Some Properties of Conformal \(\beta\)-Change

H.S.Shukla and Neelam Mishra

(Department of Mathematics and Statistics, D. D. U. Gorakhpur University, Gorakhpur (U.P.)-273009, India)

E-mail: profhsshuklagkp@rediffmail.com, pneelammishra@gmail.com

Abstract: We have considered the conformal \(\beta\)-change of the Finsler metric given by

\[L(x,y) \rightarrow \bar{L}(x,y) = e^{\sigma(x)} f(L(x,y), \beta(x,y)), \]

where \(\sigma(x)\) is a function of \(x\), \(\beta(x,y) = b_i(x)y^i\) is a 1-form on the underlying manifold \(M^n\), and \(f(L(x,y), \beta(x,y))\) is a homogeneous function of degree one in \(L\) and \(\beta\). We have studied quasi-C-reducibility, C-reducibility and semi-C-reducibility of the Finsler space with this metric. We have also calculated V-curvature tensor and T-tensor of the space with this changed metric in terms of v-curvature tensor and T-tensor respectively of the space with the original metric.

Key Words: Conformal change, \(\beta\)-change, Finsler space, quasi-C-reducibility, C-reducibility, semi-C-reducibility, V-curvature tensor, T-tensor.

§1. Introduction

Let \(F^n = (M^n, L)\) be an \(n\)-dimensional Finsler space on the differentialble manifold \(M^n\) equipped with the fundamental function \(L(x,y)\). B.N.Prasad and Bindu Kumari and C. Shibata [1,2] have studied the general case of \(\beta\)-change, that is, \(L^*(x,y) = f(L, \beta)\), where \(f\) is positively homogeneous function of degree one in \(L\) and \(\beta\). They have also calculated the relationships between some important tensors of \((M^n, L)\) and the corresponding tensors of \((M^n, \bar{L})\), but have also studied several properties of this change.

1Received January 22, 2018, Accepted May 12, 2018.
We have changed the order of combination of the above two changes in our paper [6], where we have applied β-change first and conformal change afterwards, i.e.,
\[\tilde{L}(x, y) = e^{\sigma(x)} f(L(x, y), \beta(x, y)), \] (1.1)
where $\sigma(x)$ is a function of x, $\beta(x, y) = b_i(x)y^i$ is a 1-form. We have called this change as conformal β-change of Finsler metric. In this paper we have investigated the condition under which a conformal β-change of Finsler metric leads a Douglas space into a Douglas space. We have also found the necessary and sufficient conditions for this change to be a projective change.

In the present paper, we investigate some properties of conformal β-change. The Finsler space equipped with the metric \tilde{L} given by (1.1) will be denoted by \tilde{F}^n. Throughout the paper the quantities corresponding to \tilde{F}^n will be denoted by putting bar on the top of them. We shall denote the partial derivatives with respect to x^i and y^i by ∂_i and $\hat{\partial}_i$ respectively. The Fundamental quantities of F^n are given by
\[g_{ij} = \hat{\partial}_i \hat{\partial}_j \frac{L^2}{2} = h_{ij} + l_i l_j, \quad l_i = \hat{\partial}_i L. \]

Homogeneity of f gives
\[Lf_1 + \beta f_2 = f, \] (1.2)
where subscripts 1 and 2 denote the partial derivatives with respect to L and β respectively. Differentiating above equations with respect to L and β respectively, we get
\[Lf_{12} + \beta f_{22} = 0 \quad \text{and} \quad Lf_{11} + \beta f_{21} = 0. \] (1.3)
Hence we have
\[f_{11}/\beta^2 = (-f_{12})/L\beta = f_{22}/L^2, \] (1.4)
which gives
\[f_{11} = \beta^2 \omega, \quad f_{12} = -L\beta \omega, \quad f_{22} = L^2 \omega, \] (1.5)
where Weierstrass function ω is positively homogeneous of degree -3 in L and β. Therefore
\[L\omega_1 + \beta \omega_2 + 3\omega = 0, \] (1.6)
where ω_1 and ω_2 are positively homogeneous of degree -4 in L and β. Throughout the paper we frequently use the above equations without quoting them. Also we have assumed that f is not linear function of L and β so that $\omega \neq 0$.

