Ricci Soliton and Conformal Ricci Soliton in Lorentzian β-Kenmotsu Manifold

Tamalika Dutta
(Department of Mathematics, Jadavpur University, Kolkata-700032, India)

Arindam Bhattacharyya
(Department of Mathematics, Jadavpur University, Kolkata-700032, India)

E-mail: tamalika.bagnan@gmail.com, bhattachar1968@yahoo.co.in

Abstract: In this paper we have studied quasi conformal curvature tensor, Ricci tensor, projective curvature tensor, pseudo projective curvature tensor in Lorentzian β-Kenmotsu manifold admitting Ricci soliton and conformal Ricci soliton.

Key Words: Trans-Sasakian manifold, β-Kenmotsu manifold, Lorentzian β-Kenmotsu manifold, Ricci soliton, conformal Ricci flow.

§1. Introduction

Hamilton started the study of Ricci flow [12] in 1982 and proved its existence. This concept was developed to answer Thurston’s geometric conjecture which says that each closed three manifold admits a geometric decomposition. Hamilton also [11] classified all compact manifolds with positive curvature operator in dimension four. Since then, the Ricci flow has become a powerful tool for the study of Riemannian manifolds, especially for those manifolds with positive curvature. Perelman also did an excellent work on Ricci flow [15], [16].

The Ricci flow equation is given by

$$\frac{\partial g}{\partial t} = -2S$$

on a compact Riemannian manifold M with Riemannian metric g. A solution to the Ricci flow is called a Ricci soliton if it moves only by a one-parameter group of diffeomorphism and scaling. Ramesh Sharma [18], M. M. Tripathi [19], Bejan, Crasmareanu [4] studied Ricci soliton in contact metric manifolds also. The Ricci soliton equation is given by

$$\mathcal{L}_X g + 2S + 2\lambda g = 0,$$

where \mathcal{L}_X is the Lie derivative, S is Ricci tensor, g is Riemannian metric, X is a vector field and λ is a scalar. The Ricci soliton is said to be shrinking, steady and expanding according as

1The first author is supported by DST ‘Inspire’ of India. Reference no: IF140748.
2Received September 10, 2017, Accepted May 8, 2018.
\(\lambda \) is negative, zero and positive respectively.

In 2005, A.E. Fischer [10] introduced the concept of conformal Ricci flow which is a variation of the classical Ricci flow equation. In classical Ricci flow equation the unit volume constraint plays an important role but in conformal Ricci flow equation scalar curvature \(R \) is considered as constraint. Since the conformal geometry plays an important role to constrain the scalar curvature and the equations are the vector field sum of a conformal flow equation and a Ricci flow equation, the resulting equations are named as the conformal Ricci flow equations. The conformal Ricci flow equation on \(M \) where \(M \) is considered as a smooth closed connected oriented \(n \)-manifold \((n > 3)\), is defined by the equation [10]

\[
\frac{\partial g}{\partial t} + 2(S + \frac{g}{n}) = -pg
\]

and \(r = -1 \), where \(p \) is a scalar non-dynamical field (time dependent scalar field), \(r \) is the scalar curvature of the manifold and \(n \) is the dimension of manifold.

In 2015, N. Basu and A. Bhattacharyya [3] introduced the notion of conformal Ricci soliton and the equation is as follows

\[
\mathcal{L}Xg + 2S = [2\lambda - (p + \frac{2}{n})]g.
\]

The equation is the generalization of the Ricci soliton equation and it also satisfies the conformal Ricci flow equation.

An almost contact metric structure \((\phi, \xi, \eta, g)\) on a manifold \(M \) is called a trans-Sasakian structure [14] if the product manifold belongs to the class \(W_4 \) where \(W_4 \) is a class of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds [6]. A trans-Sasakian structure of type \((0, 0), (0, \beta)\) and \((\alpha, 0)\) are cosymplectic [5], \(\beta \)-Kenmotsu [13], and \(\alpha \)-Sasakian [13], respectively.

