Then

(1) (A x B)y is a subgroup of X xY;
(i1) (A x B)* is a subgroup of X x Y;
(iii) (A X B)),n € Nis a subgroup of X x Y, Vn < Caxp(e,¢');
(iv) (A x B)™ . n € N is a subgroup of X x Y, Vn > Caxp(e,e).

Proof Combining Proposition 2.8, Theorem 2.9 and Theorem 3.7, the results follow. O

Corollary 3.10 Let A,C € MG(X) such that A C C and B,D € MG(Y) such that B C D,

respectively. If A and B are normal, then

(1) (A x B). is a normal subgroup of (C' x D),;
(i1) (A x B)* is a normal subgroup of (C x D)*;
(ii1) (A X B)py,n € N is a normal subgroup of (C' x D)y, Vn < Caxple,e’);
(iv) (A x B)" . n € N is a normal subgroup of (C' x D)™, Vn > Caxpl(e, ).

Proof Combining Proposition 2.8, Theorem 2.9, Theorem 3.7 and Corollary 3.8, the results
follow. a

Proposition 3.11 Let Ae MG(X), Be MG(Y) and Ax B€ MG(X xY). ThenV(x,y) €
X xY, we have

(i) Caxp((z™hy™h) = Caxn((x,y));
(i) Caxp((e,€') = Caxp((z,y));

(731) Caxp((z,y)") > Caxp((z,y)), where e and €’ are the identity elements of X and Y,
respectively and n € N.

Proof Forxz € X, y €Y and (z,y) € X XY, we get

(i) Caxp((@™h,y™) = Calz™") ACB(y™") = Ca(z) A Cr(y) = Caxs((z,y)).
Clearly, Caxp((z71,y™1)) = Caxp((z,y)) V(z,y) € X x Y.
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(i)
Caxp((e,€)) = Caxp((@,y)(@™y™)
> Caxp((z,9) ACaxp((z™ ' y™"))
= Caxs((@,y)) A Caxp((z,y))
= Caxp((z,y)) V(z,y) € X x Y.
Hence, Caxp((e,€')) > Caxp((z,v)).
(iii)
Caxp((z,9)") = Caxs((z"y"))
= Caxp((@" 1y H(a,y)
> Caxp((@" ™1 y" ™) A Caxp((z,y))
> Caxp((@"7,9" ™) A Caxp((z,)) A Caxp((z,y))
> Caxp((#,y)) A Caxp((@,y)) A .. ACaxs((x,y))
Caxs((z,9)),
which implies that Caxp((x,y)") = Caxp((z™,y™)) > Caxp((z,y)) V(z,y) € X x Y. O

Theorem 3.12 Let A and B be multisets of groups X and Y, respectively. Suppose that e and
e’ are the identity elements of X and Y, respectively. If A x B is a multigroup of X x Y, then
at least one of the following statements hold.

(i) Cp(e) > Cy(z)Va € X;
(i1) Cale) > Cpy) Yy € Y.

Proof Let A x B € MG(X xY). By contrapositive, suppose that none of the statements
holds. Then suppose we can find a in X and b in Y such that

Ca(a) > Cp(e') and Cp(b) > Cale).
From these we have

CAxg((a,b)) = CA(a)/\CB(b)
Ca(e) NCg(e")
Caxp((e,e)).

V

Thus, A x B is not a multigroup of X x Y by Proposition 3.11. Hence, either Cp(e’)
Ca(z)Vz € X or Ca(e) > Cp(y) Yy € Y. This completes the proof. O

Y

Theorem 3.13 Let A and B be multisets of groups X and Y, respectively, such that Ca(x) <
Cp(e)Vx € X, € being the identity element of Y. If A X B is a multigroup of X XY, then A
is a multigroup of X .
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Proof Let A x B be a multigroup of X x Y and z,y € X. Then (z,€'),(y,e’) € X x Y.
Now, using the property Cy(x) < Cp(e') Vo € X, we get

Calzy) = Ca(zy) ACp(e)

((z,€)(y.€"))

Caxp((,€) A Caxp((y,€))
NCa(x) NCp(€),Caly) ACp(€))
Ca(x) A Ca(y).