The concept of concurrent vector field has been given by Matsumoto and K. Eguchi [11] and S. Tachibana [17], which is defined as follows:

The vector field b_i is said to be a concurrent vector field if
\[b_{ij} = -g_{ij} \quad \text{and} \quad b_i|_j = 0, \] (1.7)
where small and long solidus denote the h- and v-covariant derivatives respectively. It has been
proved by Matsumoto that \(b_i \) and its contravariant components \(b^i \) are functions of coordinates alone. Therefore from the second equation of (1.7), we have \(C_{ijk}b^i = 0 \).

The aim of this paper is to study some special Finsler spaces arising from conformal \(\beta \)-change of Finsler metric, viz., quasi-C-reducible, C-reducible and semi-C-reducible Finsler spaces. Further, we shall obtain v-curvature tensor and T-tensor of this space and connect them with v-curvature tensor and T-tensor respectively of the original space.

§2. Metric Tensor and Angular Metric Tensor of \(\bar{F}^n \)

Differentiating equation (1.1) with respect to \(y^i \) we have

\[
\bar{l}_i = e^\sigma (f_1 l_i + f_2 b_i). \tag{2.1}
\]

Differentiating (2.1) with respect to \(y^j \), we get

\[
\bar{h}_{ij} = e^{2\sigma} \left(\frac{ff_1}{L} h_{ij} + f L^2 \omega m_i m_j \right), \tag{2.2}
\]

where \(m_i = b_i - \beta \frac{L}{L_l} l_i \).

From (2.1) and (2.2) we get the following relation between metric tensors of \(F^n \) and \(\bar{F}^n \):

\[
\bar{g}_{ij} = e^{-2\sigma} \left[\frac{L}{ff_1} g^{ij} - \frac{p\beta}{L} l_i l_j + (f L^2 \omega + f_2^2) b_i b_j + p(b_i l_j + b_j l_i) \right], \tag{2.3}
\]

where \(p = f_1 f_2 - \beta L \omega \).

The contravariant components \(\bar{g}^{ij} \) of the metric tensor of \(\bar{F}^n \), obtainable from \(\bar{g}^{ij} \bar{g}_{jk} = \delta^i_k \), are as follows:

\[
\bar{g}^{ij} = e^{-2\sigma} \left[\frac{L}{ff_1} g^{ij} + \frac{p L^3}{f^3 f_1 t} \left(\frac{f \beta}{L^2} - \Delta f_2 \right) t^i t^j - \frac{L^4 \omega}{f^2 f_1 t} b^i b^j - \frac{p L^2}{f^2 f_1 t} (l^i b^j + l^j b^i) \right], \tag{2.4}
\]

where \(t^i = g^{ij} l_j \), \(b^2 = b_i b^i \), \(b^i = g^{ij} b_j \), \(g^{ij} \) is the reciprocal tensor of \(g_{ij} \) of \(F^n \), and

\[
t = f_1 + L^3 \omega \Delta, \Delta = b^2 - \frac{\beta^2}{L^2}. \tag{2.5}
\]

\[
\begin{align*}
(a) \hat{s}_i f &= e^{\sigma} \left(\frac{f}{L} l_i + f_2 m_i \right), & (b) \hat{s}_i f_1 &= -e^{\sigma} \beta L \omega m_i, \\
(c) \hat{s}_i f_2 &= e^{\sigma} L^2 \omega m_i, & (d) \hat{s}_i p &= -\beta q L m_i, \\
(e) \hat{s}_i \omega &= -\frac{3\omega}{L} l_i + \omega_2 m_i, & (f) \hat{s}_i b^2 &= -2C_{..i}, \\
(g) \hat{s}_i \Delta &= -2C_{..i} - \frac{2\beta}{L^2} m_i.
\end{align*} \tag{2.6}
\]
(a) $\dot{q}_i = -\frac{3q}{L}l_i$,
(b) $\dot{t} = -2L\dot{\omega}C_{..i} + L^3\dot{\omega}_2 - 3\beta L\dot{\omega}m_i$,
(c) $\dot{t} = -\frac{3q}{L}l_i + (4f_2\omega_2 + 3\omega^2L^2 + f\omega_{22})m_i$. \hspace{1cm} (2.7)