§2. Preliminaries

A differentiable manifold of dimension \(n \) is called Lorentzian Kenmotsu manifold [2] if it admits a \((1, 1)\) tensor field \(\phi \), a covariant vector field \(\xi \), a 1-form \(\eta \) and Lorentzian metric \(g \) which satisfy on \(M \) respectively such that

\[
\phi^2 X = X + \eta(X)\xi, g(X, \xi) = \eta(X),
\]

\[
\eta(\xi) = -1, \eta(\phi X) = 0, \phi \xi = 0,
\]

\[
g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),
\]

for all \(X, Y \in \chi(M) \).

If Lorentzian Kenmotsu manifold \(M \) satisfies

\[
\nabla_X \xi = \beta[X - \eta(X)\xi], (\nabla_X \phi) Y = \beta(g(\phi X, Y)\xi - \eta(Y)\phi X),
\]

(2.4)
\[(\nabla_X \eta)Y = \alpha g(\phi X, Y),\]

(2.5)

where \(\nabla\) denotes the operator of covariant differentiation with respect to the Lorentzian metric \(g\). Then the manifold \(M\) is called Lorentzian \(\beta\)-Kenmotsu manifold.

Furthermore, on an Lorentzian \(\beta\)-Kenmotsu manifold \(M\) the following relations hold [1], \[17\]:

\[
\eta(R(X, Y)Z) = \beta^2[g(X, Z)\eta(Y) - g(Y, Z)\eta(X)],
\]

(2.6)

\[
R(\xi, X)Y = \beta^2[\eta(\xi)X - g(X, Y)\xi],
\]

(2.7)

\[
R(X, Y)\xi = \beta^2[\eta(\xi)X - \eta(Y)X],
\]

(2.8)

\[
S(X, \xi) = -(n - 1)\beta^2 \eta(X),
\]

(2.9)

\[
Q\xi = -(n - 1)\beta^2 \xi,
\]

(2.10)

\[
S(\xi, \xi) = (n - 1)\beta^2,
\]

(2.11)

where \(\beta\) is some constant, \(R\) is the Riemannian curvature tensor, \(S\) is the Ricci tensor and \(Q\) is the Ricci operator given by \(S(X, Y) = g(QX, Y)\) for all \(X, Y \in \chi(M)\).

Now from definition of Lie derivative we have

\[
(\mathcal{L}_\xi g)(X, Y) = (\nabla_\xi g)(X, Y) + g(\beta[X - \eta(X)\xi], Y) + g(X, \beta[Y - \eta(Y)\xi])
\]

\[
= 2\beta g(X, Y) - 2\beta \eta(X)\eta(Y).
\]

(2.12)

Applying Ricci soliton equation (1.2) in (2.12) we get

\[
S(X, Y) = \frac{1}{2}[-2\lambda g(X, Y)] - \frac{1}{2}[2\beta g(X, Y) - 2\beta \eta(X)\eta(Y)]
\]

\[
= -\lambda g(X, Y) - \beta g(X, Y) + \beta \eta(X)\eta(Y)
\]

\[
= \tilde{A}g(X, Y) + \beta \eta(X)\eta(Y),
\]

(2.13)

where \(\tilde{A} = (-\lambda - \beta)\), which shows that the manifold is \(\eta\)-Einstein.

Also

\[
QX = \tilde{A}X + \beta \eta(X)\xi,
\]

(2.14)

\[
S(X, \xi) = (\tilde{A} + \beta) \eta(X) = A\eta(X).
\]

(2.15)

If we put \(X = Y = e_i\) in (2.13) where \(\{e_i\}\) is the orthonormal basis of the tangent space \(TM\) where \(TM\) is a tangent bundle of \(M\) and summing over \(i\), we get

\[
R(g) = \tilde{A}n + \beta.
\]

Proposition 2.1 A Lorentzian \(\beta\)-Kenmotsu manifold admitting Ricci soliton is \(\eta\)-Einstein.
Again applying conformal Ricci soliton (1.4) in (2.12) we get

\[S(X,Y) = \frac{1}{2}[2\lambda - (p + \frac{2}{n})]g(X,Y) - \frac{1}{2}[2\beta g(X,Y) - 2\beta \eta(X)\eta(Y)] \]
\[= \hat{B}g(X,Y) + \beta \eta(X)\eta(Y), \]
(2.16)

where
\[\hat{B} = \frac{1}{2}[2\lambda - (p + \frac{2}{n})] - \beta, \]
(2.17)

which also shows that the manifold is \(\eta \)-Einstein.