CA><B

AV

Also,
Ca(a™) = Calz™)ACp(™) = Caxp((z™, ™)
CAXB((‘Tv e/)il) = CAXB((xv 6/))
= Ca(z) ANCp(e') = Ca(x).
Hence, A is a multigroup of X. This completes the proof. O

Theorem 3.14 Let A and B be multisets of groups X and Y, respectively, such that Cp(x) <
Ca(e)Va €Y, e being the identity element of X. If A x B is a multigroup of X x Y, then B is
a multigroup of Y.

Proof Similar to Theorem 3.13. O

Corollary 3.15 Let A and B be multisets of groups X and Y, respectively. If A x B is a
multigroup of X XY, then either A is a multigroup of X or B is a multigroup of Y.

Proof Combining Theorems 3.12 — 3.14, the result follows. |

Theorem 3.16 If A and C are conjugate multigroups of a group X, and B and D are conjugate
multigroups of a group Y. Then Ax B € MG(X xY) is a conjugate of C x D € MG(X xY).

Proof Since A and C' are conjugate, it implies that for g1 € X, we have
Ca(z) = Cc(gy 'zgr) Vo € X.
Also, since B and D are conjugate, for go € Y, we get

Cp(y) = Cplg; 'yg2) Vy € Y.
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Now,
Caxp((@,9)) = Cal@) ACo(y) = Colgr'zg1) ACplg yg2)
= Coxp((g1 'zg1), (95 'yg2))
= Cexn((91', 95 )2, 9)(91,92))
= Coxp((g1:92) 7" (2,9)(91,92)).
Hence, Caxp((z,v)) = Coxn((91,92) " (z,vy)(g1,92)). This completes the proof. O

84. Generalized Direct Product of Multigroups

In this section, we defined direct product of k** multigroups and obtain some results which

generalized the results in Section 3.

Definition 4.1 Let Ay, Ao, .-+, Ax be multigroups of X1, Xo, -+, Xk, respectively. Then the
direct product of A1, As, -+, Ak is a function

OA1><A2><---><A;C :X1 X X2 X X Xk — N
defined by
CayxArxxa, (@) = Ca, (v1) AN Cay(z2) Ao ANCay_ (T1-1) A Ca ()

where x = (x1,22, -+ ,Tp—1,Tk), Vr1 € X1,Vae € Xo, -+ Vi € Xi. If we denote Ay, Ag, -+, Ay,
byAl,(l S I),Xl,XQ,'-' , Xk bei,(i S I),A1><A2><-'-><Ak byHi—C:l A; and X1 x Xox- - x Xy,
by Hle X;. Then the direct product of A; is a function

k
OH?:I Ai : HXl - N
i=1

defined by
CH;c:l Ai((xi)iel) = /\iGICAi((fEi)) V{EZ S Xi, I = 1, e ,k.

Unless otherwise specified, it is assumed that X; is a group with identity e; for all i € I,
k
X = Hie[ X, and so e = (e;)icr-

Theorem 4.2 Let Ay, Ag,--- , Ax be multisets of the sets X1, Xa, -+ , Xg, respectively and let
n € N. Then
(Al X A2 X e X Ak)[n] = Al[n] X A2[n] X oo X Ak[n]~

Proof Let (w1, 2, -+ ,x1) € (A1 X Az X - -+ X Ag)[n). From Definition 2.5, we have

CayxAgxxay (1,22, x)) = (Ca, (1) ANCay(x2) A+ ANCa, (21)) > 1.
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This implies that Ca,(z1) > n, Ca,(x2) > n,---,Ca,(xx) > n and 21 € Aypy,), 12 €
AQ[n], e LTk € Ak[n]- Thus, (,Tl,:Eg, s ,.’L‘k) S Al[n] X A2[n] X o X Ak[n]-

Again, let (z1,29, -+ ,2x) € Ay X Agpy) X -+ X Appy). Then x; € Aypyp, fori=1,2,--- K,
Ca,(x1) > n, Cay(x2) > n,---,Ca,(zx) > n. That is,

(Ca, (@1) A Cay(z2) A -+ ACay (1)) 2 N

Implies that
(:El,xg,"- ,Ik) S (A1 X A2 X ... X Ak)[n]

Hence, (Al X Ag X -+ X Ak)[n] = Al[n] X AQ[n] X - X Ak[n] O

Corollary 4.3 Let Ay, Aa,--- , Ag be multisets of the sets X1, Xa,- -+, Xy, respectively and let
n € N. Then

(i) (A x Ag x -+ x Al = Al Al o AEC"];

(19) (A1 X Ag X - X Ap)* = A] X A x -+ X A};

(#92) (A1 X Ag X -+ X Ag)x = A1 X Ao X -+ X Aps.

