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81. Introduction

Hamilton started the study of Ricci flow [12] in 1982 and proved its existence. This concept
was developed to answer Thurston’s geometric conjecture which says that each closed three
manifold admits a geometric decomposition. Hamilton also [11]classified all compact manifolds
with positive curvature operator in dimension four. Since then, the Ricci flow has become a
powerful tool for the study of Riemannian manifolds, especially for those manifolds with positive
curvature. Perelman also did an excellent work on Ricci flow [15], [16].

The Ricci flow equation is given by

99 _

o = 25 (1.1)

on a compact Riemannian manifold M with Riemannian metric g. A solution to the Ricci
flow is called a Ricci soliton if it moves only by a one-parameter group of diffeomorphism and
scaling.Ramesh Sharma [18], M. M. Tripathi [19], Bejan, Crasmareanu [4]studied Ricci soliton

in contact metric manifolds also. The Ricci soliton equation is given by
£xg9+25+2\g =0, (1.2)

where £ x is the Lie derivative, S is Ricci tensor, g is Riemannian metric, X is a vector field

and A is a scalar. The Ricci soliton is said to be shrinking, steady and expanding according as
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) is negative, zero and positive respectively.

In 2005, A.E. Fischer [10] introduced the concept of conformal Ricci flow which is a variation
of the classical Ricci flow equation. In classical Ricci flow equation the unit volume constraint
plays an important role but in conformal Ricci flow equation scalar curvature R is considered
as constraint. Since the conformal geometry plays an important role to constrain the scalar
curvature and the equations are the vector field sum of a conformal flow equation and a Ricci
flow equation, the resulting equations are named as the conformal Ricci flow equations. The
conformal Ricci flow equation on M where M is considered as a smooth closed connected

oriented n-manifold(n > 3), is defined by the equation [10]

dg g

—Z 19 Ly =— 1.

2t +2(5+ n) g (1.3)
and r = —1, where p is a scalar non-dynamical field(time dependent scalar field), r is the scalar

curvature of the manifold and n is the dimension of manifold.

In 2015, N. Basu and A. Bhattacharyya [3] introduced the notion of conformal Ricei soliton

and the equation is as follows
2
£xg+25=22—(p+ E)]g (1.4)

The equation is the generalization of the Ricci soliton equation and it also satisfies the conformal

Ricci flow equation.

An almost contact metric structure (¢, &, 7, g) on a manifold M is called a trans-Sasakian
structure [14] if the product manifold belongs to the class Wy where Wy is a class of Hermitian
manifolds which are closely related to locally conformal Kaehler manifolds [6]. A trans-Sasakian
structure of type (0,0), (0, 8) and («, 0) are cosymplectic [5], —Kenmotsu [13], and a—Sasakian
[13], respectively.

82. Preliminaries

A differentiable manifold of dimension n is called Lorentzian Kenmotsu manifold [2] if it admits
a (1,1) tensor field ¢, a covarient vector field &, a 1-form 7 and Lorentzian metric g which

satisfy on M respectively such that

P*X = X +n(X)E,9(X,€) = n(X), (2.1)
9(¢X,9Y) = g(X,Y) + n(X)n(Y), (2.3)

for all X,Y € x(M).

If Lorentzian Kenmotsu manifold M satisfies

Vx§ = BIX = n(X)E], (Vx @)Y = B(g(¢X,Y)E — n(Y)9X), (2.4)
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(Vxn)Y =ag(¢X,Y), (2.5)
where V denotes the operator of covariant differentiation with respect to the Lorentzian metric

g. Then the manifold M is called Lorentzian f—Kenmotsu manifold.

Furthermore, on an Lorentzian -Kenmotsu manifold M the following relations hold [1],
[17]:

N(R(X,Y)Z) = F*[g(X, Z)n(Y) - g(Y, Z)n(X)], (26)
R(&, X)Y = F[n(Y)X - g(X,Y)], (2.7)
R(X,Y)¢ = B*[n(X)Y —n(Y)X], (2.8)
S(X,€) = —(n—-1)Fn(X), (2.9)

Q¢ = —(n—1)p%, (2.10)

S(&,€) = (n— 1B, (2.11)

where ( is some constant, R is the Riemannian curvature tensor, .S is the Ricci tensor and @
is the Ricci operator given by S(X,Y) = ¢(QX,Y) for all X, Y € x(M).

