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Abstract: In this research study, we introduce the notion of single-valued neutrosophic incidence

graphs. We describe certain concepts, including bridges, cut vertex and blocks in single-valued

neutrosophic incidence graphs. We present some properties of single-valued neutrosophic incidence

graphs. We discuss the edge-connectivity, vertex-connectivity and pair-connectivity in neutrosophic

incidence graphs. We also deal with a mathematical model of the situation of illegal migration from

Pakistan to Europe.
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1. Introduction

The concept of graph theory was introduced by Euler. A crisp graph shows the relations between

the elements of the vertex set. A weighted graph gives the extent of these relations. Many problems

can be solved if proper weights are given. However, in many situations, the weights may not known,

and the relationship is uncertain. Hence, a fuzzy relation can be used to handle such situations.

Rosenfeld [1] developed the concept of a fuzzy graph. He also discussed several concepts like edges,

paths, bridges and connectedness in a fuzzy graph. Most of the theoretical development of fuzzy

graph theory is based on Rosenfeld’s initial work. Bhutani et al. [2,3] introduced the advance concepts

in fuzzy graphs.

Sometimes when the relationship between the elements of the vertex set is indeterminate, the

fuzzy graph and its extension fails. This indeterminacy can be overcome by using single-valued

neutrosophic graphs [4].

Dinesh, in [5], introduced the concept of unordered pairs of vertices which are not incident

with end vertices. The fuzzy incidence graph not just shows the relations between vertices, but also

provides information about the influence of a vertex on an edge. Dinesh extended the idea of the fuzzy

incidence graph in [6] by introducing new concepts in this regard. Later, Methew et al. [7] discussed

the connectivity concepts in fuzzy incidence graphs. Malik et al. [8] applied the notion of the fuzzy

incidence graph in problems involving human trafficking. They discussed the role played by the

vulnerability of countries and their government’s response to human trafficking. Methew et al. [9]

studied fuzzy incidence blocks and their applications in illegal migration problems. They used fuzzy

incidence graphs as a model for a nondeterministic network with supporting links. They used fuzzy

incidence blocks to avoid the vulnerable links in the network.

The paper is organized as follows: In Section 1, we give some preliminary notions and

terminologies of fuzzy incidence graphs which are needed to understand the extended concept of the

single-valued neutrosophic incidence graph. In Section 2, we present the definition of a single-valued

neutrosophic incidence graph. We also discuss the edge-connectivity, vertex-connectivity and
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pair-connectivity in neutrosophic incidence graphs. In Section 3, we give a mathematical model of

the situation of illegal migration from Pakistan to Europe. Finally, the paper is concluded by some

remarks in Section 4. Below we present some preliminary definitions from [6] and [4]. For further

study on these topics, the readers are referred to references [1,7–16].

Let G = (V, E) be a graph on a nonempty set, V. Then, G′ = (V, E, I) is called an incidence

graph, where I ⊆ V × E. The elements of I are called incidence pairs or simply, pairs.

A fuzzy incidence graph of an incidence graph, G′ = (V, E, I), is an ordered-triplet, G̃ = (µ, λ, ψ),

where µ is a fuzzy subset of V, λ is a fuzzy relation of V, and ψ is a fuzzy subset of I such that

ψ(x, xy) ≤ min{µ(x), λ(xy)}, ∀x ∈ V, xy ∈ E.

We may compare elements of two neutrosophic sets A and B, that is

(TA(x), IA(x), FA(x)) < (TB(x), IB(x), FB(x))

⇒ TA(x) < TB(x), IA(x) < IB(x), FA(x) > FB(x).

2. Single-Valued Neutrosophic Incidence Graphs

Definition 1. A single-valued neutrosophic incidence graph of an incidence graph, G′ = (V, E, I), is an

ordered-triplet, G̃ = (A, B, C), such that

1. A is a single-valued neutrosophic set on V.

2. B is a single-valued neutrosophic relation on V.

3. C is a single-valued neutrosophic subset of V × E such that

TC(x, xy)≤min{TA(x), TB(xy)},

IC(x, xy)≤min{IA(x), IB(xy)},

FC(x, xy)≤max{FA(x), FB(xy)}, ∀x ∈ V, xy ∈ E.

Here, we discuss an example of a single-valued neutrosophic incidence graph (SVNIG).

Example 1. Consider an incidence graph, G = (V, E, I), such that V = {a, b, c, d}, E =

{ab, bc, bd, cd, ad} and I = {(a, ab), (b, ab), (b, bc), (c, bc), (b, bd), (d, bd), (c, cd), (d, cd), (d, ad), (a, ad)},

as shown in Figure 1.