Proof Straightforward from Theorem 4.2. |

Theorem 4.4 Let Ay, Ag,--- , Ax be multigroups of the groups X1, Xo, -+, Xy, respectively.
Then Ay X Ag X --+ X A is a multigroup of X1 x Xo X -+ X X.

PTOOf Let (Ilaan"' 7'rk)7(y15y27"' ayk) eXl XXQ Koo XX]C' We get

Cayscoxa, (@1, o) (Y, 5 uw))

= Cayxcxa, ((T1Y15 7+ TuYi))

=Cu (zry1) A ANCa, (zryr)

2 (Cay(x1) NCay (Y1) A=+ A(Cay (k) A Ca(yr))

= AMCa, (1), Ca, (1)), -+ s AN(Ca, (zk), Ca, ()

= ANA(Ca, (1), -+, Cay (@), A(Cay (Y1), -+, Ca, (yk)))
= Cayxcoxay (1,5 21)) A Cayxxay, (Y1, 5 yk))-

Also,
OA1><---><A;C((‘T17"' 7xk)71) = CA1><~~~><A1¢((I1_17"' ,1?1;1))
= CAl(wl_l)/\"'/\CAk(xlzl)
= CAl(«Tl)/\"'/\CAk(lUk)
- CA1><"'><A1@((I17"' axk))
Hence, A; X Ay X - -+ X Ay is a multigroup of X7 x Xo x -+ x Xj. O

Corollary 4.5 Let Ay, As, -+, Ay and By, B, -+, By be multigroups of X1, Xs,-+- , Xg, re-
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spectively, such that Ay, As,--+ ,Ar € By,Bs,-++ ,Bg. If A1, As, -+, A are normal submulti-
groups of By, Ba, -+, Bi, then Ay X Ao X -+ X Ay, is a normal submultigroup of By X By X+ - -X By.

Proof By Theorem 4.4, Ay X Ay X --- X Ap is a multigroup of X1, Xo,---, X§. Also,
By X Bg X -+ X By is a multigroup of X1, Xs, -+, Xk.
Let (x1,22, + ,xk), (Y1,Y2, - ,yk) € X1 X X X -+ X Xi. Then we get

Cayscoxap (@, we) (Y, yk) = Cayxeoxa, ((T1yn, - 21yr))
= Ca(ziy1) A A Cay(zyn)
= Ca,(y121) A A Cay (yry)
= Cayxxa (121, yey))

= CA1><~>><A1C((y17"' 7yk)($17"' 7:Ekl))'
Thus, A; X -+ X Ay is a normal submultigroup of By x -+ x By by Proposition 2.11. O

Theorem 4.6 If A1, Ag,--- , Ag are multigroups of X1, Xa, - , Xg, respectively, then

(1) (A1 X Ag X -+ X Ap)s is a subgroup of X1 x Xo X -+ X Xj;

(i1) (A1 X Ag X -+ X Ap)* is a subgroup of X1 X Xo X -+ x Xj;

(ii7) (A1 X Az X - X Ag)n),n € Nois a subgroup of X1 x Xa x -+ x X, Vn < Ca,(er)A
Ca,(e2) N+ NCa,(er);

(iv) (A1 X Ag x -+ x A;C)["],n € N is a subgroup of X1 X Xo X -+ x Xi, Vn>Cyu, (e1)A
Ca,(e2) N+~ NCa,(er).

Proof Combining Proposition 2.8, Theorem 2.9 and Theorem 4.4, the results follow. O

Corollary 4.7 Let Ay, As,--- , A and By, Ba, -+, By be multigroups of X1, Xa,- -+, Xg such
that Ay, Ag,--+ A C By,Bg, -+ ,By. If Ay, Ag, -+ | A are normal submultigroups of B1, Ba,
.-, By, then

(1) (A1 X Ag X -+ X Ag)s is a normal subgroup of (By X Ba X -+ X Bj)x;
(#1) (A1 X Az X -+ X Ap)* is a normal subgroup of (By X By X --- x By)*;

(ii7) (Ay x Ag X --- X Ag)pp,n € N is a normal subgroup of (By X By X -+ X By)),
Vn < Ca(er) ANCay(e2) A+ ANCy, (er);

(iv) (A1 x Ay x --- x Ap)" n € N is a normal subgroup of (By x By x -++ x By)l",

Vn> CAl(el)/\CAz(eg)/\---ACAk(ek).