Now from definition of Lie derivative we have

(£eg)(X,Y) = (Veg)(X,Y)+g(BIX —n(X)e,Y) +g(X, BY — n(Y)e))
— 289(X,Y) - 26(X)n(Y). (2.12)

Applying Ricci soliton equation (1.2) in (2.12) we get

S(XY) = 5[-22g(X,Y)] - 2269(X,Y) ~ 28n(X)n(¥)]
= —MX,Y) = Bg(X,Y) + Bn(X)n(Y)
= AQ(XJ Y) + Bn(X)n(Y), (2.13)

where A = (—\ — ), which shows that the manifold is 7-Einstein.

Also
QX = AX + pn(X)e, (2.14)
S(X,6) = (A+ B)m(X) = An(X). (2.15)

If we put X =Y =¢; in (2.13) where {e;} is the orthonormal basis of the tangent space
TM where T M is a tangent bundle of M and summing over 4, we get

R(g) = An + 3.

Proposition 2.1 A Lorentzian (-Kenmotsu manifold admitting Ricci soliton is n-FEinstein.
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Again applying conformal Ricci soliton (1.4) in (2.12) we get

SOXLY) = ZA - (-t Dlo(X,Y) — 2[209(X,Y) ~ 25m(X)n(Y)]
= Bg(X,Y)+ Bn(X)n(Y), (2.16)
where
.1 2
B=3lA-(p+2)] -5, (27)
which also shows that the manifold is 7-Einstein.
Also
QX = BX + pn(X), (2.18)
S(X,€) = (B+B)n(X) = Bn(X). (2.19)

If we put X =Y =¢; in (2.16) where {e;} is the orthonormal basis of the tangent space
TM where TM is a tangent bundle of M and summing over i, we get

T:Bn—l—ﬂ.

For conformal Ricci soliton r(g) = —1. So
—1=Bn+ 1)

which gives B = 1(—g—1).
Comparing the values of B from (2.17) with the above equation we get

A= 2 (Bn—1) = 1)+ 3o+ )

Proposition 2.2 A Lorentzian B-Kenmotsu manifold admitting conformal Ricci soliton is

n-Einstein and the value of the scalar

A= (B —1) =~ 1)+ 3o+ ).

83. Lorentzian $-Kenmotsu Manifold Admitting Ricci
Soliton, Conformal Ricci Soliton and R(¢, X).C = 0

Let M be a n dimensional Lorentzian $-Kenmotsu manifold admitting Ricci soliton (g, V, A).

Quasi conformal curvature tensor C' on M is defined by

C(X.Y)Z = aR(X,Y)Z+b[S(Y,2)X — S(X,2)Y +g(Y, 2)QX — g(X, Z)QY]

g5y +20(Y.2)X — (X, 2)Y), (3.1)

where r is scalar curvature.
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Putting Z = £ in (3.1) we have

C(X,Y)¢ = aR(X,Y)E+D[S(YV,)X — S(X, &Y +g(V,£)QX — g(X, QY]

~lrrgllgs 2. OX —g(X.OY]. (3.2)

Using (2.1), (2.8),(2.14), (2.15) in (3.2) we get

CXY)E = [~af® + Ab+ Ab — [ T+ g + 20 ((Y)X = n(X)Y).
Let
D =—aB®+ Ab+ Ab— [2n:— 1][% + 28],
so we have
C(X,Y)é = D(n(Y)X —n(X)Y). (3.3)
Taking inner product with Z in (3.3) we get
—n(C(X,Y)Z) = D[n(Y)g(X, Z) = n(X)g(Y, Z)]. (3.4)

Now we consider that the Lorentzian 8-Kenmotsu manifold M which admits Ricci soliton

is quasi conformally semi symmetric i.e. R(§, X )C’ = 0 holds in M, which implies
R(§, X)(C(Y, Z2)W) = C(R(E, X)Y, Z)W — C(Y, R(§, X) )W = C(Y, Z)R(§, X)W =0, (3.5)

for all vector fields X,Y, Z, W on M.

