
1 23

International Journal of Fuzzy
Systems
 
ISSN 1562-2479
Volume 20
Number 3
 
Int. J. Fuzzy Syst. (2018) 20:986-999
DOI 10.1007/s40815-017-0380-4

Interval Complex Neutrosophic Set:
Formulation and Applications in Decision-
Making

Mumtaz Ali, Luu Quoc Dat, Le Hoang
Son & Florentin Smarandache



1 23

Your article is protected by copyright and

all rights are held exclusively by Taiwan

Fuzzy Systems Association and Springer-

Verlag GmbH Germany. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Interval Complex Neutrosophic Set: Formulation
and Applications in Decision-Making

Mumtaz Ali1 • Luu Quoc Dat2 • Le Hoang Son3 • Florentin Smarandache4

Received: 8 February 2017 / Revised: 19 June 2017 / Accepted: 19 August 2017 / Published online: 1 September 2017

� Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany 2017

Abstract Neutrosophic set is a powerful general formal

framework which generalizes the concepts of classic set,

fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set,

etc. Recent studies have developed systems with complex

fuzzy sets, for better designing and modeling real-life

applications. The single-valued complex neutrosophic set,

which is an extended form of the single-valued complex

fuzzy set and of the single-valued complex intuitionistic

fuzzy set, presents difficulties to defining a crisp neutro-

sophic membership degree as in the single-valued neutro-

sophic set. Therefore, in this paper we propose a new

notion, called interval complex neutrosophic set (ICNS),

and examine its characteristics. Firstly, we define several

set theoretic operations of ICNS, such as union, intersec-

tion and complement, and afterward the operational rules.

Next, a decision-making procedure in ICNS and its appli-

cations to a green supplier selection are investigated.

Numerical examples based on real dataset of Thuan Yen

JSC, which is a small-size trading service and transporta-

tion company, illustrate the efficiency and the applicability

of our approach.

Keywords Green supplier selection � Multi-criteria

decision-making � Neutrosophic set � Interval complex

neutrosophic set � Interval neutrosophic set

Abbreviations

NS Neutrosophic set

INS Interval neutrosophic set

CFS Complex fuzzy set

CIFS Complex intuitionistic fuzzy set

IVCFS Interval-valued complex fuzzy set

CNS Complex neutrosophic set

ICNS Interval-valued complex neutrosophic set, or

interval complex neutrosophic set

SVCNS Single-valued complex neutrosophic set

MCDM Multi-criteria decision-making

MCGDM Multi-criteria group decision-making

_ Maximum operator (t-conorm)

^ Minimum operator (t-norm)

1 Introduction

Smarandache [12] introduced the Neutrosophic Set (NS) as

a generalization of classical set, fuzzy set, and intuitionistic

fuzzy set. The neutrosophic set handles indeterminate data,

whereas the fuzzy set and the intuitionistic fuzzy set fail to

work when the relations are indeterminate. Neutrosophic

set has been successfully applied in different fields,
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including decision-making problems [2, 5–8, 11, 14–16,

19–24, 27, 28]. Since the neutrosophic set is difficult to be

directly used in real-life applications, Smarandache [12]

and Wang et al. [18] proposed the concept of single-valued

neutrosophic set and provided its theoretic operations and

properties. Nonetheless, in many real-life problems, the

degrees of truth, falsehood, and indeterminacy of a certain

statement may be suitably presented by interval forms,

instead of real numbers [17]. To deal with this situation,

Wang et al. [17] proposed the concept of Interval Neu-

trosophic Set (INS), which is characterized by the degrees

of truth, falsehood and indeterminacy, whose values are

intervals rather than real numbers. Ye [19] presented the

Hamming and Euclidean distances between INSs and the

similarity measures between INSs based on the distances.

Tian et al. [16] developed a multi-criteria decision-making

(MCDM) method based on a cross-entropy with INSs

[3, 10, 19, 25].

Recent studies in NS and INS have concentrated on

developing systems using complex fuzzy sets [9, 10, 26]

for better designing and modeling real-life applications.

The functionality of ‘complex’ is for handling the infor-

mation of uncertainty and periodicity simultaneously. By

adding complex-valued non-membership grade to the def-

inition of complex fuzzy set, Salleh [13] introduced the

concept of complex intuitionistic fuzzy set. Ali and

Smarandache [1] proposed a complex neutrosophic set

(CNS), which is an extension form of complex fuzzy set

and of complex intuitionistic fuzzy set. The complex

neutrosophic set can handle the redundant nature of

uncertainty, incompleteness, indeterminacy, inconsistency,

etc., in periodic data. The advantage of CNS over the NS is

the fact that, in addition to the membership degree pro-

vided by the NS and represented in the CNS by amplitude,

the CNS also provides the phase, which is an attribute

degree characterizing the amplitude.

Yet, in many real-life applications, it is not easy to find a

crisp (exact) neutrosophic membership degree (as in the

single-valued neutrosophic set), since we deal with unclear

and vague information. To overcome this, we must create a

new notion, which uses an interval neutrosophic member-

ship degree. This paper aims to introduce a new concept of

Interval-Valued Complex Neutrosophic Set or shortly

Interval Complex Neutrosophic Set (ICNS), that is more

flexible and adaptable to real-life applications than those of

SVCNS and INS, due to the fact that many applications

require elements to be represented by a more accurate

form, such as in the decision-making problems

[4, 7, 16, 17, 20, 25]. For example, in the green supplier

selection, the linguistic rating set should be encoded by

ICNS rather than by INS or by SVCNS, to reflect the

hesitancy and indeterminacy of the decision.

This paper is the first attempt to define and use the ICNS

in decision-making. The contributions and the tidings of

this paper are highlighted as follows: First, we define the

Interval Complex Neutrosophic Set (Sect. 3.1). Next, we

define some set theoretic operations, such as union, inter-

section and complement (Sect. 3.2). Further, we establish

the operational rules of ICNS (Sect. 3.3). Then, we

aggregate ratings of alternatives versus criteria, aggregate

the importance weights, aggregate the weighted ratings of

alternatives versus criteria, and define a score function to

rank the alternatives. Last, a decision-making procedure in

ICNS and an application to a green supplier selection are

presented (Sects. 4, 5).

Green supplier selection is a well-known application of

decision-making. One of the most important issues in

supply chain to make the company operation efficient is the

selection of appropriate suppliers. Due to the concerns over

the changes in world climate, green supplier selection is

considered as a key element for companies to contribute

toward the world environment protection, as well as to

maintain their competitive advantages in the global market.

In order to select the appropriate green supplier, many

potential economic and environmental criteria should be

taken into consideration in the selection procedure.

Therefore, green supplier selection can be regarded as a

multi-criteria decision-making (MCDM) problem. How-

ever, the majority of criteria is generally evaluated by

personal judgement and thus might suffer from subjectiv-

ity. In this situation, ICNS can better express this kind of

information.

The advantages of the proposal over other possibilities

are highlighted as follows:

(a) The complex neutrosophic set is a generalization of

interval complex fuzzy set, interval complex intu-

itionistic fuzzy sets, single-valued complex neutro-

sophic set and so on. For more detail, we refer to

Fig. 1 in Sect. 3.1.

(b) In many real-life applications, it is not easy to find a

crisp (exact) neutrosophic membership degree (as in

the single-valued neutrosophic set), since we deal

with unclear and vague periodic information. To

overcome this, the complex interval neutrosophic set

is a better representation.

(c) In order to select the appropriate green supplier,

many potential economic and environmental criteria

should be taken into consideration in the selection

procedure. Therefore, green supplier selection can be

regarded as a multi-criteria decision-making

(MCDM) problem. However, the majority of criteria

are generally evaluated by personal judgment, and

thus, it might suffer from subjectivity. In this
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Fig. 1 Relationship of complex neutrosophic set with different types of fuzzy sets
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situation, ICNS can better express this kind of

information.