Also
\[QX = \hat{B}X + \beta \eta(X)\xi, \]
(2.18)
\[S(X, \xi) = (\hat{B} + \beta)\eta(X) = B\eta(X). \]
(2.19)

If we put \(X = Y = e_i \) in (2.16) where \(\{e_i\} \) is the orthonormal basis of the tangent space \(TM \) where \(TM \) is a tangent bundle of \(M \) and summing over \(i \), we get
\[r = \hat{B}n + \beta. \]

For conformal Ricci soliton \(r(g) = -1 \). So
\[-1 = \hat{B}n + \beta \]

which gives \(B = \frac{1}{n}(-\beta - 1) \).

Comparing the values of \(B \) from (2.17) with the above equation we get
\[\lambda = \frac{1}{n}(\beta(n-1) - 1) + \frac{1}{2}(p + \frac{2}{n}) \]

Proposition 2.2 A Lorentzian \(\beta \)-Kenmotsu manifold admitting conformal Ricci soliton is \(\eta \)-Einstein and the value of the scalar
\[\lambda = \frac{1}{n}(\beta(n-1) - 1) + \frac{1}{2}(p + \frac{2}{n}). \]

§3. Lorentzian \(\beta \)-Kenmotsu Manifold Admitting Ricci Soliton, Conformal Ricci Soliton and \(R(\xi, X).\tilde{C} = 0 \)

Let \(M \) be a \(n \) dimensional Lorentzian \(\beta \)-Kenmotsu manifold admitting Ricci soliton \((g, V, \lambda) \). Quasi conformal curvature tensor \(\tilde{C} \) on \(M \) is defined by

\[\tilde{C}(X, Y)Z = aR(X, Y)Z + b[S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY] \]
\[-\frac{r}{2n + 1}[\frac{a}{2n} + 2b][g(Y, Z)X - g(X, Z)Y], \]
(3.1)

where \(r \) is scalar curvature.
Putting $Z = \xi$ in (3.1) we have
\[
\tilde{C}(X, Y)\xi = aR(X, Y)\xi + b[S(Y, \xi)X - S(X, \xi)Y + g(Y, \xi)QX - g(X, \xi)QY] \\
- \frac{r}{2n + 1} \left(\frac{a}{2n} + 2b \right) \left[g(Y, \xi)X - g(X, \xi)Y \right].
\]
(3.2)

Using (2.1), (2.8), (2.14), (2.15) in (3.2) we get
\[
\tilde{C}(X, Y)\xi = [-a\beta^2 + Ab + \dot{A}b - \frac{r}{2n + 1} \left(\frac{a}{2n} + 2b \right)] (\eta(Y)X - \eta(X)Y).
\]

Let
\[
D = -a\beta^2 + Ab + \dot{A}b - \frac{r}{2n + 1} \left(\frac{a}{2n} + 2b \right),
\]
so we have
\[
\tilde{C}(X, Y)\xi = D(\eta(Y)X - \eta(X)Y).
\]
(3.3)

Taking inner product with Z in (3.3) we get
\[
-\eta(\tilde{C}(X, Y)Z) = D[\eta(Y)g(X, Z) - \eta(X)g(Y, Z)].
\]
(3.4)

Now we consider that the Lorentzian β-Kenmotsu manifold M which admits Ricci soliton is quasi conformally semi symmetric i.e. $R(\xi, X)\tilde{C} = 0$ holds in M, which implies
\[
R(\xi, X)(\tilde{C}(Y, Z)W) - \tilde{C}(R(\xi, X)Y, Z)W - \tilde{C}(Y, R(\xi, X)Z)W - \tilde{C}(Y, Z)R(\xi, X)W = 0,
\]
(3.5)

for all vector fields X, Y, Z, W on M.