Let G̃ = (A, B, C) be a single-valued neutrosophic incidence graph associated with G, as shown in

Figure 2, where

A ={(a, 0.2, 0.5, 0.8), (b, 0.3, 0.5, 0.1), (c, 0.9, 0.9, 0.1), (d, 0.8, 0.1, 0.2)},

B ={(ab, 0.2, 0.4, 0.7), (bc, 0.3, 0.4, 0.1), (bd, 0.1, 0.1, 0.1), (cd, 0.7, 0.1, 0.2), (ad, 0.1, 0.1, 0.5)},

C ={((a, ab), 0.2, 0.3, 0.7), ((b, ab), 0.1, 0.4, 0.6), ((b, bc), 0.3, 0.3, 0.1), ((c, bc), 0.2, 0.3, 0.1),

((b, bd), 0.1, 0.1, 0.1), ((d, bd), 0.1, 0.1, 0.2), ((c, cd), 0.7, 0.1, 0.2), ((d, cd), 0.7, 0.1, 0.2)

((d, ad), 0.1, 0.1, 0.4), ((a, ad), 0.1, 0.1, 0.5)}.



Axioms 2018, 7, 47 3 of 14

b

b b

b
b

b

b

b
b

b

b

b

b

b

G = (V, E, I)

a b

cd

Figure 1. Incidence graph.

b

b b

b
b

b

b

b
b

b

b

b
(a

, 0
.2, 0

.5, 0
.8) (b, 0.3, 0.5, 0.1)

(c
, 0

.9, 0
.9, 0

.1)
(d, 0.8, 0.1, 0.2)

(0.2, 0.4, 0.7)

(0.3, 0.4, 0.1)

(0.7, 0.1, 0.2)

(0
.1

,0
.1

,0
.5
)

(0.2, 0.3, 0.7)

(0.1, 0.4, 0.6)

(0.3,0.3,0.1)

(0.7, 0.1, 0.2)

(0.7, 0.1, 0.2)

(0.2, 0.3, 0.1)(0
.1

,0
.1

,0
..

4
)

(0
.1

,0
.1

,0
.5
)

G̃ = (A, B, C)

b
(0.1, 0.1, 0.2)

b

(0.1, 0.1, 0.1)

(0.1, 0.1, 0.1)

Figure 2. Single-valued neutrosophic incidence graph.

Definition 2. The support of an SVNIG G̃ = (A, B, C) is denoted by G∗ = (A∗, B∗, C∗) where

A∗ = support of A = {x ∈ V : TA(x) > 0, IA(x) > 0, FA(x) > 0},

B∗ = support of B = {xy ∈ E : TB(xy) > 0, IB(xy) > 0, FB(xy) > 0},

C∗ = support of C = {(x, xy) ∈ I : TC(x, xy) > 0, IC(x, xy) > 0, FC(x, xy) > 0}.

Now we introduce the concepts of edge, pair, walk, trail, path and connectedness in an SVNIG.

Definition 3. If xy ∈ B∗, then xy is an edge of the SVNIG G̃ = (A, B, C) and if (x, xy), (y, xy) ∈ C∗, then

(x, xy) and (y, xy) are called pairs of G̃.

Definition 4. A sequence

P : u0, (u0, u0u1), u0u1, (u1, u0u1), u1, (u1, u1u2), u1u2, (u2, u1u2), u2, ...,

un−1, (un−1, un−1un), un−1un, (un, un−1un), un

of vertices, edges and pairs in G̃ is a walk. It is a closed walk if u0 = un.

In the above sequence, if all edges are distinct, then it is a trail, and if the pairs are distinct, then it is an

incidence trail. P is called a path if the vertices are distinct. A path is called a cycle if the initial and end vertices

of the path are same. Any two vertices of G̃ are said to be connected if they are joined by a path.

Example 2. In the example presented earlier

P1 : a, (a, ab), ab, (b, ab), b, (b, bd), bd, (d, bd), d, (d, da), da, (a, da), a
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is a walk. It is a closed walk since the initial and final vertices are same, i.e., it is not a path, but it is a trail and

an incidence trail.

P2 : a, (a, ab), ab, (b, ab), b, (b, bd), bd, (d, bd), d

P2 is a walk, path, trail and an incidence trail.