(d) The amplitude and phase (attribute) of ICNS have

the ability to better catch the unsure values of the

membership. Consider an example that we have a car

component factory where each worker receives 10

car components per day to polish. The factory needs

to have one worker coming in the weekend to work

for a day, in order to finish a certain order from a

customer. Again, the manager asks for a volunteer

worker W. It turns out that the number of car

components that will be done over one weekend day

is W([0.6, 0.9], [0.1, 0.2], [0.0, 0.2]), which are

actually the amplitudes for T, I, F. But what will be

their quality? Indeed, their quality will be W([0.6,

0.9] 9 e[0.6, 0.7], [0.1, 0.2] 9 e[0.4, 0.5], [0.0,

0.2] 9 e[0.0, 0.1]), by taking the [min, max] for each

corresponding phase of T, I, F, respectively, for all

workers. The new notion is indeed better in solving

the decision-making problem. Unfortunately, other

existing approaches cannot handle this type of

information.

(e) The modified score function, accuracy function and

certainty function of ICNS are more general in

nature as compared to classical score, accuracy and

certainty functions of existing methods. In modified

forms of these functions, we have defined them for

both amplitude and phase terms while it is not

possible in the traditional case.

The rest of this paper is organized as follows. Section 2

recalls some basic concepts of neutrosophic set, interval

neutrosophic set, complex neutrosophic set, and their

operations. Section 3 presents the formulation of the

interval complex neutrosophic set and its operations. Sec-

tion 4 proposes a multi-criteria group decision-making

model in ICNS. Section 5 demonstrates a numerical

example of the procedure for green supplier selection on a

real dataset. Section 6 delineates conclusions and suggests

further studies.

2 Basic Concepts

Definition 1 [12] Neutrosophic set (NS)

Let X be a space of points and let x 2 X. A neutrosophic set

S in X is characterized by a truth membership function TS,

an indeterminacy membership function IS, and a falsehood

membership function FS. TS, IS and FS are real standard or

non-standard subsets of 0�; 1þ� ½. To use neutrosophic set in
some real-life applications, such as engineering and sci-

entific problems, it is necessary to consider the interval

0; 1½ � instead of 0�; 1þ� ½, for technical applications. The

neutrosophic set can be represented as:

S ¼ x; TS xð Þ; IS xð Þ;FS xð Þ
� �

: x 2 X
� �

;

where one has that 0� sup TS xð Þ þ sup IS xð Þ þ sup

FS xð Þ� 3, and TS, IS and FS are subsets of the unit interval

[0, 1].

Definition 2 [9, 10] Complex fuzzy set (CFS)

A complex fuzzy set S, defined on a universe of discourse

X, is characterized by a membership function gS xð Þ that

assigns to any element x 2 X a complex-valued grade of

membership in S. The values gS xð Þ lie within the unit circle

in the complex plane, and thus, all forms pS xð Þ � ej�lSðxÞ
where pS xð Þ and lS xð Þ are both real-valued and

pS xð Þ 2 0; 1½ �. The term pS xð Þ is termed as amplitude term,

and ej�lSðxÞ is termed as phase term. The complex fuzzy set

can be represented as:

S ¼ x; gS xð Þ
� �

: x 2 X
� �

:

Definition 3 [13] Complex intuitionistic fuzzy set (CIFS)

A complex intuitionistic fuzzy set S, defined on a universe

of discourse X, is characterized by a membership function

gS xð Þ and a non-membership function fS xð Þ, respectively,
assigning to an element x 2 X a complex-valued grade to

both membership and non-membership in S. The values of

gS xð Þ and fS xð Þ lie within the unit circle in the complex

plane and are of the form gS xð Þ ¼ pS xð Þ � ej�lSðxÞ and

fS xð Þ ¼ rS xð Þ � ej�xS
ðxÞ where pS xð Þ; rS xð Þ; lS xð Þ and xS xð Þ

are all real-valued and pS xð Þ, rS xð Þ 2 0; 1½ � with j ¼
ffiffiffiffiffiffiffi
�1

p
.

The complex intuitionistic fuzzy set can be represented as:

S ¼ x; gS xð Þ; fS xð Þ
� �

: x 2 X
� �

:

Definition 4 [4] Interval-valued complex fuzzy set

(IVCFS)

An interval-valued complex fuzzy set �A is defined over a

universe of discourse X by a membership function

l �A : X ! C 0;1½ � � R;

l �A xð Þ ¼ r �A xð Þ � ejx �A xð Þ

In the above equation, C 0;1½ � is the collection of interval

fuzzy sets and R is the set of real numbers. rS xð Þ is the

interval-valued membership function while ejx �A xð Þ is the

phase term, with j ¼
ffiffiffiffiffiffiffi
�1

p
.

Definition 5 [1] Single-valued complex neutrosophic set

(SVCNS)

A single-valued complex neutrosophic set S, defined on a

universe of discourse X, is expressed by a truth
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membership function TSðxÞ, an indeterminacy membership

function ISðxÞ and a falsity membership function FSðxÞ,
assigning a complex-valued grade of TSðxÞ, ISðxÞ and FSðxÞ
in S for any x 2 X. The values TSðxÞ, ISðxÞ, FSðxÞ and their

sum may all be within the unit circle in the complex plane,

and so it is of the following form:

TSðxÞ ¼ pSðxÞ � e
jl

S
ðxÞ; ISðxÞ ¼ qSðxÞ � e

jm
S
ðxÞ and FSðxÞ

¼ rSðxÞ � e
jx

S
ðxÞ;

where pSðxÞ, qSðxÞ, rSðxÞ and lSðxÞ, mSðxÞ, xSðxÞ are,

respectively, real values and pSðxÞ; qSðxÞ; rSðxÞ 2 ½0; 1�,
such that 0� pSðxÞ þ qSðxÞ þ rSðxÞ� 3. The single-valued

complex neutrosophic set S can be represented in set form

as:

S ¼ x; TSðxÞ; I SðxÞ;FSðxÞ
� �

: x 2 X
� �

:

Definition 6 [1] Complement of single-valued complex

neutrosophic set

Let S ¼ x; TSðxÞ; I SðxÞ;FSðxÞ
� �

: x 2 X
� �

be a single-val-

ued complex neutrosophic set in X. Then, the complement

of a SVCNS S is denoted as S
c
and is defined by:

S
c ¼ x; T

S
cðxÞ; I

S
cðxÞ;F

S
cðxÞ

� �
: x 2 X

� �
;

where T
S
cðxÞ ¼ p

S
c xð Þ � ej�lSc ðxÞ is such that p

S
c xð Þ ¼ rSðxÞ

and l
S
c xð Þ ¼ lS xð Þ; 2p� lS xð Þ or lS xð Þ þ p. Similarly,

I
S
cðxÞ ¼ q

S
c xð Þ � ej�mSc ðxÞ, where q

S
c xð Þ ¼ 1� qS xð Þ and

m
S
c xð Þ ¼ mS xð Þ; 2p� m

S
c xð Þ or m

S
c xð Þ þ p. Finally,

F
S
cðxÞ ¼ r

S
c xð Þ � ej�xS

c ðxÞ, where r
S
c xð Þ ¼ pS xð Þ and

x
S
c xð Þ ¼ xS xð Þ; 2p� xS xð Þ or xS xð Þ þ p

Definition 7 [1] Union of single-valued complex neu-

trosophic sets

Let �A and �B be two SVCNSs in X. Then:

A [ B ¼ x; TA[B xð Þ; IA[B xð Þ;FA[B Xð Þ
� �

: x 2 X
� �

;

where

TA[B xð Þ ¼ pA xð Þ _ pB xð Þ
� �� �

� ej�lT �A[ �B
ðxÞ
;

IA[B xð Þ ¼ qA xð Þ ^ qB xð Þ
� �� �

� ej�mIA[B ðxÞ;

FA[B xð Þ ¼ rA xð Þ ^ rB xð Þ
� �� �

� ej�xF
A[B

ðxÞ

where _ and ^ denote the max and min operators,

respectively. To calculate the phase terms ej�lA[BðxÞ, ej�mA[BðxÞ

and ej�xA[BðxÞ, we refer to [1].

Definition 8 [1] Intersection of single-valued complex

neutrosophic sets

Let �A and B be two SVCNSs in X. Then:

�A \ �B ¼ x; T �A\ �B xð Þ; I �A\ �B xð Þ;F �A\ �B Xð Þð Þ : x 2 Xf g;

where

T �A\ �B xð Þ ¼ p �A xð Þ ^ p �B xð Þð Þ½ � � ej�lT �A\ �B
ðxÞ
;

I �A\ �B xð Þ ¼ q �A xð Þ _ q �B xð Þð Þ½ � � ej�mI �A\ �B
ðxÞ;

F �A\ �B xð Þ ¼ r �A xð Þ _ r �B xð Þð Þ½ � � ej�xF �A\ �B
ðxÞ

where _ and ^ denote the max and min operators,

respectively. To calculate the phase terms ej�lA[BðxÞ, ej�mA[BðxÞ

and ej�xA[BðxÞ, we refer to [1].