Using (2.7) in (3.5) and putting $W = \xi$ we get
\[
\eta(\tilde{C}(Y, Z)\xi)X - g(X, \tilde{C}(Y, Z)\xi) - \eta(Y)\tilde{C}(X, Z)\xi + g(X, Y)\tilde{C}(\xi, Z)\xi \\
- \eta(Z)\tilde{C}(Y, X)\xi + g(X, Z)\tilde{C}(Y, \xi)\xi - \eta(\xi)\tilde{C}(Y, Z)X + g(X, \xi)\tilde{C}(Y, Z)\xi = 0.
\]
(3.6)

Taking inner product with ξ in (3.6) and using (2.2), (3.3) we obtain
\[
g(X, \tilde{C}(Y, Z)\xi) + \eta(\tilde{C}(Y, Z)X) = 0.
\]
(3.7)

Putting $Z = \xi$ in (3.7) and using (3.3) we get
\[
-Dg(X, Y) - D\eta(X)\eta(Y) + \eta(\tilde{C}(Y, Z)X) = 0.
\]
(3.8)

Now from (3.1) we can write
\[
\tilde{C}(Y, \xi)X = aR(Y, \xi)X + b[S(\xi, X)Y - S(Y, X)\xi + g(\xi, X)QY - g(Y, X)Q\xi] \\
- \frac{r}{2n + 1} \left(\frac{a}{2n} + 2b \right) [g(\xi, X)Y - g(Y, X)\xi].
\]
(3.9)
Taking inner product with \(\xi \) and using (2.2), (2.7), (2.9), (2.10) in (3.9) we get

\[
\eta(\tilde{\mathcal{C}}(Y, \xi)X) = a\eta(\beta^2(g(X,Y)\xi - \eta(X)Y)) + b[A\eta(X)\eta(Y) + S(X,Y) + \eta(X)(\dot{A}\eta(Y) - \beta\eta(Y)) - g(X,Y)(-\dot{A} + \beta)] - \left[\frac{r}{2n+1}\frac{a}{2n} + 2b][\eta(X)\eta(Y) + g(X,Y)]\right].
\]

After a long simplification we have

\[
\eta(\tilde{\mathcal{C}}(Y, \xi)X) = g(X,Y)[\dot{A}b - b\beta - a\beta^2 - \left[\frac{r}{2n+1}\frac{a}{2n} + 2b]\right]
+ \eta(X)\eta(Y)[2\dot{A}b - a\beta^2 - \left[\frac{r}{2n+1}\frac{a}{2n} + 2b]\right] + bS(X,Y).
\]

Putting (3.10) in (3.5) we get

\[
\rho g(X,Y) + \sigma \eta(X)\eta(Y) = S(X,Y),
\]

where

\[
\rho = \frac{1}{b}[D + b\beta + a\beta^2 - \dot{A}b + \left[\frac{r}{2n+1}\frac{a}{2n} + 2b]\right]
\]

and

\[
\sigma = \frac{1}{b}[D + a\beta^2 - 2\dot{A}b + \left[\frac{r}{2n+1}\frac{a}{2n} + 2b]\right].
\]

So from (3.11) we conclude that the manifold becomes \(\eta \)-Einstein manifold. Thus we can write the following theorem:

Theorem 3.1 If a Lorentzian \(\beta \)-Kenmotsu manifold admits Ricci soliton and is quasi conformally semi symmetric i.e. \(R(\xi, X)\tilde{\mathcal{C}} = 0 \), then the manifold is \(\eta \)-Einstein manifold where \(\tilde{\mathcal{C}} \) is quasi conformal curvature tensor and \(R(\xi, X) \) is derivation of tensor algebra of the tangent space of the manifold.