Proof Combining Proposition 2.8, Theorem 2.9, Theorem 4.4 and Corollary 4.5, the results
follow. a

Theorem 4.8 Let Ay, Ao, -+, Ax and By, Ba, - - , By be multigroups of groups X1, Xo, -+ , Xk,
respectively. If Ay, As,- -+, Ag are conjugate to By, By, - -+ , By, then the multigroup A; x As X
co XAy of X1 xXox- - -x X} is conjugate to the multigroup By X Bo X+ - -X By, of X1 x Xox-+-x Xj.

Proof By Definition 2.12, if multigroup A; of X; conjugates to multigroup B; of X;, then
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exist x; € X; such that for all y; € X,
CAi (yl) = CBZ' (xi_lyixi)ai = 17 27 e 7k'

Then we have

CA1><~>><A1C((y17"' 7yk)) = CA1(y1)/\/\CAk(yk)
= Op, (27 1) A+ A COp, (a0 'yrk)
= Opyxoxn (@] iz, 2 yea)).
This completes the proof. O

Theorem 4.9 Let Ay, Ao, .-+, Ax be multisets of the groups X1, Xs, -+, Xi, respectively. Sup-

pose that ey, ea, - - - , ex are identities elements of X1, Xo, -+, Xi, respectively. If Ay X Agx---X
Ay is a multigroup of X1 X Xo X -+ X Xy, then for at least one i =1,2,--- |k, the statement

OAl XA2><---><A1'71 XAi+1><~~~><Ak((61; 627 Tt ,61'71, e’i+1; tee 7ek)) Z OAI((I’L)); VI’L E X'L
holds.

Proof Let A; x Ag X --+ x Aj, be a multigroup of X; X X X --- x Xj. By contraposition,
suppose that for none of i = 1,2, - - - | k, the statement holds. Then we can find (a1, ag,- - ,ax) €
X1 X Xo x -+ X X}, respectively, such that

OAI((aZ)) > CAl ><A2><~~~><A7;,1><Ai+1><---><Ak((617 €2, ,€i—1,€41," " ;ek))-
Then we have

OAI (al) ARRRNA CAk (ak)

Ca,x-.xa.((ar, - ax))

> CayxeoxAi i x A xoxAg (€1, S €i-1, €541, ,€x))
Ca,(e1) N~ NCa,_,(ei—1) NCapyy(i41) Ao ACa,(er)
Ca,(er) N+ ANCa,ler)

= OA1><---><A,C((€1, ceey ek))

So, A1 x Ag X ... X A is not a multigroup of X7 x Xy x --- x Xj. Hence, for at least one
i=1,2,---,k, the inequality

CA1><~~~><A1',1><A1'+1><---><A;C((617 5 €i—1,6441, ,Ek)) 2 OAI((I'L>)
is satisfied for all z; € X;. O

Theorem 4.10 Let A1, As, -+, Ag be multisets of the groups X1, Xo, - -+ , X, respectively, such
that

Ca,((25) < CayxAgxxAi_1x A x-xAg ((€1,€2, -+ €1, €41, , €k))



14 P.A. Ejegwa and A.M. Ibrahim

Vr; € X;, e; being the identity element of X;. If A1 X As X --- X Ak is a multigroup of
X1 X Xo X -+ x Xy, then A; is a multigroup of X;.
Proof Let Ay x Ay X -+ x A, be a multigroup of X7 x Xo x - x Xy and x;,y; € X;. Then
(€1, ,€im1,Ti €ip1,- - ,ep), (€1, -+ ,€im1,Yis €ip1, - ,ek) € X1 X Xo X --- X Xy