3 Interval Complex Neutrosophic Set with Set
Theoretic Properties

3.1 Interval Complex Neutrosophic Set

Before we present the definition, let us consider an example

below to see the advantages of the new notion ICNS.

Example 1 Suppose we have a car component factory.

Each worker from this factory receives 10 car components

per day to polish.

• NS The best worker, John, successfully polishes 9 car

components, 1 car component is not finished, and he

wrecks 0 car component. Then, John’s neutrosophic

work is (0.9, 0.1, 0.0). The worst worker, George,

successfully polishes 6, not finishing 2, and wrecking 2.

Thus, George’s neutrosophic work is (0.6, 0.2, 0.2).

• INS The factory needs to have one worker coming in the

weekend, to work for a day in order to finish a required

order from a customer. Since the factory management

cannot impose the weekend overtime to workers, the

manager asks for a volunteer. How many car compo-

nents are to be polished during the weekend? Since the

manager does not know which worker (W) will volun-

teer, he estimates that the work to be done in a weekend

day will be: W([0.6, 0.9], [0.1, 0.2], [0.0, 0.2]), i.e., an

interval for each T, I, F, respectively, between the

minimum and maximum values of all workers.

• CNS The factory’s quality control unit argues that

although many workers correctly/successfully polish

their car components, some of the workers do a work of

a better quality than the others. Going back to John and

George, the factory’s quality control unit measures the

work quality of each of them and finds out that: John’s

work is (0.9 9 e0.6, 0.1 9 e0.4, 0.0 9 e0.0), and

George’s work is (0.6 9 e0.7, 0.2 9 e0.5, 0.2 9 e0.1).

Thus, although John polishes successfully 9 car com-

ponents, more than George’s 6 successfully polished
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car components, the quality of John’s work (0.6, 0.4,

0.0) is less than the quality of George’s work (0.7, 0.5,

0.1).

It is clear from the above example that the amplitude and

phase (attribute) of CNS should be represented by inter-

vals, which better catch the unsure values of the mem-

bership. Let us come back to Example 1, where the factory

needs to have one worker coming in the weekend to work

for a day, in order to finish a certain order from a customer.

Again, the manager asks for a volunteer worker W. We find

out that the number of car components that will be done

over one weekend day is W([0.6, 0.9], [0.1, 0.2], [0.0, 0.2]),

which are actually the amplitudes for T, I, F. But what will

be their quality? Indeed, their quality will be W([0.6,

0.9] 9 e[0.6, 0.7], [0.1, 0.2] 9 e[0.4, 0.5], [0.0,

0.2] 9 e[0.0, 0.1]), by taking the [min, max] for each cor-

responding phases for T, I, F, respectively, for all workers.

Therefore, we should propose a new notion for such the

cases of decision-making problems.

Definition 9 Interval complex neutrosophic set.

An interval complex neutrosophic set is defined over a

universe of discourse X by a truth membership function TS,

an indeterminate membership function IS, and a falsehood

membership function FS, as follows:

TS : X ! C 0;1½ � � R; TS xð Þ ¼ tS xð Þ � ejaxS
xð Þ

IS : X ! C 0;1½ � � R; IS xð Þ ¼ iS xð Þ � ejbwS
xð Þ

FS : X ! C 0;1½ � � R;FS xð Þ ¼ fS xð Þ � ejc/S
xð Þ

9
>>=

>>;
ð1Þ

In the above Eq. (1), C 0;1½ � is the collection of interval

neutrosophic sets and R is the set of real numbers, tS xð Þ is
the interval truth membership function, iS xð Þ is the interval
indeterminate membership and fS xð Þ is the interval false-

hood membership function, while ejaxS
xð Þ, ejbwS

xð Þ and

ejc/S
xð Þ are the corresponding interval-valued phase terms,

respectively, with j ¼
ffiffiffiffiffiffiffi
�1

p
. The scaling factors a; b and c

lie within the interval ð0; 2p�: This study assumes that the

values a; b; c ¼ p: In set theoretic form, an interval com-

plex neutrosophic set can be written as:

S ¼
TS xð Þ ¼ tS xð Þ � ejaxS

xð Þ; IS xð Þ ¼ iS xð Þ � ejbwS
xð Þ;FS xð Þ ¼ fS xð Þ � ejc/S

xð Þ

x

* +

: x 2 X

( )

ð2Þ

In (2), the amplitude interval-valued terms tS xð Þ; iS
xð Þ; fS xð Þ can be further split as tS xð Þ ¼ tSL xð Þ; tSU xð Þ

h i
,

iS xð Þ ¼ iSL xð Þ; iSU xð Þ
h i

and fS xð Þ ¼ fSL xð Þ; fSU xð Þ
h i

, where

tSU xð Þ; iSU xð Þ; fSU xð Þ represents the upper bound, while

tSL xð Þ; iSL xð Þ; fSL xð Þ represents the lower bound in each

interval, respectively. Similarly, for the phases: xS xð Þ ¼
xSL

xð Þ;xSU
xð Þ

h i
, wS xð Þ ¼ wSL

xð Þ;wSU
xð Þ

h i
, and uS xð Þ ¼

uSL
xð Þ;uSU

xð Þ
h i

.

Example 2 Let X ¼ x1; x2; x3; x4f g be a universe of dis-

course. Then, an interval complex neutrosophic set S can

be given as follows:

S ¼

0:4; 0:6½ � � ejp½0:5;0:6�; 0:1; 0:7½ � � ejp½0:1;0:3�; 0:3; 0:5½ � � ejp½0:8;0:9�
x1

;
0:2; 0:4½ � � ejp½0:3;0:6�; 0:1; 0:1½ � � ejp½0:7;0:9�; 0:5; 0:9½ � � ejp½0:2;0:5�

x2
;

0:3; 0:4½ �:ejp½0:7;0:8�; 0:6; 0:7½ � � ejp½0:6;0:7�; 0:2; 0:6½ � � ejp½0:6;0:8�
x3

;
0; 0:9½ � � ejp½0:9;1�; 0:2; 0:3½ � � ejp½0:7;0:8�; 0:3; 0:5½ � � ejp½0:4;0:5�

x4

8
>><

>>:

9
>>=

>>;

Further on,we present the connections among different types

of fuzzy sets, intuitionistic fuzzy sets, neutrosophic sets, to

complex neutrosophic set (in Fig. 1). The arrows (!) refer to

the generalization of the preceding term to the next term, e.g.,

the fuzzy set is the generalization of the classic set, and so on.

3.2 Set Theoretic Operations of Interval Complex

Neutrosophic Set

Definition 10 Let �A and �B be two interval complex

neutrosophic set over X which are defined by T �A xð Þ ¼
t �A xð Þ � ejpx �A xð Þ, I �A xð Þ ¼ i �A xð Þ � ejpw �A xð Þ, F �A xð Þ ¼ f �A xð Þ �
ejp/ �A xð Þ and T �B xð Þ ¼ t �B xð Þ � ejpx �B xð Þ, I �B xð Þ ¼ i �B xð Þ � ejpw �B xð Þ,

FS xð Þ ¼ fS xð Þ � ejp/S
xð Þ, respectively. The union of �A and �B

is denoted as
�A [ �B, and it is defined as:

T �A[ �B xð Þ ¼ inf t �A[ �B xð Þ; sup t �A[ �B xð Þ½ � � ejpx �A[ �B xð Þ;

I �A[ �B xð Þ ¼ inf i �A[ �B xð Þ; sup i �A[ �B xð Þ½ � � ejpw �A[ �B xð Þ;

F �A[ �B xð Þ ¼ inf f �A[ �B xð Þ; sup f �A[ �B xð Þ½ � � ejp/ �A[ �B xð Þ;

where

inf t �A[ �B xð Þ ¼ _ inf t �A xð Þ; inf t �B xð Þð Þ; sup t �A[ �B xð Þ ¼ _ sup t �A xð Þ; sup t �B xð Þð Þ;
inf i �A[ �B xð Þ ¼ ^ inf i �A xð Þ; inf i �B xð Þð Þ; sup i �A[ �B xð Þ ¼ ^ sup i �A xð Þ; sup i �B xð Þð Þ;
inf f �A[ �B xð Þ ¼ ^ inf f �A xð Þ; inf f �B xð Þð Þ; sup f �A[ �B xð Þ ¼ ^ sup f �A xð Þ; sup f �B xð Þð Þ;

for all x 2 X. The union of the phase terms remains the same

as defined for single-valued complex neutrosophic set, with

the distinction that instead of subtractions and additions of

numbers, we now have subtractions and additions of inter-

vals. The symbols _,^ represent max and min operators.