If a Lorentzian \(\beta \)-Kenmotsu manifold admits conformal Ricci soliton then after a brief calculation we can also establish that the manifold becomes \(\eta \)-Einstein, only the values of constants \(\rho, \sigma \) will be changed which would not hamper our main result.

Hence we can state the following theorem:

Theorem 3.2 A Lorentzian \(\beta \)-Kenmotsu manifold admitting conformal Ricci soliton and is quasi conformally semi symmetric i.e. \(R(\xi, X)\tilde{\mathcal{C}} = 0 \), then the manifold is \(\eta \)-Einstein manifold where \(\tilde{\mathcal{C}} \) is quasi conformal curvature tensor and \(R(\xi, X) \) is derivation of tensor algebra of the tangent space of the manifold.

§4. Lorentzian \(\beta \)-Kenmotsu Manifold Admitting Ricci Soliton, Conformal Ricci Soliton and \(R(\xi, X).S = 0 \)

Let \(M \) be a \(n \) dimensional Lorentzian \(\beta \)-Kenmotsu manifold admitting Ricci soliton \((g, V, \lambda) \). Now we consider that the tensor derivative of \(S \) by \(R(\xi, X) \) is zero i.e. \(R(\xi, X).S = 0 \). Then the
Ricci Soliton and Conformal Ricci Soliton in Lorentzian \(\beta \)-Kenmotsu Manifold

Lorentzian \(\beta \)-Kenmotsu manifold admitting Ricci soliton is Ricci semi symmetric which implies

\[
S(R(\xi, X)Y, Z) + S(Y, R(\xi, X)Z) = 0. \tag{4.1}
\]

Using (2.13) in (4.1) we get

\[
\hat{A}g(R(\xi, X)Y, Z) + \beta \eta(R(\xi, X)Y)\eta(Z) + \hat{A}g(Y, R(\xi, X)Z) + \beta \eta(Y)\eta(R(\xi, X)Z) = 0. \tag{4.2}
\]

Using (2.7) in (4.2) we get

\[
\hat{A}g(\beta^2[\eta(Y) X - g(X, Y)\xi], Z) + \hat{A}g(Y, \beta^2[\eta(Z) X - g(X, Z)\xi]) + \beta \eta(\beta^2[\eta(Y) X - g(X, Y)\xi]) = 0. \tag{4.3}
\]

Using (2.2) in (4.3) we have

\[
\hat{A}\beta^2\eta(Y) g(X, Z) - \hat{A}\beta^2\eta(Z) g(X, Y) + \hat{A}\beta^2\eta(Z) g(X, Y) - \hat{A}\beta^2\eta(Y) g(X, Z) + \beta^3\eta(Y) \eta(Z) + \beta^3\eta(Y) \eta(X) \eta(Z) + \beta^3 g(X, Z) \eta(Y) = 0. \tag{4.4}
\]

Putting \(Z = \xi \) in (4.4) and using (2.2) we obtain

\[
g(X, Y) = -\eta(X)\eta(Y).
\]

Hence we can state the following theorem:

Theorem 4.1 If a Lorentzian \(\beta \)-Kenmotsu manifold admits Ricci soliton and is Ricci semi symmetric i.e. \(R(\xi, X).S = 0 \), then \(g(X, Y) = -\eta(X)\eta(Y) \) where \(S \) is Ricci tensor and \(R(\xi, X) \) is derivation of tensor algebra of the tangent space of the manifold.

If a Lorentzian \(\beta \)-Kenmotsu manifold admits conformal Ricci soliton then by similar calculation we can obtain the same result. Hence we can state the following theorem:

Theorem 4.2 A Lorentzian \(\beta \)-Kenmotsu manifold admitting conformal Ricci soliton and is Ricci semi symmetric i.e. \(R(\xi, X).S = 0 \), then \(g(X, Y) = -\eta(X)\eta(Y) \) where \(S \) is Ricci tensor and \(R(\xi, X) \) is derivation of tensor algebra of the tangent space of the manifold.

\[\text{§5. Lorentzian } \beta \text{-Kenmotsu Manifold Admitting Ricci Soliton, Conformal Ricci Soliton and } R(\xi, X).P = 0 \]