§3. Cartan’s C-Tensor and C-Vectors of \bar{F}^n

Cartan’s covariant C-tensor C_{ijk} of F^n is defined by

$$\bar{C}_{ijk} = \frac{1}{4} \partial_i \partial_j \partial_k L^2 = \delta_k g_{ij}$$

and Cartan’s C-vectors are defined as follows:

$$C_i = C_{ijk}g^{jk}, C^i = C^i_{jk}g^{jk}. \hspace{1cm} (3.1)$$

We shall write $C^2 = C^i C_i$. Under the conformal β-change (1.1) we get the following relation between Cartan’s C-tensors of F^n and \bar{F}^n:

$$\bar{C}_{ijk} = e^{2\sigma} \left[\frac{ff_1}{L} C_{ijk} + \frac{p}{2L}(h_{ij} m_k + h_{jk} m_i + h_{ki} m_j) + \frac{qL^2}{2} m_i m_j m_k \right]. \hspace{1cm} (3.2)$$

We have

(a) $m_i l^i = 0$,
(b) $m_i b^i = b^2 - \frac{\beta^2}{L^2} = \Delta = b_i m^i$,
(c) $g_{ij} m^i = h_{ij} m^i = m_j$. \hspace{1cm} (3.3)

From (2.1), (2.2), (2.3) and (3.2), we get

$$C^h_{ij} = C^h_{ij} + \frac{p}{2f_1}(h_{ij} m^h + h_{ij} m_i + h_{ij} m_j) + \frac{qL^3}{2f_1} m_j m_k m^h$$

$$- \frac{L}{f} C_{ijk} n^h - \frac{pL}{2f^2 f_1} h_{jk} n^h - \frac{2pL + qL^2}{2f^2 f_1} m_j m_k n^h, \hspace{1cm} (3.4)$$

where $n^h = fL^2\omega^h + p^h$ and $h^h_i = g^h h_{ij}, C_{ij} = C_{rij} b^r, C_{..i} = C_{rji} b^r b^j$ and so on.

Proposition 3.1 Let $\bar{F}^n = (M^n, \tilde{L})$ be an n-dimensional Finsler space obtained from the conformal β-change of the Finsler space $F^n = (M^n, L)$, then the normalized supporting element \tilde{l}_i, angular metric tensor \tilde{h}_{ij}, fundamental metric tensor \tilde{g}_{ij} and (h)hv-torsion tensor \tilde{C}_{ijk} of \bar{F}^n are given by (2.1), (2.2), (2.3) and (3.2), respectively.

From (2.4), (3.1), (3.2) and (3.4) we get the following relations between the C-vectors of of F^n and \bar{F}^n and their magnitudes