Using (2.7) in (3.5) and putting W = £ we get

n(C(Y,2)6)X — g(X,C(Y, 2)§)¢ = n(Y)C(X, )6+ g(X,Y)C (&, Z)¢
—n(Z)C(Y, X)€ + g(X, Z)C(Y, )& — n(€)C(Y, 2)X + g(X,)C(Y, Z)¢ = (3.6)

Taking inner product with £ in (3.6) and using (2.2), (3.3) we obtain
9(X, C(Y, 2)8) + n(C(Y, 2)X) = 0. (37)
Putting Z = ¢ in (3.7) and using (3.3) we get
—Dg(X,Y) = Dn(X)n(Y) +n(C(Y,Z)X) = 0. (3.8)
Now from (3.1) we can write

C(Y, )X = aR(Y,§)X +b[S(X)Y =SV, X))+ g(£, X)QY — g(Y, X)Q¢]

gl + 2la(E X)Y — (¥, X)), (3.9)
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Taking inner product with £ and using (2.2), (2.7),(2.9),(2.10) in (3.9) we get

n(CY,)X) = an(B(9(X,Y)é = n(X)Y) +b[An(X)n(Y) + S(X,Y) +n(X)(An(Y)
=Bn(Y) = 9(X.Y) (= A+ 8)] =[5l + 20X (V) + (X, V).
After a long simplification we have
HC.OX) = g(X,Y)[Ab— b5 —af” - [l + 20]
(X )n(Y)[24b — aB? — | 2n’”+ 1][% + 2] + bS(X, Y). (3.10)
Putting (3.10) in (3.5) we get
pg(X,Y) +on(X)n(Y) = S(X,Y), (3.11)
where )
p=7ID+bf+af — Ab+ [%Z -l + 2]
and .
o=3[D+ a3 —2Ab + 5 - Tll5, + 200

So from (3.11) we conclude that the manifold becomes n-Einstein manifold. Thus we can

write the following theorem:

Theorem 3.1 If a Lorentzian (3-Kenmotsu manifold admits Ricci soliton and is quasi confor-
mally semi symmetric i.e. R(§,X).C’ = 0, then the manifold is n-Einstein manifold where C
is quasi conformal curvature tensor and R(E, X) is derivation of tensor algebra of the tangent
space of the manifold.

If a Lorentzian (-Kenmotsu manifold admits conformal Ricci soliton then after a brief
calculation we can also establish that the manifold becomes 7n-Einstein, only the values of

constants p, o will be changed which would not hamper our main result.

Hence we can state the following theorem:

Theorem 3.2 A Lorentzian (3-Kenmotsu manifold admitting conformal Ricci soliton and is
quasi conformally semi symmetric i.e. R(E, X)C' = 0, then the manifold is n-Finstein manifold
where C is quasi conformal curvature tensor and R(§, X) is derivation of tensor algebra of the

tangent space of the manifold.

84. Lorentzian f-Kenmotsu Manifold Admitting Ricci
Soliton, Conformal Ricci Soliton and R(§,X).S =0

Let M be a n dimensional Lorentzian S-Kenmotsu manifold admitting Ricci soliton (g, V; ).
Now we consider that the tensor derivative of S by R(¢, X) is zero i.e. R(¢,X).S = 0. Then the
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Lorentzian 3-Kenmotsu manifold admitting Ricci soliton is Ricci semi symmetric which implies
S(R(& X)Y, Z) + S(Y, R(¢, X)Z) = 0. (4.1)
Using (2.13) in (4.1) we get
Ag(R(&, X)Y, Z) + Bn(R($, X)Y)n(2) + Ag(Y, R(&, X)Z) + Bn(Y )n(R(¢, X)Z) = 0. (4.2)
Using (2.7) in (4.2) we get
Ag(BPIn(YV)X — g(X,Y)E], Z) + Ag(Y, B2 [n(2)X — g(X, Z)€]) + An(B*m(Y) X —

9(X, Y)E)n(Z) + Bn(Y )n(B*[n(Z2)X - 9(X, Z)€]) = 0. (4.3)

Using (2.2) in (4.3) we have

AB*n(YV)g(X,Z) — AB*n(2)9(X,Y) + AB*n(Z)g(X,Y) — AB*n(Y)g(X, Z)
+8 (Y IM(X)n(Z) + Bg(X,Y)n(Z) + B2n(Y )n(X)n(Z) + B°9(X, Z)n(Y) = 0. (4.4)

Putting Z = £ in (4.4) and using (2.2) we obtain
9(X,Y) = —n(X)n(Y).
Hence we can state the following theorem:

Theorem 4.1 If a Lorentzian 3-Kenmotsu manifold admits Ricci soliton and is Ricci semi
symmetric i.e. R(&,X).S =0, then g(X,Y) = —n(X)n(Y) where S is Ricci tensor and R(&, X)

is derivation of tensor algebra of the tangent space of the manifold.

If a Lorentzian §-Kenmotsu manifold admits conformal Ricci soliton then by similar cal-

culation we can obtain the same result. Hence we can state the following theorem:
Theorem 4.2 A Lorentzian B-Kenmotsu manifold admitting conformal Ricci soliton and is

Ricci semi symmetric i.e. R(§,X).S =0, then g(X,Y) = —n(X)n(Y) where S is Ricci tensor
and R(&, X) is derivation of tensor algebra of the tangent space of the manifold.