Let \(M \) be a \(n \) dimensional Lorentzian \(\beta \)-Kenmotsu manifold admitting Ricci soliton \((g, V, \lambda)\). The projective curvature tensor \(P \) on \(M \) is defined by

\[
P(X, Y)Z = R(X, Y)Z - \frac{1}{2n} [S(Y, Z)X - S(X, Z)Y]. \tag{5.1}
\]

Here we consider that the manifold is projectively semi symmetric i.e. \(R(\xi, X).P = 0 \) holds.
So
\[R(\xi, X)(P(Y, Z)W) - P(R(\xi, X)Y, Z)W - P(Y, R(\xi, X)Z)W - P(Y, Z)R(\xi, X)W = 0, \quad (5.2) \]
for all vector fields \(X, Y, Z, W \) on \(M \).

Using (2.7) and putting \(Z = \xi \) in (5.2) we have
\[
\eta(P(Y, \xi)W)X - g(X, P(Y, \xi)W)\xi - \eta(Y)P(\xi, \xi)W + g(X, Y)P(\xi, \xi)W
\]
\[-\eta(\xi)P(Y, \xi)W + g(\xi, \xi)P(Y, \xi)W - \eta(\xi)P(Y, \xi)X + g(\xi, \xi)P(Y, \xi)X = 0. \quad (5.3)\]

Now from (5.1) we can write
\[P(X, \xi)Z = R(X, \xi)Z - \frac{1}{n-1}[S(\xi, Z)X - S(X, Z)\xi]. \quad (5.4) \]

Using (2.7), (2.15) in (5.4) we get
\[P(X, \xi)Z = \beta^2 g(X, Z)\xi + \frac{1}{n-1} S(X, Z)\xi + (\frac{A}{n-1} - \beta^2)\eta(Z)X. \quad (5.5) \]

Putting (5.5) and \(W = \xi \) in (5.3) and after a long calculation we get
\[
\frac{1}{n-1} S(X, Y)\xi + (\frac{A}{n-1} + \beta^2)\eta(Y)X - \frac{A}{n-1} g(X, Y)\xi
\]
\[-(\frac{A}{n-1} + \beta^2)\eta(Y)X = 0. \quad (5.6)\]

Taking inner product with \(\xi \) in (5.6) we obtain
\[S(X, Y) = -Ag(X, Y), \]
which clearly shows that the manifold is an Einstein manifold.

Thus we can conclude the following theorem:

Theorem 5.1 If a Lorentzian \(\beta \)-Kenmotsu manifold admits Ricci soliton and is projectively semi symmetric i.e. \(R(\xi, X).P = 0 \) holds, then the manifold is an Einstein manifold where \(P \) is projective curvature tensor and \(R(\xi, X) \) is derivation of tensor algebra of the tangent space of the manifold.

If a Lorentzian \(\beta \)-Kenmotsu manifold admits conformal Ricci soliton then using the same calculation we can obtain similar result, only the value of constant \(A \) will be changed which would not hamper our main result. Hence we can state the following theorem:

Theorem 5.2 A Lorentzian \(\beta \)-Kenmotsu manifold admitting conformal Ricci soliton and is projectively semi symmetric i.e. \(R(\xi, X).P = 0 \) holds, then the manifold is an Einstein manifold where \(P \) is projective curvature tensor and \(R(\xi, X) \) is derivation of tensor algebra of the tangent space of the manifold.
§6. Lorentzian β-Kenmotsu Manifold Admitting Ricci Soliton, Conformal Ricci Soliton and $R(\xi, X).\tilde{P} = 0$

Let M be a n dimensional Lorentzian β-Kenmotsu manifold admitting Ricci soliton (g, V, λ). The pseudo projective curvature tensor \tilde{P} on M is defined by

$$\tilde{P}(X, Y)Z = aR(X, Y)Z + b[S(Y, Z)X - S(X, Z)Y]$$

$$-\frac{r}{n}\left[\frac{a}{n-1}\right] + b|g(Y, Z)X - g(X, Z)Y|. \quad (6.1)$$

Here we consider that the manifold is pseudo projectively semi symmetric i.e. $R(\xi, X).\tilde{P} = 0$ holds.