Example 3 Let X ¼ x1; x2; x3; x4f g be a universe of dis-

course. Let �A and B be two interval complex neutrosophic

sets defined on X as follows:

�A ¼

0:4; 0:6½ � � ejp½0:5;0:6�; 0:1; 0:7½ � � ejp½0:1;0:3�; 0:3; 0:5½ � � ejp½0:8;0:9�
x1

;
0:2; 0:4½ � � ejp½0:3;0:6�; 0:1; 0:1½ � � ejp½0:7;0:9�; 0:5; 0:9½ � � ejp½0:2;0:5�

x2
;

0:3; 0:4½ �:ejp½0:7;0:8�; 0:6; 0:7½ � � ejp½0:6;0:7�; 0:2; 0:6½ � � ejp½0:6;0:8�
x3

;
0; 0:9½ � � ejp½0:9;1�; 0:2; 0:3½ � � ejp½0:7;0:8�; 0:3; 0:5½ � � ejp½0:4;0:5�

x4

8
>>><

>>>:

9
>>>=

>>>;

�B ¼

0:3; 0:7½ � � ejp½0:7;0:8�; 0:4; 0:9½ � � ejp½0:3;0:5�; 0:6; 0:8½ � � ejp½0:5;0:6�
x1

;
0:4; 0:4½ � � ejp½0:6;0:7�; 0:1; 0:9½ � � ejp½0:2;0:4�; 0:3; 0:8½ � � ejp½0:5;0:6�

x2
;

0:37; 0:64½ � � ejp½0:47;0:50; 0:36; 0:57½ � � ejp½0:64;0:7�; 0:28; 0:66½ � � ejp½0:16;0:2�
x3

;
0:15; 0:52½ � � ejp½0:1;0:2�; 0; 0:5½ � � ejp½0:6;0:7�; 0:3; 0:3½ � � ejp½0:6;0:7�

x4

8
>>><

>>>:

9
>>>=

>>>;
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Then, their union �A [ �B is given by:

�A [ �B ¼

0:4; 0:7½ � � ejp½0:7;0:8�; 0:1; 0:7½ � � ejp½0:1;0:3�; 0:3; 0:5½ � � ejp½0:5;0:6�
x1

;
0:4; 0:4½ � � ejp½0:6;0:7�; 0:1; 0:1½ � � ejp½0:7;0:9�; 0:3; 0:8½ � � ejp½0:5;0:6�

x2
;

0:37; 0:64½ � � ejp½0:7;0:8�; 0:36; 0:57½ � � ejp½0:6;0:7�; 0:2; 0:6½ � � ejp½0:16;0:21�
x3

;
0:15; 0:9½ � � ejp½0:9;1�; 0; 0:3½ � � ejp½0:6;;0:7�; 0:3; 0:3½ � � ejp½0:4;0:5�

x4

8
>>><

>>>:

9
>>>=

>>>;

Definition 11 Let �A and �B be two interval complex

neutrosophic set over X which are defined by T �A xð Þ ¼
t �A xð Þ � ejpx �A xð Þ, I �A xð Þ ¼ i �A xð Þ � ejpw �A xð Þ, F �A xð Þ ¼ f �A xð Þ �
ejp/ �A xð Þ and T �B xð Þ ¼ t �B xð Þ � ejpx �B xð Þ, I �B xð Þ ¼ i �B xð Þ � ejpw �B xð Þ,

FS xð Þ ¼ fS xð Þ � ejp/S
xð Þ, respectively. The intersection of �A

and �B is denoted as �A \ �B, and it is defined as:

T �A\ �B xð Þ ¼ inf t �A\ �B xð Þ; sup t �A\ �B xð Þ½ � � ejpx �A\ �B xð Þ;

I �A\ �B xð Þ ¼ inf i �A\ �B xð Þ; sup i �A\ �B xð Þ½ � � ejpw �A\ �B xð Þ;

F �A\ �B xð Þ ¼ inf f �A\ �B xð Þ; sup f �A\ �B xð Þ½ � � ejp/ �A\ �B xð Þ;

where

inf t �A\ �B xð Þ ¼ ^ inf t �A xð Þ; inf t �B xð Þð Þ; sup t �A\ �B xð Þ ¼ ^ sup t �A xð Þ; sup t �B xð Þð Þ;
inf i �A\ �B xð Þ ¼ _ inf i �A xð Þ; inf i �B xð Þð Þ; sup i �A\ �B xð Þ ¼ _ sup i �A xð Þ; sup i �B xð Þð Þ;
inf f �A\ �B xð Þ ¼ _ inf f �A xð Þ; inf f �B xð Þð Þ; sup f �A\ �B xð Þ ¼ _ sup f �A xð Þ; sup f �B xð Þð Þ;

for all x 2 X. Similarly, the intersection of the phase terms

remains the same as defined for single-valued complex

neutrosophic set, with the distinction that instead of sub-

tractions and additions of numbers we now have subtrac-

tions and additions of intervals. The symbols _,^ represent

max and min operators.

Example 4 Let X, �A and B be as in Example 3. Then, the

intersection �A \ �B is given by:

�A \ �B ¼

0:3; 0:6½ � � ejp½0:5;0:6�; 0:4; 0:9½ � � ejp½0:3;0:5�; 0:6; 0:8½ � � ejp½0:8;0:9�
x1

;
0:2; 0:4½ � � ejp½0:3;0:6�; 0:1; 0:9½ � � ejp½0:7:0:9�; 0:5; 0:9½ � � ejp½0:5;0:6�

x2
;

0:3; 0:4½ � � ejp½0:47;0:50�; 0:6; 0:7½ � � ejp½0:64;0:70�; 0:28; 0:6½ �6 � ejp½0:6;0:8�
x3

;
0; 0:52½ � � ejp½0:1;0:2�; 0:2; 0:5½ � � ejp½0:7;0:8�; 0:3; 0:5½ � � ejp½0:6;0:7�

x4

8
>>><

>>>:

9
>>>=

>>>;

Definition 12 Let �A be an interval complex neutrosophic

set over X which is defined by T �A xð Þ ¼ t �A xð Þ � ejpx �A xð Þ,

I �A xð Þ ¼ i �A xð Þ � ejpw �A xð Þ, F �A xð Þ ¼ f �A xð Þ � ejp/ �A xð Þ. The com-

plement of �A is denoted as �A
c
, and it is defined as:

�A
c ¼ T �A

c xð Þ ¼ t �Ac xð Þ � ejpx �Ac xð Þ; I �Ac xð Þ ¼ i �Ac xð Þ � ejpw �Ac xð Þ;F �A
c xð Þ ¼ f �Ac xð Þ � ejp/ �Ac xð Þ

x

	 

: x 2 X

� �
;

where t �Ac xð Þ ¼ f �A xð Þ and x �A
c xð Þ ¼ 2p� x �A xð Þ or

x �A xð Þ þ p. Similarly,i �Ac xð Þ ¼ inf i �Ac xð Þ; sup i �Ac xð Þð Þ,
where inf i �Ac xð Þ ¼ 1� sup i �A xð Þ and sup i �Ac xð Þ ¼ 1�
inf i �A xð Þ, with phase term w �A

c xð Þ ¼ 2p� w �A xð Þ or w �A xð Þþ
p. Also, f �Ac xð Þ ¼ i �Ac xð Þ, while the phase term / �A

c xð Þ ¼
2p� / �A xð Þ or / �A xð Þ þ p.