Now, using the given inequality, we have

CAi((xiyi)) = OAi((fEiyi)) A OAlx---xAi,l ><Ai+1><---><Ak((€1, 5 €6i—1,6041, 7€k)
(61, e €1, €01, 7€k))
= Cayxxaixxa,((er, -, xi,ep)(er, - Yi, -, ex))
> Cayxoxagxxay (€1, @iy er)) ACaysxaixxag (€1, 5 Yis o ex))
= ANCa, (i) NCayxeox A,y x Ay x--xAp (€1, seim1, €1,y ex)), Ca, ((yi))
NC A XX Ay x Ay x-x Ay (€1, s €i—1, €41, L €k))

CA'L ((‘TZ)) A CA'L ((yz))

Also,
C -1 - C -1 C -1 -1 -1 -1
Al((xl )) = Al((xl )) A Alx"'XAi—IXAi+1><"'><Ak((el ) 6 1€y s 6 ))
= CA1><>~><A¢><---><A;€((€Ila"' ,l’;l,"' 76121))
= OA1><~--><A7;><---><A;C((617"' s Lyt ;ek)il)
= OA1><~--><A7;><---><A;C((617"' s Lyttt ;ek))
= Ca, (i) NCayxxA_r x Apsrx-x A, (€1, s €im1, €41, -+, €x))
= Ca,((z:)).
Hence, 4; € MG(Xj,). |

Theorem 4.11 Let Ay, Ao, -+, A be multisets of the groups X1, Xo, -+ , Xk, respectively, such
that

OAl XAg XX A;_1 ><A7;+1><-~~><Ak((33173327 oy Li—1, L4100 ,Ik)) < OAi((ei))
forY(xy,xe, + ,xi1,Tiv1, - ,Tk) € X1 X Xo X -+ X Xj—1 X Xj41 X -+ X Xy, e; being the
identity element of X;. If A1 x Ag X -+ X Ay is a multigroup of X1 X Xo X --- X Xk, then
Ay X Ag X X Aj_g X Ajp1 X -+ X Ak is a multigroup of X1 X Xo X -+ X X;-1 X Xjp1 X+ - X Xg.

Proof Let Ay X Ag X -+ x Ag be a multigroup of X7 x Xo X -+ x Xy and (x1,x2, -+, zi—1,
Titly " ,{Ek),(yl,yg,"' s Yi—15Yit1," " ,yk) (S Xl X XQ X - X Xi,1 X XfL'Jrl X o+ X Xk. Then

(:I:la"' y Li—19 €4y Tit1, " 7xk7)7(y17"' yYi—15Ci Yit1, 7yk:) S X?,
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Using the given inequality, we arrive at

Cayxcoox Apyx Avprxox A (T, T, Tagr, 5 Tr) (Y1s o 3 Yie 15 Vit 1 > Yk))
= Cuyxeox Ay x Ay xx A (1, T, T, - Te) (Y, Wi 1, Yig 1o 5 Yk))

/\CAZ((el)) = CA1><~>><A¢><---><A7€((:E17' R P 7xk)(y17. R P 7y/€))

> CayscoxArxx g (1, €y 08)) A Cayxeox Asxox A (15 5 €000 k)
= ANCa, ((€)) NCayxooxA;_y xAssrxox A (T1, - i1, g, k), Ca, ((64))
AC 4y e Ay y x Aipr s A (Y15 Yim 15 Yit 1, 3 Uk))) = CAyxeox Ai_1 x Appy xox Ay,
(1, s Tim1, Tig1, 5 Tk)) A Cayscex Ay x A oo x Ag (U1, Y2, 5 Yim 1, Yid 1, 5 Yk))-
Again,
Cyxoox Ay x A xox Ag (@1 ooy oy )
= CaysexAi s xAvprxex A (@7 oz a2y )) A Ca((e571))
= CAlx»»»XAiX---xAk((«%'l_la e 761_—1, . 755];1))
= Caysx Apscox A (@1, €3y @k) ) = Cay s Ay ety (X150 €5, 0+, ap)
= Cayxx A1 Aisrxox A (X1, T, Tigr, -+, k) A Ca, ((€7))
= CA1><---><A7;,1><A1-+1><---><A;C(($1, oy Ti—1, L4100 ,l“k))-

Hence, A1 x Ay X -+- X A;—1 X Ajy1 X -+- X A is the multigroup of X7 x Xg x -+ x X;_1 X
Xiy1 X - X Xg. O

§5. Homomorphism of Direct Product of Multigroups

In this section, we present some homomorphic properties of direct product of multigroups.
This is an extension of the notion of homomorphism in multigroup setting (cf. [6, 12]) to direct
product of multigroups.