$$\bar{C}_i = C_i - L^3\omega C_{..i} + \mu m_i, \hspace{1cm} (3.5)$$
where
\[
\mu = \frac{p(n + 1)}{2ff_1} - \frac{3pL^3\omega\Delta}{2ff_1} + \frac{qL^3\Delta(1 - L^3\omega\Delta)}{2ff_1};
\]
\[
\bar{C}^i = \frac{e^{-2\sigma}L}{ff_1}C^i + M^i,
\]
(3.6)
where
\[
M^i = \frac{\mu e^{-2\sigma}L}{ff_1}m^i - \frac{L^4\omega}{ff_1}C^i - (C_i - e^{2\sigma}L^3\omega C_i + \mu \Delta) \left(\frac{L^3\omega}{ff_1}b^i + \frac{L}{ff}y^i \right)
\]
and
\[
\bar{C}^2 = \frac{e^{-2\sigma}}{p}C^2 + \lambda,
\]
(3.7)
where
\[
\lambda = \left(\frac{e^{-2\sigma}L}{ff_1} - L^3\omega\Delta \right) \mu^2 \Delta + \frac{2\mu e^{-2\sigma}L}{ff_1}C,
\]
\[
- (1 + 2\mu \Delta) \frac{L^3\omega}{ff_1} + (1 - 3\mu + e^{2\sigma}L^2\omega ff_1 C) L^3\omega C + L^3\omega C + \left(\frac{e^{2\sigma}L^2\omega}{ff_1}C_+ - 2C \right).
\]

§4. Special Cases of \(\bar{F}^n\)

In this section, following Matsumoto [10], we shall investigate special cases of \(\bar{F}^n\) which is conformally \(\beta\)-changed Finsler space obtained from \(F^n\).

Definition 4.1 A Finsler space \((M^n, L)\) with dimension \(n \geq 3\) is said to be quasi-C-reducible if the Cartan tensor \(C_{ijk}\) satisfies
\[
C_{ijk} = Q_{ij}C_k + Q_{jk}C_i + Q_{ki}C_j,
\]
(4.1)
where \(Q_{ij}\) is a symmetric indicatory tensor.

The equation (3.2) can be put as
\[
\bar{C}_{ijk} = e^{2\sigma} \left[\frac{ff_1}{L}C_{ijk} + \frac{1}{6\pi(ijk)} \left\{ \left(\frac{3p}{L}h_{ij} + qL^2m_im_j \right) m_k \right\} \right],
\]
where \(\pi(ijk)\) represents cyclic permutation and sum over the indices \(i, j\) and \(k\).

Putting the value of \(m_k\) from equation (3.5) in the above equation, we get
\[
\bar{C}_{ijk} = e^{2\sigma} \left[\frac{ff_1}{L}C_{ijk} + \frac{1}{6\mu}\pi(ijk) \left\{ \left(\frac{3p}{L}h_{ij} + qL^2m_im_j \right)(\bar{C}_k - C_k + L^3\omega C_+) \right\} \right].
\]
Rearranging this equation, we get
\[
\bar{C}_{ijk} = e^{2\sigma} \left[\frac{ff_1}{L} C_{ijk} + \frac{1}{6\mu} \pi_{(ijk)} \left\{ \left(\frac{3p}{L} h_{ij} + qL^2 m_i m_j \right) \bar{C}_k \right\} + \frac{1}{6\mu} \pi_{(ijk)} \left\{ \left(\frac{3p}{L} h_{ij} + qL^2 m_i m_j \right) \left(L^3 \omega C_{k..} - C_k \right) \right\} \right].
\]

Further rearrangement of this equations gives
\[
\bar{C}_{ijk} = \pi_{(ijk)}(\bar{H}_{ij} \bar{C}_k) + U_{ijk}, \tag{4.2}
\]
where \(\bar{H}_{ij} = e^{2\sigma} \frac{ff_1}{6\mu} \left(\frac{3p}{L} h_{ij} + qL^2 m_i m_j \right)\), and
\[
U_{ijk} = e^{2\sigma} \left[\frac{ff_1}{L} C_{ijk} + \frac{1}{6\mu} \pi_{(ijk)} \left\{ \left(\frac{3p}{L} h_{ij} + qL^2 m_i m_j \right) \left(L^3 \omega C_{k..} - C_k \right) \right\} \right]. \tag{4.3}
\]

Since \(\bar{H}_{ij}\) is a symmetric and indicatory tensor, therefore from equation (4.2) we have the following theorem.

Theorem 4.1 Conformally \(\beta\)-changed Finsler space \(\bar{F}^n\) is quasi-C-reducible iff the tensor \(U_{ijk}\) of equation (4.3) vanishes identically.