Proposition 1 Let �A, �B and C be three interval complex

neutrosophic sets over X. Then:

1. �A [ �B ¼ �B [ �A;

2. �A \ �B ¼ �B \ �A;

3. �A [ �A ¼ �A;

4. �A \ �A ¼ �A;

5. �A [ �B [ C
� �

¼ �A [ �Bð Þ [ C;

6. �A \ �B \ C
� �

¼ �A \ �Bð Þ \ C;

7. �A [ �B \ C
� �

¼ �A [ �Bð Þ \ �A [ C
� �

;

8. �A \ �B [ C
� �

¼ �A \ �Bð Þ [ �A \ C
� �

;

9. �A [ �A \ �Bð Þ ¼ �A;

10. �A \ �A [ �Bð Þ ¼ �A;

11. �A [ �Bð Þc¼ �A
c \ �B

c
;

12. �A \ �Bð Þc¼ �A
c [ �B

c
;

13. �A
c� �c¼ �A:

Proof All these assertions can be straightforwardly

proven.

Theorem 1 The interval complex neutrosophic set �A [ �B

is the smallest one containing both �A and �B.

Proof Straightforwardly.

Theorem 2 The interval complex neutrosophic set �A \ �B

is the largest one contained in both �A and �B.

Proof Straightforwardly.

Theorem 3 Let P be the power set of all interval complex

neutrosophic set. Then, P;[;\
� �

forms a distributive

lattice.

Proof Straightforwardly.

Theorem 4 Let �A and �B be two interval complex neu-

trosophic sets defined on X. Then, �A � �B if and only if
�B
c � �A

c
.

Proof Straightforwardly.

3.3 Operational Rules of Interval Complex

Neutrosophic Sets

Let �A ¼ ð½TL
A ; T

U
A �; ½ILA; IUA �; ½FL

A;F
U
A �Þ and B ¼ ð½TL

B ; T
U
B �;

½ILB; IUB �; ½FL
B;F

U
B �Þ be two interval complex neutrosophic

sets over X which are defined by ½TL
A ; T

U
A � ¼ ½tLA xð Þ;

tUA xð Þ� � ejp½xL
A
xð Þ;xU

A
xð Þ�,½ILA; IUA � ¼ ½iLA xð Þ; iUA xð Þ� � ejp½wL

A xð Þ;wU
A xð Þ�;

½FL
A;F

U
A � ¼ ½f LA xð Þ; f UA xð Þ� � ejp½/L

A xð Þ;/U
A xð Þ� and ½TL

B ; T
U
B � ¼

½tLB xð Þ; tUB xð Þ� � ejp½xL
B xð Þ;xU

B xð Þ�; ½ILB; IUB � ¼ ½iLB xð Þ; iUB xð Þ��
ejp½w

L
B xð Þ;wU

B xð Þ�; ½FL
B;F

U
B � ¼ ½f LB xð Þ; f UB xð Þ� � ejp½/L

B xð Þ;/U
B xð Þ�;

respectively. Then, the operational rules of ICNS are

defined as follows:

(a) The product of �A and �B, denoted as �A� �B, is:
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T �A� �B xð Þ ¼ tL�A xð ÞtL
B
xð Þ; tU�A xð ÞtU

B
xð Þ

h i
� ejp½xL

�A� �B xð Þ;xR
�A� �B xð Þ�;

I �A� �B xð Þ ¼ iL�A xð Þ þ iL
B
xð Þ � iL�A xð ÞiL

B
xð Þ; iR�A xð Þ

h

þiR
B
xð Þ � iR�A xð ÞiR

B
xð Þ
i
� ejp½w

L
�A� �B xð Þ;wR

�A� �B xð Þ�;

F �A� �B xð Þ ¼ f L�A xð Þ þ f L
B
xð Þ � f L�A xð Þf L

B
xð Þ;

h
f R�A xð Þ þ

f R
B

xð Þ � f R�A xð Þf R
B

xð Þ� � ejp½/L
�A� �B

xð Þ;/R
�A� �B

xð Þ� The product of

phase terms is defined below:

xL
�A� �B xð Þ ¼ xL

�A xð ÞxL
�B xð Þ; xU

�A� �B xð Þ ¼ xU
�A xð ÞxU

�B xð Þ
wL

�A� �B xð Þ ¼ wL
�A xð ÞwL

�B xð Þ; wU
�A� �B xð Þ ¼ wU

�A xð ÞwU
�B xð Þ

/L
�A� �B xð Þ ¼ /L

�A xð Þ/L
�B xð Þ; /U

�A� �B xð Þ ¼ /U
�A xð Þ/U

�B xð Þ:

(b) The addition of �A and �B, denoted as �Aþ �B, is

defined as:

T �Aþ �B xð Þ ¼ tL�A xð Þ þ tL
B
xð Þ � tL�A xð ÞtL

B
xð Þ; tU�A xð Þ

h

þtU
B

xð Þ � tU�A xð ÞtU
B

xð Þ
i
� ejp½xL

�Aþ �B
xð Þ;xL

�Aþ �B
xð Þ�;

I �Aþ �B
xð Þ ¼ iL�A xð ÞiL

B
xð Þ; iU�A xð ÞiU

B
xð Þ

h i
� ejp½w

L
�Aþ �B

xð Þ;wR
�Aþ �B

xð Þ�;

F �Aþ �B
xð Þ ¼ f L�A xð Þf L

B
xð Þ; f R�A xð Þf R

B
xð Þ

h i
� ejp½/

L
�Aþ �B

xð Þ;/R
�Aþ �B

xð Þ�

The addition of phase terms is defined below:

xL
�Aþ �B xð Þ ¼ xL

�A xð Þ þ xL
�B xð Þ; xU

�Aþ �B xð Þ ¼ xU
�A xð Þ þ xU

�B xð Þ
wL

�Aþ �B xð Þ ¼ wL
�A xð Þ þ wL

�B xð Þ; wU
�Aþ �B xð Þ ¼ wU

�A xð Þ þ wU
�B xð Þ

/L
�Aþ �B xð Þ ¼ /L

�A xð Þ þ /L
�B xð Þ; /U

�Aþ �B xð Þ ¼ /U
�A xð Þ þ /U

�B xð Þ

(c) The scalar multiplication of �A is an interval complex

neutrosophic set denoted as C ¼ k �A and defined as:

TC xð Þ ¼ 1� ð1� tL
A
ðxÞÞk; 1� ð1� tR

A
ðxÞÞk

h i
� ejp½x

L

C
xð Þ;xR

C
xð Þ�
;

IC xð Þ ¼½ðiL
A
ðxÞÞk; ðiR

A
ðxÞÞk� � ejp½w

L

C
xð Þ;wR

C
xð Þ�
;

FC xð Þ ¼½ðf L
A
ðxÞÞk; ðiR

A
ðxÞÞk� � ejp½/

L

C
xð Þ;/R

C
xð Þ�

The scalar of phase terms is defined below:

xL

C
xð Þ ¼xL

�A xð Þ � k; xR

C
xð Þ ¼ xR

�A xð Þ � k;
wL

C
xð Þ ¼wL

�A xð Þ � k; wR

C
xð Þ ¼ wR

�A xð Þ � k;
/L

C
xð Þ ¼/L

�A xð Þ � k; /R

C
xð Þ ¼ /R

�A xð Þ � k

4 A Multi-criteria Group Decision-Making Model
in ICNS

Definition 13 Let us assume that a committee of h

decision-makers ðDq; q ¼ 1; . . .; hÞ is responsible for

evaluating o alternatives ðAo; o ¼ 1; . . .;mÞ under p selec-

tion criteria ðCp; p ¼ 1; . . .; nÞ; where the suitability ratings

of alternatives under each criterion, as well as the weights

of all criteria, are assessed in IVCNS. The steps of the

proposed MCGDM method are as follows:

4.1 Aggregate Ratings of Alternatives Versus

Criteria

Let xopq ¼ ð½TL
opq; T

U
opq�; ½ILopq; IUopq�; ½FL

opq;F
U
opq�Þ be the suit-

ability rating assigned to alternative Ao by decision-maker

Dq for criterion Cp; where ½TL
opq; T

U
opq� ¼ ½tLopq; tUopq� �

ejp½x
L xð Þ;xU xð Þ�; ½ILopq; IUopq� ¼ ½iLopq; iUopq� � ejp½w

L xð Þ;wU xð Þ�; ½FL
opq;

FU
opq� ¼ ½f Lopq; f Uopq� � ejp½/

L xð Þ;/U xð Þ�; o ¼ 1; . . .;m; p ¼ 1; . . .;

n; q ¼ 1; . . .; h: Using the operational rules of the IVCNS,

the averaged suitability rating xop ¼ ð½TL
op; T

U
op�;

½ILop; IUop�; ½FL
op;F

U
op�Þ can be evaluated as:

xop ¼
1

h
	 ðxop1 
 xop2 
 � � � 
 xopq 
 � � � 
 xophÞ; ð3Þ

where Top ¼ ^ 1
h

Ph

q¼1

tL
opq
; 1

 !