85. Lorentzian $-Kenmotsu Manifold Admitting Ricci
Soliton, Conformal Ricci Soliton and R(¢, X).P =0

Let M be a n dimensional Lorentzian S-Kenmotsu manifold admitting Ricci soliton (g, V; ).
The projective curvature tensor P on M is defined by

P(X,Y)Z = R(X,Y)Z — %[S(Y, Z)X — S(X, 2)Y]. (5.1)

Here we consider that the manifold is projectively semi symmetric i.e. R(§, X).P = 0 holds.
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So
R X)(P(Y,Z)W) — P(R(,X)Y,Z)W — P(Y,R(&, X)Z)W — P(Y,Z)R({, X)W =0, (5.2)

for all vector fields X,Y, Z, W on M.
Using (2.7) and putting Z = £ in (5.2) we have

n(P(Y, W)X — g(X, P(Y,)W)§ —n(Y)P(X, )W + g(X,Y)P(§, W
—n(E)PY, X)W + g(X, ) P(Y, W — n(W)P(Y,£)X + g(X, W)P(Y, )¢ = 0. (5.3)

Now from (5.1) we can write
P(X,§)7 = R(X,)7 — ——[S(6, )X ~ S(X, 2)¢]. 4)

Using (2.7),(2.15) in (5.4) we get

P(X.07 = F9(X, 2)6 + —=S(X, 2)6 + (-2 — Fn(Z)X. 55

Putting (5.5) and W = ¢ in (5.3) and after a long calculation we get

A A
LS(XV)E+ (o b (XY — (XY

—(% A mY)X =0. (5.6)

Taking inner product with £ in (5.6) we obtain

which clearly shows that the manifold in an Einstein manifold.

Thus we can conclude the following theorem:

Theorem 5.1 If a Lorentzian (B-Kenmotsu manifold admits Ricci soliton and is projectively
semi symmetric i.e. R(§,X).P =0 holds, then the manifold is an Einstein manifold where P
is projective curvature tensor and R(&, X) is derivation of tensor algebra of the tangent space

of the manifold.

If a Lorentzian S-Kenmotsu manifold admits conformal Ricci soliton then using the same
calculation we can obtain similar result, only the value of constant A will be changed which

would not hamper our main result. Hence we can state the following theorem:

Theorem 5.2 A Lorentzian (3-Kenmotsu manifold admitting conformal Ricci soliton and is
projectively semi symmetric i.e. R(§, X).P = 0 holds, then the manifold is an Einstein manifold
where P is projective curvature tensor and R(£, X) is derivation of tensor algebra of the tangent
space of the manifold.
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86. Lorentzian $-Kenmotsu Manifold Admitting Ricci

Soliton, Conformal Ricci Soliton and R(¢, X)P =0

Let M be a n dimensional Lorentzian 3-Kenmotsu manifold admitting Ricci soliton (g, V, A).

The pseudo projective curvature tensor P on M is defined by

P(X,Y)Z = aR(X,Y)Z + b[S(Y, Z)X — S(X, Z)Y]

T a

-

nn-—1

+bg(Y,2)X — g(X, Z)Y]. (6.1)

Here we consider that the manifold is pseudo projectively semi symmetric i.e. R(¢,X).P =0
holds.

So
R(&,X)(P(Y,Z)W) — P(R(§, X)Y, Z)W — P(Y,R(&, X)Z)W — P(Y, Z)R(¢£, X)W =0, (6.2)
for all vector fields X, Y, Z, W on M.
Using (2.7) and putting W = £ in (6.2) we have
n(P(Y, 2)§)X — (X, P(Y, Z)€)¢ = n(Y)P(X, Z)¢ + g(X,Y)P(&, Z)¢

—n(Z)P(Y, X)§ + g(X, Z)P(Y,€)€ = n(§)P(Y, 2)X + n(X)P(Y, Z)§ = 0. (6.3)
Now from (6.1) we can write

~ r a

P(X,Y)E = aR(X, V) +HS(Y, )X — S(X, Y] + -]

T T Ollg(Y X —g(X, Y] (6.4)