We obtain a generalized form of Matsumoto’s result [10] as a corollary of the above theorem.

Corollary 4.1 If \(F^n\) is Riemannian space, then the conformally \(\beta\)-changed Finsler space \(\bar{F}^n\) is always a quasi-C-reducible Finsler space.

Definition 4.2 A Finsler space \((M^n, L)\) of dimension \(n \geq 3\) is called C-reducible if the Cartan tensor \(C_{ijk}\) is written in the form
\[
C_{ijk} = \frac{1}{n+1} (h_{ij} C_k + h_{ki} C_j + h_{jk} C_i). \tag{4.4}
\]

Define the tensor \(G_{ijk} = C_{ijk} - \frac{1}{n+1} (h_{ij} C_k + h_{ki} C_j + h_{jk} C_i)\). It is clear that \(G_{ijk}\) is symmetric and indicatory. Moreover, \(G_{ijk}\) vanishes iff \(F^n\) is C-reducible.

Proposition 4.1 Under the conformal \(\beta\)-change(1.1), the tensor \(\bar{G}_{ijk}\) associated with the space \(\bar{F}^n\) has the form
\[
\bar{G}_{ijk} = e^{2\sigma} \frac{ff_1}{L} G_{ijk} + V_{ijk}, \tag{4.5}
\]
where
\[
V_{ijk} = \frac{1}{(n+1)} \pi_{(ijk)} \{ \left(e^{2\sigma} (n+1) (\alpha_1 h_{ij} + \alpha_2 m_i m_j) m_k + e^{2\sigma} \omega L^2 m_i m_j C_k \right) + e^{2\sigma} \omega L^2 (\bar{f} f_1 L \omega m_i m_j) C_{k..} \}, \tag{4.6}
\]
\[
\alpha_1 = \frac{e^{2\sigma} p}{2L} - \frac{\mu f f_1 e^{2\sigma}}{L(n+1)}, \quad \alpha_2 = \frac{e^{2\sigma} q L^2}{6} - \frac{\mu e^{2\sigma} \omega L^2}{(n+1)}.
\]
From (4.5) we have the following theorem.

Theorem 4.2 Conformally β-changed Finsler space \bar{F}^n is C-reducible iff F^n is C-reducible and the tensor V_{ijk} given by (4.6) vanishes identically.

Definition 4.3 A Finsler space (M^n, L) of dimension $n \geq 3$ is called semi-C-reducible if the Cartan tensor C_{ijk} is expressible in the form:

$$C_{ijk} = \frac{r}{n+1}(h_{ij}C_k + h_{ki}C_j + h_{jk}C_i) + \frac{s}{C^2}C_iC_jC_k,$$

where r and s are scalar functions such that $r + s = 1$.

Using equations (2.2), (3.5) and (3.7) in equation (3.2), we have

$$\bar{C}_{ijk} = e^{2\sigma} \left[\frac{ff_1}{L}C_{ijk} + \frac{p}{2\mu ff_1}(h_{ij}\tilde{C}_k + h_{ki}\tilde{C}_j + \tilde{h}_{jk}\tilde{C}_i) + \frac{\Delta L(f_1q - 3p\omega)}{2f_1\mu C^2}\tilde{C}_i\tilde{C}_j\tilde{C}_k \right].$$

If we put

$$r' = \frac{p(n+1)}{2\mu ff_1}, s' = \frac{\Delta L(f_1q - 3p\omega)}{2f_1\mu t},$$

we find that $r' + s' = 1$ and

$$\bar{C}_{ijk} = e^{2\sigma} \left[\frac{ff_1}{L}C_{ijk} + \frac{r'}{n+1}(h_{ij}\tilde{C}_k + h_{ki}\tilde{C}_j + \tilde{h}_{jk}\tilde{C}_i) + \frac{s'}{C^2}\tilde{C}_i\tilde{C}_j\tilde{C}_k \right].$$

From equation (4.8) we infer that \bar{F}^n is semi-C-reducible iff $C_{ijk} = 0$, i.e. iff F^n is a Riemannian space. Thus we have the following theorem.