;^ 1
h

Ph

q¼1

tR
opq
; 1

 !

;

" #

e
jp 1

h

Ph

q¼1

wL
qðxÞ;1h

Ph

q¼1

wU
q ðxÞ

 �

Iop ¼ ^ 1

h

Xh

q¼1

iL
opq
; 1

 !

;^ 1

h

Xh

q¼1

iR
opq
; 1

 !

;

" #

e
jp 1

h

Ph

q¼1

wL
qðxÞ;1h

Ph

q¼1

wU
q ðxÞ

 �

Fop ¼ ^ 1

h

Xh

q¼1

f L
opq
; 1

 !

;^ 1

h

Xh

q¼1

f R
opq
; 1

 !

;

" #

e
jp 1

h

Ph

q¼1

/L
qðxÞ;1h

Ph

q¼1

/U
q ðxÞ

 �

4.2 Aggregate the Importance Weights

Let wpq ¼ ð½TL
pq; T

U
pq�; ½ILpq; IUpq�; ½FL

pq;F
U
pq�Þ be the weight

assigned by decision-maker Dq to criterion Cp; where

½TL
pq; T

U
pq� ¼ ½tLpq; tUpq� � ejp½x

L xð Þ;xU xð Þ�; ½ILpq; IUpq� ¼ ½iLpq; iUpq� �
ejp½w

L xð Þ;wU xð Þ�; ½FL
pq;F

U
pq� ¼ ½f Lpq; f Upq� � ejp½/

L xð Þ;/U xð Þ�; FU
pq ¼

f Upq � ejp/ xð Þ; p ¼ 1; . . .; n; q ¼ 1; . . .; h: Using the opera-

tional rules of the IVCNS, the average weight wp ¼
ð½TL

p ; T
U
p �; ½ILp ; IUp �; ½FL

p ;F
U
p �Þ can be evaluated as:

wp ¼ ð1
h
Þ 	 ðwp1 
 wp2 
 � � � 
 wphÞ; ð4Þ

where Tp ¼ ^ 1
h

Ph

q¼1

tL
pq
; 1

 !

;^ 1
h

Ph

q¼1

tR
pq
; 1

 !

;

" #

e
jp 1

h

Ph

q¼1

wL
qðxÞ;1h

Ph

q¼1

wU
q ðxÞ

 �
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Ip ¼ ^ 1

h

Xh

q¼1

iL
pq
; 1

 !

;^ 1

h

Xh

q¼1

iR
pq
; 1

 !

;

" #

e
jp 1

h

Ph

q¼1

wL
qðxÞ;1h

Ph

q¼1

wU
q ðxÞ

 �

Fp ¼ ^ 1

h

Xh

q¼1

f L
pq
; 1

 !

;^ 1

h

Xh

q¼1

f R
pq
; 1

 !

;

" #

e
jp 1

h

Ph

q¼1

/L
qðxÞ;1h

Ph

q¼1

/U
q ðxÞ

 �

4.3 Aggregate the Weighted Ratings of Alternatives

Versus Criteria

The weighted ratings of alternatives can be developed via

the operations of interval complex neutrosophic set as

follows:

Vo ¼
1

p

Xh

p¼1

xop � wp; o ¼ 1; . . .;m; p ¼ 1; . . .; h: ð5Þ

4.4 Ranking the Alternatives

In this section, the modified score function, the accuracy

function and the certainty function of an ICNS, i.e., Vo ¼
ð½TL

o ; T
U
o �; ½ILo ; IUo �; ½FL

o ;F
U
o �Þ; o ¼ 1; . . .;m, adopted from Ye

[20], are developed for ranking alternatives in decision-

making problems, where

½TL
o ; T

U
o � ¼ ½tLo ; tUo �ejp½x

L xð Þ;xU xð Þ�; ½ILo ; IUo � ¼ ½iLo ; iUo �ejp½w
L xð Þ;wU xð Þ�;

½FL
o ;F

U
o � ¼ ½f Lo ; f Uo �ejp½/

L xð Þ;/U xð Þ�/U xð Þ�

The values of these functions for amplitude terms are

defined as follows:

eaVo
¼ 1

6
ð4þ tLo � iLo � f Lo þ tUo � iUo � f Uo Þ; haVo

¼ 1

2
ðtLo � f Lo þ tUo � f Uo Þ; and caVo

¼ 1

2
ðtLo þ tUo Þ

The values of these functions for phase terms are defined

below:

e
p
Vo

¼ p xLðxÞ � wLðxÞ � /LðxÞ þ xRðxÞ � wRðxÞ � /RðxÞ
� �

;

h
p
Vo

¼ p xLðxÞ � /LðxÞ þ xRðxÞ � /RðxÞ
� �

; and c
p
Vo

¼ p xLðxÞ þ xRðxÞ
� �

Let V1 and V2 be any two ICNSs. Then, the ranking

method can be defined as follows:

• If eaV1
[ eaV2

; then V1 [V2

• If eaV1
¼ eaV2

and e
p
V1
[ e

p
V2
; then V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2

and haV1
[ haV2

; then V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2
;haV1

¼ haV2
and h

p
V1
[ h

p
V2
; then

V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2
;haV1

¼ haV2
;hpV1

¼ h
p
V2

and caV1
[

caV2
; then V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2
;haV1

¼ haV2
;hpV1

¼ h
p
V2
;caV1

¼ caV2

and c
p
V1
[ c

p
V2
; then V1 [V2

• If eaV1
¼ eaV2

;epV1
¼ e

p
V2
;haV1

¼ haV2
;hpV1

¼ h
p
V2
;caV1

¼ caV2

and c
p
V1

¼ c
p
V2
; then V1 ¼ V2

5 Application of the Proposed MCGDM Approach

This section applies the proposed MCGDM for green

supplier selection in the case study of Thuan Yen JSC,

which is a small-size trading service and transportation

company. The managers of this company would like to

effectively manage the suppliers, due to an increasing

number of them. Data were collected by conducting semi-

structured interviews with managers and department heads.

Three managers (decision-makers), i.e., D1–D3, were

requested to separately proceed to their own evaluation for

the importance weights of selection criteria and the ratings

of suppliers. According to the survey and the discussions

with the managers and department heads, five criteria,

namely Price/cost (C1), Quality (C2), Delivery (C3),

Relationship Closeness (C4) and Environmental Manage-

ment Systems (C5), were selected to evaluate the green

suppliers. The entire green supplier selection procedure

was characterized by the following steps:

5.1 Aggregation of the Ratings of Suppliers Versus

the Criteria

Three managers determined the suitability ratings of three

potential suppliers versus the criteria using the linguistic

rating set S = {VL, L, F, G, VG} where VL = Very

Low = ([0.1, 0.2]ejp[0.7,0.8], [0.7, 0.8]ejp[0.9,1.0], [0.6,

0.7]ejp[1.0,1.1]), L = Low = ([0.3, 0.4]ejp[0.8,0.9], [0.6,

0.7]ejp[1.0,1.1], [0.5, 0.6]ejp[0.9,1.0]), F = Fair = ([0.4,

0.5]ejp[0.8,0.9], [0.5, 0.6]ejp[0.9,1.0],[0.4, 0.5]ejp[0.8,0.9]), G =

Good = ([0.6, 0.7]ejp[0.9,1.0], [0.4, 0.5]ejp[0.9,1.0], [0.3,

0.4]ejp[0.7,0.8]), and VG = Very Good = ([0.7, 0.8]

ejp[1.1,1.2], [0.2, 0.3]ejp[0.8,0.9], [0.1, 0.2]ejp[0.6,0.7]), to eval-

uate the suitability of the suppliers under each criteria.

Table 1 gives the aggregated ratings of three suppliers (A1,

A2, A3) versus five criteria (C1,…, C5) from three decision-

makers (D1, D2, D3) using Eq. (3).