Using (2.1),(2.8),(2.15) in (6.4) and after a long calculation we get

P(X,Y)E = o(n(X)Y —0(Y)X), (6.5)

where ¢ = (a? — Ab — L[ 4+ b]).
Using (6.5) and putting Z = £ in (6.3) we obtain
P(Y, )X + on(X)Y — ¢g(X,Y)¢ = 0. (6.6)
Taking inner product with £ in (6.6) we get

n(P(Y,6)X) +en(X)n(Y) — pg(X,Y) =0. (6.7)

Again from (6.1) we can write

P(X,6)Z = a(X,)Z +[S(&, )X — S(X, 2)¢] + - [-——

+0][9(§, 2)X — g(X, Z)¢]. (6.8)
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Using (2.1), (2.7), (2.15) in (6.8) we get

P(X,8)Z = af?[g(X, 2)¢ — n(2)X] + b[An(Z) X — S(X, Z)¢]

r

+—I

Taking inner product with ¢ and replacing X by Y, Z by X in (6.9) we have

+0][9(§, 2)X — g(X, Z)g]. (6.9)

n'n—1

n(P(Y,€)X) = af?[-g(X,Y) = n(X)n(Y)] + [An(X)n(Y) + S(X,Y)]+

i[a

nn-—1

+ 0l [n(X)n(Y) — g(X, V). (6.10)

Using (6.10) in (6.7) and after a brief simplification we obtain

S(X,)Y)=Tg(X,Y)+ Un(X)n(y), (6.11)

where T' = —3[—af? — Z[=%5 + b] — ¢] and U = —3[p + Z[-%5 + b] + Ab — a?].

n n—1
From (6.11) we can conclude that the manifold is n-Einstein. Thus we have the following
theorem:

Theorem 6.1 If a Lorentzian (B-Kenmotsu manifold admits Ricci soliton and is pseudo pro-
jectively semi symmetric i.e. R({,X).I:’ = 0 holds, then the manifold is n FEinstein manifold
where P is pseudo projective curvature tensor and R(&, X) is derivation of tensor algebra of the

tangent space of the manifold.

If a Lorentzian §-Kenmotsu manifold admits conformal Ricci soliton then by following the
same calculation we would obtain the same result, only the constant value of T" and U will be

changed. Hence we can state the following theorem:

Theorem 6.2 A Lorentzian (-Kenmotsu manifold admitting conformal Ricci soliton and is
pseudo projectively semi symmetric i.e. R(E, X)l6 = 0 holds, then the manifold is 1 Einstein
manifold where P is pseudo projective curvature tensor and R(¢,X) is derivation of tensor

algebra of the tangent space of the manifold.

§7. An Example of a 3-Dimensional Lorentzian $-Kenmotsu Manifold

In this section we construct an example of a 3-dimensional Lorentzian 8-kenmotsu manifold.To
construct this, we consider the three dimensional manifold M = {(z,y,2) € R®: z # 0} where
(z,y, z) are the standard coordinates in R®. The vector fields

z

e —,e3 =€ "—

%,82: By

el =e

are linearly independent at each point of M.



Ricci Soliton and Conformal Ricci Soliton in Lorentzian (3-Kenmotsu Manifold 11

Let g be the Lorentzian metric defined by
glei,e1) = 1,g(ez,e2) = 1,g(e3, e3) = —1,
gle1,e2) = g(ez, e3) = g(es, e1) = 0.
Let n be the 1-form which satisfies the relation
n(es) = —1.

Let ¢ be the (1,1) tensor field defined by ¢(e1) = —ea, ¢(e2) = —e1, d(ez) = 0. Then we

have

0*(Z2) = Z +n(Z)es,
9(dZ, W) = g(Z,W) +n(Z)n(W)

for any Z, W € x(M?3). Thus for e3 = &, (¢,£,n, g) defines an almost contact metric structure

on M. Now, after calculating we have
le1,e3] = e %eq, [e1,e2] =0, [e2, e3] = e Zea.
The Riemannian connection V of the metric is given by the Koszul’s formula which is
20(VxY,2)=Xg(Y,Z)+Yg(Z,X) - Zg(X,Y)
—9(X, [V, Z]) = g(Y, [X, Z]) + 9(Z, [X, Y]). (7.1)
By Koszul’s formula we get
Ve,e1 =€ “e3,Ve,e1 =0,Ve,e1 =0,
Ve, €2 =0,Ve,e0="‘e “e3, Ve,ea =0,

—Zz —Z
Ve, e3 =€ “e1,Ve,e3 =€ ey, Ve,e3 =0.

From the above we have found that 3 = e~* and it can be easily shown that M3(¢,&,n, g)
is a Lorentzian (-kenmotsu manifold. The results established in this note can be verified on

this manifold.
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