So

$$R(\xi, X)(\tilde{P}(Y, Z)W) - \tilde{P}(R(\xi, X)Y, Z)W - \tilde{P}(Y, R(\xi, X)Z)W - \tilde{P}(Y, Z)R(\xi, X)W = 0, \quad (6.2)$$

for all vector fields X, Y, Z, W on M.

Using (2.7) and putting $W = \xi$ in (6.2) we have

$$\eta(\tilde{P}(Y, Z)\xi)X - g(X, \tilde{P}(Y, Z)\xi)\xi - \eta(Y)\tilde{P}(X, Z)\xi + g(X, Y)\tilde{P}(\xi, Z)\xi$$

$$-\eta(Z)\tilde{P}(Y, X)\xi + g(X, Z)\tilde{P}(Y, \xi)\xi - \eta(\xi)\tilde{P}(Y, Z)X + \eta(X)\tilde{P}(Y, Z)\xi = 0. \quad (6.3)$$

Now from (6.1) we can write

$$\tilde{P}(X, Y)\xi = aR(X, Y)\xi + b[S(Y, \xi)X - S(X, \xi)Y] + \frac{r}{n}\left[\frac{a}{n-1}\right] + b|g(Y, \xi)X - g(X, \xi)Y|. \quad (6.4)$$

Using (2.1), (2.8), (2.15) in (6.4) and after a long calculation we get

$$\tilde{P}(X, Y)\xi = \varphi(\eta(X)Y - \theta(Y)X), \quad (6.5)$$

where $\varphi = (a\beta^2 - Ab - \frac{r}{n}\left[\frac{a}{n-1}\right] + b]$.

Using (6.5) and putting $Z = \xi$ in (6.3) we obtain

$$\tilde{P}(Y, \xi)X + \varphi\eta(X)Y - \varphi g(X, Y)\xi = 0. \quad (6.6)$$

Taking inner product with ξ in (6.6) we get

$$\eta(\tilde{P}(Y, \xi)X) + \varphi\eta(X)\eta(Y) - \varphi g(X, Y) = 0. \quad (6.7)$$

Again from (6.1) we can write

$$\tilde{P}(X, \xi)Z = a(X, \xi)Z + b[S(\xi, Z)X - S(X, Z)\xi] + \frac{r}{n}\left[\frac{a}{n-1}\right] + b|g(\xi, Z)X - g(X, Z)\xi|. \quad (6.8)$$
Using (2.1), (2.7), (2.15) in (6.8) we get

\[
P(X, \xi)Z = a\beta^2 [g(X, Z)\xi - \eta(Z)X] + b[A\eta(Z)X - S(X, Z)\xi] \\
+ \frac{r}{n} \left[\frac{a}{n - 1} + b \right] g(\xi, Z)X - g(X, Z)\xi.
\]

(6.9)

Taking inner product with \(\xi \) and replacing \(X \) by \(Y \), \(Z \) by \(X \) in (6.9) we have

\[
\eta(\tilde{P}(Y, \xi)X) = a\beta^2 [-g(X, Y) - \eta(X)\eta(Y)] + b[A\eta(X)\eta(Y) + S(X, Y)] + \\
\frac{r}{n} \left[\frac{a}{n - 1} + b \right] [\eta(X)\eta(Y) - g(X, Y)].
\]

(6.10)

Using (6.10) in (6.7) and after a brief simplification we obtain

\[
S(X, Y) = T g(X, Y) + U \eta(X)\eta(Y),
\]

(6.11)

where \(T = -\frac{1}{6}[\alpha - \beta^2 - \frac{r}{n} \left[\frac{a}{n - 1} + b \right] - \varphi] \) and \(U = -\frac{1}{6}[\varphi + \frac{r}{n} \left[\frac{a}{n - 1} + b \right] + Ab - a\beta^2]. \)

From (6.11) we can conclude that the manifold is \(\eta \)-Einstein. Thus we have the following theorem:

Theorem 6.1 If a Lorentzian \(\beta \)-Kenmotsu manifold admits Ricci soliton and is pseudo projectively semi symmetric i.e. \(R(\xi, X) \hat{P} = 0 \) holds, then the manifold is \(\eta \) Einstein manifold where \(\hat{P} \) is pseudo projective curvature tensor and \(R(\xi, X) \) is derivation of tensor algebra of the tangent space of the manifold.