Theorem 4.3 Conformally β-changed Finsler space \bar{F}^n is semi-C-reducible iff F^n is a Riemannian space.

§5. v-Curvature Tensor of \bar{F}^n

The v-curvature tensor [10] of Finsler space with fundamental function L is given by

$$S_{hijk} = C_{ijr}C^r_{hk} - C_{ikr}C^r_{hj}$$

Therefore the v-curvature tensor of conformally β-changed Finsler space \bar{F}^n will be given by

$$\bar{S}_{hijk} = \bar{C}_{ijr}\bar{C}^r_{hk} - \bar{C}_{ikr}\bar{C}^r_{hj},$$

From equations (3.2) and (3.4), we have

$$\bar{C}_{ijr}\bar{C}^r_{hk} = e^{2\sigma} \left[\frac{ff_1}{L}C_{ijr}C^r_{hk} + \frac{p}{2L}(C_{ijr}m_h + C_{ijh}m_k + C_{ihkm_j} + C_{hjk}m_i) + \frac{pf_1}{2L}(C_{ijr}h_hk + C_{hjk}h_{ijh}) - \frac{ff_1L^2}{t}\omega C_{ijr}C_{hk} \right].$$
The derivatives of m_i where β is a concurrent vector field, then $C_{ij} = 0$. Therefore the value of v-curvature tensor of \tilde{F}^n as given by (5.3) is reduced to the extent that $d_{ij} = Rm_i m_j - Q h_{ij}$.

§6. The T-Tensor T_{hijk}

The T-tensor of F^n is defined in [3] by

$$T_{hijk} = LC_{hij} \mid_k + C_{hij} l_k + C_{hik} l_j + C_{hjk} l_i + C_{ijk} l_h,$$

where

$$C_{hij} \mid_k = \hat{\partial}_k C_{hij} - C_{rij} C_{hk}^r - C_{hrj} C_{ik}^r - C_{hir} C_{jk}^r.$$

In this section we compute the T-tensor of F^n, which is given by

$$\tilde{T}_{hijk} = \tilde{L}C_{hij} \tilde{\mid}_k + \tilde{C}_{hij} \tilde{l}_k + \tilde{C}_{hik} \tilde{l}_j + \tilde{C}_{hjk} \tilde{l}_i + \tilde{C}_{ijk} \tilde{l}_h,$$

where

$$\tilde{C}_{hij} \tilde{\mid}_k = \hat{\partial}_k \tilde{C}_{hij} - \tilde{C}_{rij} \tilde{C}_{hk}^r - \tilde{C}_{hrj} \tilde{C}_{ik}^r - \tilde{C}_{hir} \tilde{C}_{jk}^r.$$

The derivatives of m_i and h_{ij} with respect to y^k are given by

$$\hat{\partial}_k m_i = -\frac{\beta}{L^2} h_{ik} - \frac{1}{L} (l_i m_k), \quad \hat{\partial}_k h_{ij} = 2C_{ijk} - \frac{1}{L} (l_i h_{jk} + l_j h_{ki})$$
From equations (3.2) and (6.5), we have