Definition 5.1 Let W x X andY x Z be groups and let f : W x X — Y X Z be a homomorphism.
Suppose Ax Be€ MS(W x X) and C x D € MS(Y x Z), respectively. Then

(i) the image of A x B under f, denoted by f(A x B), is a multiset of Y x Z defined by

\/(w,w)effl((y,z)) OAXB((wvx))v fﬁl((ya Z)) 7£ 0

0, otherwise,

Craxp((y,2) =

for each (y,z) €Y x Z;

(i1) the inverse image of C x D under f, denoted by f~1(C x D), is a multiset of W x X
defined by

Cffl(CxD)((wvx)) = CCXD(][((MVT))) V(w,:E) eWxX.
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Theorem 5.2 Let W, X,Y,Z be groups, A € MS(W),B € MS(X),C € MS(Y) and D €
MS(Z). If f : W x X =Y X Z is a homomorphism, then

(1) f(Ax B) € f(A) x f(B);
(i1) f7H(C x D) = f7H(C) x f71(D).

Proof (i) Let (w,z) € W x X. Suppose 3 (y,2) € Y x Z such that

f((w,2)) = (f(w), f()) = (y, 2)-

Then we get

Craxp)((,2)) = Caxa(f'((y,2))
= Caxs((f'(¥), F1(2))
= Ca(f7' () ACB(fH(2))
= CraW) ACr)(2)
= Crayxrm((y,2))

Hence, we conclude that, f(A x B) C f(A) x f(B).
(#3) For (w,z) € W x X, we have

Cr-1iexp)((w,z)) = Coxp(f((w,z)))
= Coxp((f(w), f(z)))
= Cc(f(w)) ACp(f(z))
(w) A Cp-1(p) ()
= Croyxs—1(p)((w, ).

= Cy1c)

Hence, f~1(C x D) C f~Y(C) x f~YD).

Similarly,

Cr-1icyx 1y (w, ) = Cp-1(cy(w) A Cp-1(p)(2)
= Cc(f(w)) ACp(f(z))
= Coxp((f(w), f(2)))
= Ceoxp(f((w,)))
= Cf*l(CxD)((wa))-

Again, f~1(C) x f~Y(D) C f~1(C x D). Therefore, the result follows. O

Theorem 5.3 Let f: W x X =Y X Z be an isomorphism, A, B,C and D be multigroups of
W, X,Y and Z, respectively. Then the following statements hold:

(i) f(Ax B) e MG(Y x Z);

(ii) f~HC) x f~YD) € MG(W x X).
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Proof (i) Since A € MG(W) and B € MG(X), then A x B € MG(W x X) by Theorem
3.7. From Proposition 2.14 and Definition 5.1, it follows that, f(A x B) € MG(Y x Z).

(7¢) Combining Corollary 2.15, Theorem 3.7, Definition 5.1 and Theorem 5.2, the result
follows. O

Corollary 5.4 Let X andY be groups, A € MG(X) and B € MG(Y). If
f:XxX->Y XY

be homomorphism, then

(i) f(Ax A) € MG(Y x Y);
(i5) f~1(B x B) € MG(X x X).

Proof Straightforward from Theorem 5.3. |
Proposition 5.5 Let X1, Xs, -+, X, and Y1,Ys,--- Yy be groups, and
f:XixXox - x X >V xYox- - XY
be homomorphism. If Ay X Ag X -+ x Ay, € MG(X1 x Xo X -+ x X}) and By X B X --- X By, €
MG(Yy x Yo x - x Yy), then
(1) f(AL x Ag x -+ x A) € MG(Y1 x Y2 X -+ x Y3,);
(ii) f7Y(B1 x Ba X -+» x Bg) € MG(X1 x X2 X -++ X Xj).

Proof Straightforward from Corollary 5.4. |

§6. Conclusions

The concept of direct product in groups setting has been extended to multigroups. We lucidly
exemplified direct product of multigroups and deduced several results. The notion of generalized
direct product of multigroups was also introduced in the case of finitely £** multigroups. Finally,
homomorphism and some of its properties were proposed in the context of direct product of
multigroups.
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