5.2 Aggregation of the Importance Weights

After determining the green suppliers criteria, the three

company managers are asked to determine the level of

importance of each criterion using a linguistic weighting

set Q = {UI, OI, I, VI, AI} where UI = Unimpor-

tant = ([0.2, 0.3]ejp[0.7,0.8], [0.5, 0.6]ejp[0.9,1.0], [0.5,

0.6]ejp[1.1,1.2]), OI = Ordinary Important = ([0.3,

0.4]ejp[0.8,0.9], [0.5, 0.6]ejp[1.0,1.1], [0.4, 0.5]ejp[0.9,1.0]), I =

Important = ([0.5, 0.6]ejp[0.9,1.0], [0.4, 0.5]ejp[0.9,1.0], [0.3,
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0.4]ejp[0.8,0.9]), VI = Very Important = ([0.7, 0.8]

ejp[0.9,1.0], [0.3, 0.4]ejp[0.9,1.0], [0.2, 0.3]ejp[0.7,0.8]), and

AI = Absolutely Important = ([0.8, 0.9]ejp[1.0,1.1], [0.2,

0.3]ejp[0.8,0.9], [0.1, 0.2]ejp[0.6,0.7]).

Table 2 displays the importance weights of the five

criteria from the three decision-makers. The aggregated

weights of criteria obtained by Eq. (4) are shown in the last

column of Table 2.

5.3 Compute the Total Value of Each Alternative

Table 3 presents the final fuzzy evaluation values of each

supplier using Eq. (5).

Table 1 Aggregated ratings of suppliers versus the criteria

Criteria Suppliers Decision-makers Aggregated ratings

D1 D2 D3

C1 A1 G F G ([0.542, 0.644]ejp[0.867,0.967], [0.431, 0.531]ejp[0.9,1.0]], [0.33, 0.431]ejp[0.733,0.833])

A2 F F G ([0.476, 0.578]ejp[0.833,0.933], [0.464, 0.565]ejp[0.9,1.0], [0.363, 0.464]ejp[0.767,0.867])

A3 VG G VG ([0.67, 0.771]ejp[1.033,1.133], [0.252, 0.356]ejp[0.833,0.933], [0.144, 0.252]ejp[0.633,0.733])

C2 A1 F F F ([0.4, 0.5]ejp[0.8,0.9], [0.5, 0.6]ejp[0.9,1.0], [0.4, 0.5]ejp[0.8,0.9])

A2 VG G G ([0.637, 0.738]ejp[0.967,1.067], [0.317, 0.422]ejp[0.867,0.967], [0.208, 0.317]ejp[0.667,0.767])

A3 F G G ([0.542, 0.644]ejp[0.867,0.967], [0.431, 0.531]ejp[0.9,1.0], [0.33, 0.431]ejp[0.733,0.833])

C3 A1 L F L ([0.335, 0.435]ejp[0.8,0.9], [0.565, 0.665]ejp[0.967,1.067], [0.464, 0.565]ejp[0.867,0.967])

A2 G G G ([0.6, 0.7]ejp[0.9,1.0], [0.4, 0.5]ejp[0.9,1.0], [0.3, 0.4]ejp[0.7,0.8])

A3 F G F ([0.476, 0.578]ejp[0.833,0.933], [0.464, 0.565]ejp[0.9,1.0], [0.363, 0.464]ejp[0.767,0.867])

C4 A1 G F G ([0.542, 0.644]ejp[0.867,0.967], [0.431, 0.531]ejp[0.9,1.0], [0.33, 0.431]ejp[0.733,0.833])

A2 F F L ([0.368, 0.469]ejp[0.8,0.9], [0.531, 0.632]ejp[0.933,1.033], [0.431, 0.531]ejp[0.833,0.933])

A3 G VG G ([0.637, 0.738]ejp[0.967,1.067], [0.317, 0.422]ejp[0.867,0.967], [0.208, 0.317]ejp[0.667,0.767])

C5 A1 L F L ([0.335, 0.435]ejp[0.8,0.9], [0.565, 0.665]ejp[0.967,1.067], [0.464, 0.565]ejp[0.867,0.967])

A2 G G VG ([0.637, 0.738]ejp[0.967,1.067], [0.317, 0.422]ejp[0.867,0.967], [0.208, 0.317]ejp[0.667,0.767])

A3 G F F ([0.476, 0.578]ejp[0.833,0.933], [0.464, 0.565]ejp[0.9,1.0], [0.363, 0.464]ejp[0.767,0.867])

Table 2 The importance and aggregated weights of the criteria

Criteria Decision-makers Aggregated weights

D1 D2 D3

C1 VI I I ([0.578, 0.683]ejp[0.9,1.0], [0.363, 0.464]ejp[0.9,1.0], [0.262, 0.363]ejp[0.767,0.867])

C2 AI VI VI ([0.738, 0.841]ejp[0.933,1.033], [0.262, 0.363]ejp[0.867,0.967], [0.159, 0.262]ejp[0.667,0.767)

C3 VI VI I ([0.644, 0.748]ejp[0.9,1.0], [0.33, 0.431]ejp[0.9,1.0], [0.229, 0.33]ejp[0.733,0.833])

C4 I I I ([0.5, 0.6]ejp[0.9,1.0]], [0.4, 0.5]ejp[0.9,1.0], [0.3, 0.4]ejp[0.8,0.9])

C5 I OI OI ([0.374, 0.476]ejp[0.833,0.933], [0.391, 0.565]ejp[0.967,1.067], [0.363, 0.464]ejp[0.867,0.967])

Table 3 The final fuzzy evaluation values of each supplier

Suppliers Aggregated weights

A1 ([0.247, 0.361]ejp[0.739,0.921], [0.673, 0.784]ejp[0.841,1.034], [0.552, 0.679]ejp[0.614,0.78])

A2 ([0.319, 0.449]ejp[0.798,0.986], [0.607, 0.733]ejp[0.81,1.0], [0.475, 0.617]ejp[0.558,0.717])

A3 ([0.322, 0.451]ejp[0.811,1.001], [0.6, 0.724]ejp[0.798,0.987], [0.465, 0.606]ejp[0.547,0.705])
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Table 4 Modified score function of each alternative

Suppliers Modified score function Accuracy function Certainty function Ranking

Amplitude term Phase term Amplitude term Phase term Amplitude term Phase term

A1 0.320 -1.61p -0.311 0.265p 0.304 1.659p 3

A2 0.389 -1.301p -0.162 0.508p 0.384 1.784p 2

A3 0.396 -1.225p -0.149 0.56p 0.387 1.811p 1

Table 5 The importance and aggregated weights of the criteria

Criteria Decision-makers Aggregated weights

D1 D2 D3 D4

C1 AI AI AI VI ([0.269, 0.361]ejp[0.194,0.214], [0.115, 0.161]ejp[0.156,0.175], [0.066, 0.115]ejp[0.117,0.136])

C2 VI I I VI ([0.157, 0.204]ejp[0.175,0.194], [0.191, 0.239]ejp[0.175,0.194], [0.144, 0.191]ejp[0.148,0.168)

C3 AI AI VI AI ([0.252, 0.336]ejp[0.189,0.208], [0.129, 0.176]ejp[0.161,0.18], [0.08, 0.129]ejp[0.122,0.141])

C4 VI VI I OI ([0.186, 0.241]ejp[0.175,0.194]], [0.176, 0.223]ejp[0.175,0.194], [0.129, 0.176]ejp[0.141,0.161])

C5 I I AI AI ([0.168, 0.224]ejp[0.18,0.2], [0.17, 0.219]ejp[0.175,0.194], [0.12, 0.17]ejp[0.145,0.164])

Table 6 Aggregated ratings of suppliers versus the criteria

Criteria Suppliers Decision-makers Aggregated ratings

D1 D2 D3 D4

C1 A1 G F G G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

A2 G G F F ([0.510, 0.613]ejp[0.85,0.95], [0.01, 0.023]ejp[0.9,1.0], [0.436, 0.532]ejp[0.75,0.85])

A3 L G F L ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A4 G F G F ([0.510, 0.613]ejp[0.85,0.95], [0.01, 0.023]ejp[0.9,1.0], [0.436, 0.532]ejp[0.75,0.85])

A5 F G G G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

C2 A1 G G F G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.025]], [0.495, 0.589]ejp[0.725,0.825])