\[
\hat{\partial}_k \tilde{C}_{hij} = e^{2\sigma} \left[\frac{ff_1}{L} \partial_k C_{hij} + \frac{p}{L} (C_{ijk} m_h + C_{ijh} m_k + C_{ihk} m_j + C_{hjk} m_i) \\
- \frac{\beta}{2L^2} (h_{ij} h_{jk} + h_{ij} h_{ik} + h_{ih} h_{jk} + \frac{p}{2L^2} (h_{jk} h_{im} + h_{ik} h_{jm} + h_{ij} h_{lm}) \\
+ h_{ik} l_{jm} + h_{ik} l_{mj} + h_{jk} l_{im} + h_{jk} l_{jm}) - \frac{\beta q}{2} (h_{ij} h_{km}) \\
+ h_{ik} m_{im} + h_{ik} m_{jm} + h_{ik} m_{mk} + h_{ik} m_{mj} + h_{ik} m_{nj} + h_{ik} m_{jk} + h_{ik} m_{km} \\
- \frac{qL}{2} (h_{lm} m_{mk} + h_{lm} m_{mk} + l_{hm} m_{jm} + h_{mk} m_{mj} + h_{mk} m_{jm} + h_{mk} m_{mj} + h_{mk} m_{mj}) \\
+ \frac{L^2}{2} (4f_2 \omega_2 + 3L^2 \omega^2 + f \omega_2) m_h m_{mjm} \right]. \\
(6.6)
\]

Using equations (6.5) and (5.2) in equation (6.4), we get

\[
\tilde{C}_{hij} = e^{2\sigma} \frac{ff_1}{L} C_{hij |k} - e^{2\sigma} \frac{p}{2L} (C_{ijk} m_h + C_{ijh} m_k + C_{ihk} m_j + C_{hjk} m_i) \\
- \frac{\beta}{2L^2} (h_{ij} h_{jk} + h_{ij} h_{ik} + h_{ih} h_{jk}) - e^{2\sigma} \left(\frac{\beta q}{2} \right) \\
+ \frac{p^2 f_1 + pq f_1 L^3 \Delta + 3p^2}{4Lf f_1 t} (h_{ij} m_{mh} + h_{hkm} m_{mj} + h_{hm} m_{mk} + h_{hkm} m_{mj} + h_{hkm} m_{mj} \\
+ h_{hkm} m_{mj} + h_{hkm} m_{mj} + h_{hkm} m_{mj} + h_{hkm} m_{mj} \\
+ h_{hkm} m_{mj} + h_{hkm} m_{mj} + h_{hkm} m_{mj} + h_{hkm} m_{mj} \\
+ h_{hkm} m_{mj} + h_{hkm} m_{mj} + h_{hkm} m_{mj} + h_{hkm} m_{mj} \\
+ h_{hkm} m_{mj} + h_{hkm} m_{mj} + h_{hkm} m_{mj} + h_{hkm} m_{mj} - \frac{e^{2\sigma} qL}{2} (l_j m_{mh} m_k \\
+ l_j m_{mh} m_k + l_j m_{mh} m_k + l_j m_{mh} m_k) - \frac{p f_1 e^{2\sigma}}{2Lt} (C_{ij} h_{hk}) \\
+ C_{hj} h_{ik} + C_{jk} h_{ij} + C_{ik} h_{jk} + C_{ih} h_{jk} + C_{hj} h_{ik} + e^{2\sigma} \frac{f f_1 L^2 \omega}{t} (C_{ij} C_{hh}) \\
+ C_{hj} C_{ik} + C_{ik} C_{jk} - \frac{e^{2\sigma} \int L^2 (q f_1 - 2p \omega)}{2t} (C_{ij} m_{mh}) \\
+ C_{hj} m_{mj} + C_{ij} m_{mk} + C_{jk} m_{mj} \\
+ C_{hj} m_{mj} + C_{jkm} m_{mj} + e^{2\sigma} \frac{L^2 (4f_2 \omega_2 + 3L^2 \omega^2 + f \omega_2)}{2} \\
- \frac{3L^2 (2pq + (q f_1 - 2p \omega)(2p + L^3 \Delta))}{4f f_1 t} m_{mjm} m_{mk}. \\
(6.7)
\]

