Path Related n-Cap Cordial Graphs

A. Nellai Murugan
(Department of Mathematics, V.O.Chidambaram College, Tamil Nadu, India)

P. Iyadurai Selvaraj
(Department of Computer Science, V.O.Chidambaram College, Tamil Nadu, India)

E-mail: anellai.vocc@gmail.com, iyaduraiselvaraj@gmail.com

Abstract: Let $G = (V, E)$ be a graph with p vertices and q edges. A n-cap (∇) cordial labeling of a graph G with vertex set V is a bijection from V to $\{0, 1\}$ such that if each edge uv is assigned the label

$$f(uv) = \begin{cases} 0, & \text{if } f(u) = f(v) = 1 \\ 1, & \text{otherwise.} \end{cases}$$

with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. The graph that admits a n-cap (∇) cordial labeling is called a n-cap (∇) cordial graph $(nCCG)$. In this paper, we proved that Path P_n, Comb $(P_n \odot K_1)$, $P_m \odot 2K_1$ and Fan $(F_n = P_n + K_1)$ are n-cap (∇) cordial graphs.

Key Words: n-cap (∇) cordial labeling, Smarandachely cordial labeling, n-cap (∇) cordial labeling graph.

AMS(2010): 05C78.

§1. Introduction

A graph G is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G which is called edges. Each pair $e = \{uv\}$ of vertices in E is called an edge or a line of G. In this paper, we proved that Path P_n, Comb $(P_n \odot K_1)$, $P_m \odot 2K_1$ and Fan $(F_n = P_n + K_1)$ are n-cap (∇) cordial graphs.

§2. Preliminaries

Let $G = (V, E)$ be a graph with p vertices and q edges. A n-cap (∇) cordial labeling of a graph G with vertex set V is a bijection from V to $\{0, 1\}$ such that if each edge uv is assigned the
label

\[f(uv) = \begin{cases}
0, & \text{if } f(u) = f(v) = 1 \\
1, & \text{otherwise.}
\end{cases} \]

with the condition that the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1, and it is said to be a Smarandachely cordial labeling if the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at least 1 and the number of edges labeled with 0 or the number of edges labeled with 1 differ by at least 1.

The graph that admits a \(\bigwedge \) cordial labeling is called a \(\bigwedge \) cordial graph. We proved that Path \(P_n \), Comb \((P_n \odot K_1) \), \(P_m \odot 2K_1 \) and Fan \((F_n = P_n + K_1) \) are \(\bigwedge \) cordial graphs.

Definition 2.1 A path is a graph with sequence of vertices \(u_1, u_2, \cdots, u_n \) such that successive vertices are joined with an edge, denoted by \(P_n \), which is a path of length \(n - 1 \).

A closed path of length \(n \) is cycle \(C_n \).

Definition 2.2 A comb is a graph obtained from a path \(P_n \) by joining a pendent vertex to each vertices of \(P_n \), it is denoted by \(P_n \odot K_1 \).

Definition 2.3 A graph obtained from a path \(P_m \) by joining two pendent vertices at each vertices of \(P_m \) is denoted by \(P_m \odot 2K_1 \).

Definition 2.4 A fan is a graph obtained from a path \(P_n \) by joining each vertices of \(P_n \) to a pendent vertex, it is denoted by \(F_n = P_n + K_1 \).

§3. Main Results

Theorem 3.1 A path \(P_n \) is a \(\bigwedge \) cordial graph

Proof Let \(V(P_n) = \{u_i : 1 \leq i \leq n\} \) and \(E(P_n) = \{u_iu_{i+1} : 1 \leq i \leq n - 1\} \) Define \(f : V(P_n) \to \{0, 1\} \) with the vertex labeling determined following.

Case 1. \(n \) is odd.

Define

\[f(u_i) = \begin{cases}
0, & 1 \leq i \leq \frac{n-1}{2}, \\
1, & \frac{n+1}{2} \leq i \leq n.
\end{cases} \]

The induced edge labeling are

\[f^*(u_iu_{i+1}) = \begin{cases}
1, & 1 \leq i \leq \frac{n}{2}, \\
0, & \frac{n}{2} \leq i \leq n.
\end{cases} \]

Here \(V_0(f) + 1 = V_1(f) \) and \(e_0(f) = e_1(f) \). Clearly, it satisfies the condition \(|V_0(f) - V_1(f)| \leq 1 \) and \(|e_0(f) - e_1(f)| \leq 1 \).
Case 2. \(n \) is even.

Define
\[
f(u_i) = \begin{cases}
0, & 1 \leq i \leq \frac{n}{2}, \\
1, & \frac{n}{2} + 1 \leq i \leq n.
\end{cases}
\]

The induced edge labeling are
\[
f^*(u_iu_{i+1}) = \begin{cases}
1, & 1 \leq i \leq \frac{n}{2}, \\
0, & \frac{n}{2} + 1 \leq i \leq n.
\end{cases}
\]

Here \(V_0(f) = V_1(f) \) and \(e_0(f) + 1 = e_1(f) \) which satisfies the condition \(|V_0(f) - V_1(f)| \leq 1 \) and \(|e_0(f) - e_1(f)| \leq 1 \). Hence, a path \(P_n \) is a cordial graph. \(\square \)

For example, \(P_5 \) and \(P_6 \) are cordial graph shown in the Figure 1.