Definition 5. Let G̃ = (A, B, C) be a nSVNIG. Then, H̃ = (L, M, N) is a single-valued neutrosophic

incidence subgraph of G̃ if L ⊆ A, M ⊆ B and N ⊆ C. H̃ is a single-valued neutrosophic incidence spanning

subgraph of G̃ if L∗ = A∗.

Definition 6. In an SVNIG, the strength of a path, P, is an ordered triplet denoted by

S(P) = (s1, s2, s3), where

s1 = min{TB(uv) : uv ∈ P},

s2 = min{IB(uv) : uv ∈ P},

s3 = max{FB(uv) : uv ∈ P}.

Similarly, the incidence strength of a path, P, in an SVNIG is denoted by IS(P) = (is1, is2, is3), where

is1 = min{TC(u, uv) : (u, uv) ∈ P},

is2 = min{IC(u, uv) : (u, uv) ∈ P},

is3 = max{FC(u, uv) : (u, uv) ∈ P}.

Example 3. Let G = (V, E, I) be an incidence graph, as shown in Figure 3, and G̃ = (A, B, C) is an SVNIG

associated with G, which is shown in Figure 4.

Clearly, P : u, (u, uv), uv, (v, uv), v, (v, vx), vx, (x, vx), x is a path in G̃.

The strength of the path, P, is S(P) = (0.2, 0.1, 0.5), and the incidence strength of P is

IS(P) = (0.1, 0.1, 0.6).
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Figure 3. Incidence graph.
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Figure 4. Single-valued neutrosophic incidence graph.

Definition 7. In an SVNIG, G̃ = (A, B, C) the greatest strength of the path from l to m, where l,m

∈ A∗ ∪ B∗ is the maximum of strength of all paths from l to m.

S∞(l, m) =max{S(P1), S(P2), S(P3), ...}

=(s∞

1 , s∞

2 , s∞

3 )

=
(

max(s11, s12, s13, ...), max(s21, s22, s23, ...), min(s31, s32, s33, ...)
)

.

S∞(l,m) is sometimes called the connectedness between l and m.

Similarly, the greatest incidence strength of the path from l to m, where l,m ∈ A∗ ∪ B∗ is the maximum

incidence strength of all paths from l to m.

IS∞(l, m) =max{IS(P1), IS(P2), IS(P3), ...}

=(is∞

1 , is∞

2 , is∞

3 )

=
(

max(is11, is12, is13, ...), max(is21, is22, is23, ...), min(is31, is32, is33, ...)
)

,

where Pj, j = 1, 2, 3, . . . are different paths from l to m.

IS∞(l, m) is sometimes referred as the incidence connectedness between l and m.

Example 4. In the SVNIG given in Figure 4, the total paths from vertex u to w are as follows:

P1 : u, (u, ux), ux, (x, ux), x, (x, wx), wx, , (w, wx), w.

P2 : u, (u, uv), uv, (v, uv), v, (v, vw), vw, (w, vw), w.

P3 : u, (u, uv), uv, (v, uv), v, (v, vx), vx, (x, vx), x, (x, wx), wx, (w, wx), w.

P4 : u, (u, ux), ux, (x, ux), x, (x, vx), vx, (v, vx), v, (v, vw), vw, (w, vw), w.

The corresponding incidence strengths of each path are

IS(P1) = (s11, s21, s31) = (0, 0.1, 0.6),

IS(P2) = (s12, s22, s32) = (0, 0.1, 0.5),

IS(P3) = (s13, s23, s33) = (0, 0.1, 0.6),

IS(P4) = (s14, s24, s34) = (0, 0.1, 0.6).
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Now, the greatest incidence strength of the path from u to w is calculated as follows:

IS∞(u, w) = max{IS(P1), IS(P2), IS(P3), IS(P4)}

= (max{is11, is12, is13, is14}, max{is21, is22, is23, is24}, min{is31, is32, is33, is34})

= (max{0, 0, 0, 0}, max{0.1, 0.1, 0.1, 0.1}, min{0.6, 0.5, 0.6, 0.6})

= (0, 0.1, 0.5).

Definition 8. An SVNIG, G̃ = (A, B, C), is a cycle if, and only if, the underlying graph, G∗ =

(A∗, B∗, C∗), is a cycle.

Definition 9. The SVNIG G̃ = (A, B, C) is a neutrosophic cycle if, and only if, G∗ = (A∗, B∗, C∗) is a

cycle and there exists no unique edge, xy ∈ B∗, such that

TB(xy) =min{TB(uv) : uv ∈ B∗},

IB(xy) = min{IB(uv) : uv ∈ B∗},

FB(xy) =max{FB(uv) : uv ∈ B∗}.