Using equations (2.1), (3.2) and (6.6) in equation (6.3), we get the following relation
between T-tensors of Finsler spaces F^n and \tilde{F}^n:

$$
\tilde{T}_{hij} = e^{3\sigma} \left[\frac{f^2 f_1}{L^2} T_{hij} + \frac{f(f_1 f_2 + f \beta \omega \lambda)}{2L} (C_{ijk} m_h + C_{ijh} m_k + C_{ihk} m_j) + C_{hijk} m_i \right] + \frac{f^2 f_1 L^2 \omega}{t} (C_{ij} C_{h,j} + C_{h,j} C_{,i} + C_{,h} C_{,jk}) - \frac{pf_1}{2L} (C_{ij} h_{hk} + C_{h,j} h_{ik} + C_{,h} h_{ij} + C_{,hk} h_{jh} + C_{,hk} h_{ji}) - \frac{fL^2(qf_1 - 2p \omega)}{2t} (C_{ij} m_k m_h + C_{,hk} m_i m_j + C_{,hk} m_i j) + C_{,ik} m_j m_h + C_{,ih} m_j m_k + C_{,jk} m_i m_j - \frac{p(2f \beta t + L^2 p \Delta)}{4L^3 t} (h_{ij} h_{hk}) - \left(\frac{p^2 f_1}{4L f_1} + \frac{pq f_1 L^3 \Delta + 3p^2 t + \beta q f}{2} - \frac{pf_2}{L} \right) (h_{ij} m_k m_j + h_{hk} m_i m_j + h_{dj} m_j m_k + h_{ik} m_i m_j) + \frac{L^2(4f_{2\omega} + 3L^2 \omega^2 + f\omega_{22})}{2} + 2L^2 f_2 q - \frac{3L^2(2pqf - (q f_1 - 2p \omega)(2p + L^3 q \Delta)}{4f_1 t} \right] m_i m_j m_k m_k. \tag{6.8}
$$

Proposition 6.1 The relation between T-tensors of F^n and \tilde{F}^n is given by (6.7).

If bi is a concurrent vector field in F^n, then $C_{ij} = 0$. Therefore from (6.8), we have

$$
\tilde{T}_{hij} = e^{3\sigma} \left[\frac{f^2 f_1}{L^2} T_{hij} - \frac{p(2f \beta t + L^2 p \Delta)}{4L^3 t} (h_{ij} h_{hk} + h_{ij} h_{ik} + h_{ik} h_{jk}) - \left(\frac{p^2 f_1}{4L f_1} + \frac{pq f_1 L^3 \Delta + 3p^2 t + \beta q f}{2} - \frac{pf_2}{L} \right) (h_{ij} m_i m_j + h_{hk} m_i m_j + h_{dj} m_j m_k + h_{ik} m_i m_j) + \frac{L^2(4f_{2\omega} + 3L^2 \omega^2 + f\omega_{22})}{2} + 3L^2(qf_1 - 2p \omega)(2p + L^3 q \Delta)}{4L f_1 t} \right] m_i m_j m_k m_k. \tag{6.9}
$$

If bi is a concurrent vector field in F^n, with vanishing T-tensor then T-tensor of F^n is given by

$$
\tilde{T}_{hij} = e^{3\sigma} \left[- \frac{p(2f \beta t + L^2 p \Delta)}{4L^3 t} (h_{ij} h_{hk} + h_{ij} h_{ik} + h_{ik} h_{jk}) - \left(\frac{p^2 f_1}{4L f_1} + \frac{pq f_1 L^3 \Delta + 3p^2 t + \beta q f}{2} - \frac{pf_2}{L} \right) (h_{ij} m_i m_j + h_{hk} m_i m_j + h_{dj} m_j m_k + h_{ik} m_i m_j) + \frac{L^2(4f_{2\omega} + 3L^2 \omega^2 + f\omega_{22})}{2} - \frac{3L^2(2pqf_1 - (q f_1 - 2p \omega)(2p + L^3 q \Delta)}{4L f_1 t} \right] m_i m_j m_k m_k. \tag{6.10}
$$
Some Properties of Conformal β-Change

Acknowledgement

The work contained in this research paper is part of Major Research Project “Certain Investigations in Finsler Geometry” financed by the U.G.C., New Delhi.

References