![Figure 1](image)

\[\text{Figure 1}\]

Theorem 3.2 A comb \(P_n \odot K_1 \) is a cordial graph

Proof Let \(G \) be a comb \(P_n \odot K_1 \) and let \(V(G) = \{(u_i, v_i) : 1 \leq i \leq n\} \) and \(E(G) = \{[(u_iu_{i+1}) : 1 \leq i \leq n-1]\} \cup [(u_iv_i) : 1 \leq i \leq n]\} \). Define \(f : V(G) \to \{0,1\} \) with a vertex labeling
\[
f(u_i) = 1, \ 1 \leq i \leq n,
\]
\[
f(v_i) = 0, \ 1 \leq i \leq n.
\]

The induced edge labeling are
\[
f^*(u_iu_{i+1}) = 1, \ 1 \leq i < n,
\]
\[
f^*(u_iv_i) = 0, \ 1 \leq i \leq n.
\]

Here \(V_0(f) = V_1(f) \) and \(e_0(f) = e_1(f) + 1 \) which satisfies the condition \(|V_0(f) - V_1(f)| \leq 1 \) and \(|e_0(f) - e_1(f)| \leq 1 \). Hence, a comb \(P_n \odot K_1 \) is a cordial graph. \(\square \)

For example, \(P_5 \odot K_1 \) is a cordial graph shown in Figure 2.
Theorem 3.3 A graph $P_m \odot 2K_1$ is a cordial graph.

Proof Let G be a $P_m \odot 2K_1$ with $V(G) = \{u_i, v_{1i}, v_{2i}, 1 \leq i \leq n\}$ and $E(G) = \{(u_iu_{i+1}) : 1 \leq i < n\} \cup \{(u_iv_{1i}) : 1 \leq i \leq n\} \cup \{(u_iv_{2i}) : 1 \leq i \leq n\}$. Define $f : V(C_n) \to \{0, 1\}$ by a vertex labeling $f(u_i) = \{1, 1 \leq i \leq n\}$, $f(v_{1i}) = \{0, 1 \leq i \leq n\}$ and if n is even,

$$f(v_{2i}) = \begin{cases} 1, & 1 \leq i \leq \frac{n}{2}, \\ 0, & \frac{n}{2} + 1 \leq i \leq n, \end{cases}$$

if n is odd

$$f(v_{2i}) = \begin{cases} 1, & 1 \leq i \leq \frac{n+1}{2}, \\ 0, & \frac{n+1}{2} + 1 \leq i \leq n. \end{cases}$$

The induced edge labeling are

$$f^*(u_iu_{i+1}) = \{0, 1 \leq i \leq n\},$$
$$f^*(u_iv_{1i}) = \{1, 1 \leq i \leq n\}$$

and if n is even

$$f^*(u_iv_{2i}) = \begin{cases} 0, & 1 \leq i \leq \frac{n}{2}, \\ 1, & \frac{n}{2} + 1 \leq i \leq n. \end{cases}$$

Here $V_0(f) = V_1(f)$ and $e_0(f) + 1 = e_1(f)$ which satisfies the condition $|V_0(f) - V_1(f)| \leq 1$ and $|e_0(f) - e_1(f)| \leq 1$, and if n is odd

$$f^*(u_iv_{2i}) = \begin{cases} 0, & 1 \leq i \leq \frac{n+1}{2}, \\ 1, & \frac{n+1}{2} + 1 \leq i \leq n. \end{cases}$$

Here $V_0(f) + 1 = V_1(f)$ and $e_0(f) = e_1(f)$ which satisfies the condition $|V_0(f) - V_1(f)| \leq 1$ and $|e_0(f) - e_1(f)| \leq 1$. Hence, $P_m \odot 2K_1$ is a cordial graph. \qed

For example, $P_5 \odot 2K_1$ is a cordial graph shown in the Figures 3.
Theorem 3.4 A fan $F_n = P_n + K_1$ is a \bigwedge cordial graph if n is even.

Proof Let G be a fan $F_n = P_n + K_1$ and n is even with $V(G) = \{u, v_i : 1 \leq i \leq n\}$ and $E(G) = \{(u, v_i) : 1 \leq i \leq n\}$. Define $f : V(G) \to \{0, 1\}$ with a vertex labeling $f(u) = \{1\}$ and

$$f(v_i) = \begin{cases} 1, & 1 \leq i \leq \frac{n}{2}, \\ 0, & \frac{n}{2} + 1 \leq i \leq n. \end{cases}$$

The induced edge labeling are

$$f^*(uv_i) = \begin{cases} 0, & 1 \leq i \leq \frac{n}{2}, \\ 1, & \frac{n}{2} + 1 \leq i \leq n, \end{cases} \quad \text{and} \quad f^*(v_iv_{i+1}) = \begin{cases} 0, & 1 \leq i \leq \frac{n}{2}, \\ 1, & \frac{n}{2} \leq i \leq n. \end{cases}$$

Here $V_0(f) + 1 = V_1(f)$ and $e_0(f) + 1 = e_1(f)$ which satisfies the conditions $|V_0(f) - V_1(f)| \leq 1$ and $|e_0(f) - e_1(f)| \leq 1$. Hence, a fan $F_n = P_n + K_1$ is a \bigwedge cordial graph if n is even. \qed

For example, a fan $F_6 = P_6 + K_1$ is \bigwedge cordial shown in Figure 4.
References