If a Lorentzian \(\beta \)-Kenmotsu manifold admits conformal Ricci soliton then by following the same calculation we would obtain the same result, only the constant value of \(T \) and \(U \) will be changed. Hence we can state the following theorem:

Theorem 6.2 A Lorentzian \(\beta \)-Kenmotsu manifold admitting conformal Ricci soliton and is pseudo projectively semi symmetric i.e. \(R(\xi, X) \hat{P} = 0 \) holds, then the manifold is \(\eta \) Einstein manifold where \(\hat{P} \) is pseudo projective curvature tensor and \(R(\xi, X) \) is derivation of tensor algebra of the tangent space of the manifold.

§7. An Example of a 3-Dimensional Lorentzian \(\beta \)-Kenmotsu Manifold

In this section we construct an example of a 3-dimensional Lorentzian \(\beta \)-Kenmotsu manifold. To construct this, we consider the three dimensional manifold \(M = \{(x, y, z) \in \mathbb{R}^3 : z \neq 0\} \) where \((x, y, z) \) are the standard coordinates in \(\mathbb{R}^3 \). The vector fields

\[
e_1 = e^{-z} \frac{\partial}{\partial x}, e_2 = e^{-z} \frac{\partial}{\partial y}, e_3 = e^{-z} \frac{\partial}{\partial z}
\]

are linearly independent at each point of \(M \).
Let g be the Lorentzian metric defined by

\[g(e_1, e_1) = 1, \ g(e_2, e_2) = 1, \ g(e_3, e_3) = -1, \]
\[g(e_1, e_2) = g(e_2, e_3) = g(e_3, e_1) = 0. \]

Let η be the 1-form which satisfies the relation

\[\eta(e_3) = -1. \]

Let ϕ be the $(1,1)$ tensor field defined by $\phi(e_1) = -e_2, \phi(e_2) = -e_1, \phi(e_3) = 0$. Then we have

\[\phi^2(Z) = Z + \eta(Z)e_3, \]
\[g(\phi Z, \phi W) = g(Z, W) + \eta(Z)\eta(W) \]

for any $Z, W \in \chi(M^3)$. Thus for $e_3 = \xi, (\phi, \xi, \eta, g)$ defines an almost contact metric structure on M. Now, after calculating we have

\[[e_1, e_3] = e^{-z}e_1, \ [e_1, e_2] = 0, \ [e_2, e_3] = e^{-z}e_2. \]

The Riemannian connection ∇ of the metric is given by the Koszul's formula which is

\[2g(\nabla_X Y, Z) = X g(Y, Z) + Y g(Z, X) - Z g(X, Y) \]
\[-g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]). \] (7.1)

By Koszul’s formula we get

\[\nabla_{e_1}e_1 = e^{-z}e_3, \ \nabla_{e_2}e_1 = 0, \ \nabla_{e_3}e_1 = 0, \]
\[\nabla_{e_1}e_2 = 0, \ \nabla_{e_2}e_2 = 'e^{-z}e_3, \ \nabla_{e_3}e_2 = 0, \]
\[\nabla_{e_1}e_3 = e^{-z}e_1, \ \nabla_{e_2}e_3 = e^{-z}e_2, \ \nabla_{e_3}e_3 = 0. \]

From the above we have found that $\beta = e^{-z}$ and it can be easily shown that $M^3(\phi, \xi, \eta, g)$ is a Lorentzian β-kenmotsu manifold. The results established in this note can be verified on this manifold.

References