A2 G F L F ([0.437, 0.539]ejp[0.825,0.925], [0.015, 0.033]ejp[0.925,1.025]], [0.495, 0.589]ejp[0.8,0.9])

A3 L G G G ([0.54, 0.643]ejp[0.875,0.975], [0.01, 0.023]ejp[0.925,1.025]], [0.461, 0.557]ejp[0.75,0.85])

A4 F L G L ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05]], [0.495, 0.589]ejp[0.825,0.925])

A5 G G F G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

C3 A1 F F L L ([0.352, 0.452]ejp[0.8,0.9], [0.023, 0.047]ejp[0.95,1.05]], [0.532, 0.622]ejp[0.85,0.95])

A2 G G G G ([0.6, 0.7]ejp[0.9,1.0], [0.006, 0.016]ejp[0.9,1.0], [0.405, 0.503]ejp[0.7,0.8])

A3 L G F F ([0.437, 0.539]ejp[0.825,0.925], [0.015, 0.033]ejp[0.925,1.025]], [0.495, 0.589]ejp[0.8,0.9])

A4 G F G F ([0.51, 0.613]ejp[0.85,0.95], [0.01, 0.023]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.75,0.85])

A5 F G G G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

C4 A1 G L F L ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A2 G G L G ([0.54, 0.643]ejp[0.875,0.975], [0.01, 0.023]ejp[0.925,1.025], [0.461, 0.557]ejp[0.75,0.85])

A3 F F F F ([0.4, 0.5]ejp[0.8,0.9], [0.016, 0.034]ejp[0.9,1.0], [0.503, 0.595]ejp[0.8,0.9])

A4 L L F G ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A5 F G G G ([0.557, 0.659]ejp[0.875,0.975], [0.008, 0.019]ejp[0.9,1.0]], [0.436, 0.532]ejp[0.725,0.825])

C5 A1 L F G L ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A2 G L G G ([0.54, 0.643]ejp[0.875,0.975], [0.01, 0.023]ejp[0.925,1.025]], [0.461, 0.557]ejp[0.75,0.85])

A3 G G L F ([0.491, 0.595]ejp[0.85,0.95], [0.012, 0.027]ejp[0.925,1.025], [0.461, 0.557]ejp[0.775,0.875])

A4 L L F G ([0.414, 0.518]ejp[0.825,0.925], [0.019, 0.039]ejp[0.95,1.05], [0.495, 0.589]ejp[0.825,0.925])

A5 G G G G ([0.6, 0.7]ejp[0.9,1.0], [0.006, 0.016]ejp[0.9,1.0], [0.405, 0.503]ejp[0.7,0.8])
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5.4 Ranking the Alternatives

Using the modified ranking method, the final ranking value

of each alternative is defined as in Table 4. According to

this table, the ranking order of the three suppliers is

A3 � A2 � A1:

6 Comparison of the Proposed Method
with Another MCGDM Method

6.1 Example 1

This section compares the proposed approach with another

MCGDM approach to demonstrate its advantages and

applicability by reconsidering the example investigated by

Sahin and Yigider [14]. In this example, four decision-

makers (D1,…,D4) have been appointed to evaluate five

suppliers (S1,…, S5) based on five performance criteria

including delivery (C1), quality (C2), flexibility (C3), ser-

vice (C4) and price (C5).

The information of weights provided to the five criteria

by the four decision-makers are presented in Table 5. The

aggregated weights of criteria obtained by Eq. (4) are

shown in the last column of Table 5.

Table 6 demonstrates the averaged ratings of suppliers

versus the criteria based on the data presented in Tables 4,

5, 6, 7 and 8 in the work of Sahin and Yigider [14] and the

proposed method.

Table 7 presents the final fuzzy evaluation values of

each supplier using Eq. (5).

Using the proposed modified ranking method, the final

ranking value of each alternative is defined as in Table 8.

According to this table, the ranking order of the five sup-

pliers is A5 � A2 � A1 � A3 � A4: Obviously, the results

in Sahin and Yigider [14] conflict with ours in this paper.

The reason for the difference is in the proposed method:

IVCNS was used to measure the ratings of the suppliers

and the importance weights of criteria.

6.2 Example 2

This section uses a numerical example to compare the

proposed approach with Ye’s method [21] as follows.

Consider two ICNS, i.e., A1 = ([0.5, 0.6]ejp[0.9,1.0], [0.4,

0.5]ejp[0.7,0.8]], [0.3, 0.4]ejp[0.5,0.6] and A2 = ([0.5,

0.6]ejp[0.8,0.9], [0.4, 0.5]ejp[0.5,0.6]], [0.3, 0.4]ejp[0.7,0.8]. It is

clear that the truth membership, indeterminacy member-

ship and false-membership of A1 and A2 have the same

amplitude values. Using the Ye’s method [21], the simi-

larity measures between ICNS A1 and A2 are: S1(A1,

A2) = 1 and S2(A1, A2) = 1. Therefore, the ranking order

of A1 and A2 is A1 = A2. This is not reasonable.

However using the proposed ranking method, the

modified score, the accuracy and certainty function of A1

and A2 are: eaVo
ðA1Þ ¼ eaVo

ðA2Þ ¼ 0:583; haVo
ðA1Þ ¼

haVo
ðA2Þ ¼ 0:2; caVo

ðA1Þ ¼ caVo
ðA2Þ ¼ 0:55 and e

p
Vo
ðA1Þ ¼

�0:7p; epVo
ðA2Þ ¼ �0:9p; h

p
Vo
ðA1Þ ¼ 0:8p; hpVo

ðA2Þ ¼ 0:2p

and c
p
Vo
ðA1Þ ¼ 1:9p; cpVo

ðA2Þ ¼ 1:7p: Accordingly, the

ranking order of ICNS A1 and A2 is A1[A2. Obviously,

the proposed ranking method can also rank ICNS other

than INS.

Table 7 The final fuzzy evaluation values of each supplier

Suppliers Aggregated weights

A1 ([0.095, 0.154]ejp[0.153,0.19], [0.166, 0.228]ejp[0.156,0.192], [0.534, 0.639]ejp[0.106,0.137])

A2 ([0.11, 0.174]ejp[0.158,0.195], [0.162, 0.22]ejp[0.153,0.189], [0.508, 0.616]ejp[0.101,0.131])

A3 ([0.093, 0.151]ejp[0.153,0.189], [0.166, 0.227]ejp[0.155,0.191], [0.539, 0.643]ejp[0.106,0.137])

A4 ([0.096, 0.156]ejp[0.153,0.189], [0.165, 0.227]ejp[0.156,0.192], [0.547, 0.651]ejp[0.107,0.138])

A5 ([0.117, 0.183]ejp[0.161,0.198], [0.16, 0.217]ejp[0.15,0.187], [0.491, 0.6]ejp[0.097,0.126])

Table 8 Modified score function of each alternative

Suppliers Modified score function Accuracy function Certainty function Ranking

Amplitude term Phase term Amplitude term Phase term Amplitude term Phase term

A1 0.447 -0.248p -0.461 0.100p 0.125 0.344p 3

A2 0.463 -0.222p -0.420 0.121p 0.142 0.353p 2

A3 0.445 -0.247p -0.469 0.099p 0.122 0.341p 4

A4 0.444 -0.252p -0.473 0.096p 0.126 0.342p 5

A5 0.472 -0.201p -0.395 0.136p 0.150 0.359p 1
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7 Conclusion

It is believed that uncertain, ambiguous, indeterminate,

inconsistent and incomplete periodic/redundant informa-

tion can be dealt better with intervals instead of single

values. This paper aimed to propose the interval complex

neutrosophic set, which is more adaptable and flexible to

real-life problems than other types of fuzzy sets. The def-

initions of interval complex neutrosophic set, accompanied

by the set operations, were defined. The relationship of

interval complex neutrosophic set with other existing

approaches was presented.

A new decision-making procedure in the interval com-

plex neutrosophic set has been presented and applied to a

decision-making problem for the green supplier selection.

Comparison between the proposed method and the related

methods has been made to demonstrate the advantages and

applicability. The results are significant to enrich the

knowledge of neutrosophic set in the decision-making

applications.

Future work plans to use the decision-making procedure

to more complex applications, and to advance the interval

complex neutrosophic logic system for forecasting

problems.
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