Definition 10. The SVNIG G̃ = (A, B, C) is a neutrosophic incidence cycle if, and only if it is a neutrosophic

cycle and there exists no unique pair, (x, xy) ∈ C∗, such that

TC(x, xy) =min{TC(u, uv) : (u, uv) ∈ C∗},

IC(x, xy) = min{IC(u, uv) : (u, uv) ∈ C∗},

FC(x, xy) =max{FC(u, uv) : (u, uv) ∈ C∗}.

Example 5. Let G̃ = (A, B, C) be an SVNIG, as shown in Figure 5. G̃ is a cycle, since G = (A∗, B∗, C∗)

(support of G̃) is clearly a cycle.

Also,

TB(ab)=0.1 = min{TB(ab), TB(bc), TB(cd), TB(de), TB(ea)},

IB(ab) =0.1 = min{IB(ab), IB(bc), IB(cd), IB(de), IB(ea)},

FB(ab)=0.6 = max{FB(ab), FB(bc), FB(cd), FB(de), FB(ea)},

and

TB(bc)=0.1 = min{TB(ab), TB(bc), TB(cd), TB(de), TB(ea)},

IB(bc) =0.1 = min{IB(ab), IB(bc), IB(cd), IB(de), IB(ea)},

FB(bc)=0.6 = max{FB(ab), FB(bc), FB(cd), FB(de), FB(ea)}.

So, G̃ is a neutrosophic cycle.

Furthermore, G̃ is a neutrosophic incidence cycle since there is more than one pair, namely, (b, ab) and

(d, de), such that

TC(b, ab)= 0.1 =min{TC(u, uv) : (u, uv) ∈ C∗},

IC(b, ab) = 0.1 =min{IC(u, uv) : (u, uv) ∈ C∗},

FC(b, ab)= 0.7 =max{FC(u, uv) : (u, uv) ∈ C∗},

and

TC(d, de)= 0.1 =min{TC(u, uv) : (u, uv) ∈ C∗},

IC(d, de) = 0.1 =min{TC(u, uv) : (u, uv) ∈ C∗},

FC(d, de)= 0.7 =max{TC(u, uv) : (u, uv) ∈ C∗}.



Axioms 2018, 7, 47 7 of 14

(d, 0.9, 0.9, 0.7)

b

b b
b

b

b

b

b b

b

b

b

b

b
b

(a, 0.3, 0.2, 0.1)

(b, 0.5, 0.8, 0.7)

(c, 0.4, 0.4, 0.4)

(e, 0.1, 0.2, 0.6)

(0.1, 0.1, 0.6)

(0
.1

, 0
.1

, 0
.6
)

(0.4, 0.3, 0.5)

(0.1, 0.2, 0.4)

(0
.1

, 0
.2

, 0
.3
)

(0.1, 0.1, 0.6)

(0
.1

, 0
.1

, 0
.3
)

(0.1, 0.1, 0.7)

(0
.1

, 0
.1

, 0
.2
)

(0.3, 0.2, 0.4)

(0.2, 0.3, 0.5)

(0.1, 0.1, 0.7)
(0.1, 0.1, 0.6)

(0
.1, 0

.2, 0
.5)

(0
.1, 0

.2, 0
.3)

G̃ = (A, B, C)

Figure 5. Single-valued neutrosophic incidence graph.

The concepts of bridges, cutvertices and cutpairs in SVNIG are defined as follows.

Definition 11. Let G̃ = (A, B, C) be an SVNIG. An edge, uv, in G̃ is called a bridge if, and only if, uv is a

bridge in G∗ = (A∗, B∗, C∗)—that is, the removal of uv disconnects G∗.

An edge uv is called a neutrosophic bridge if

S
′
∞(x, y) < S∞(x, y), for some x, y ∈ A∗,

(s
′
∞

1 , s
′
∞

2 , s
′
∞

3 ) < (s∞

1 , s∞

2 , s
′
∞

3 )

⇒ s
′
∞

1 < s∞

1 , s
′
∞

2 < s∞

2 , s
′
∞

3 > s∞

3

where S
′
∞(x, y) and S∞(x, y) denote the connectedness between x and y in G

′
= G̃−{uv} and G̃,

respectively.

An edge, uv, is called a neutrosophic incidence bridge if

IS
′
∞(x, y) < IS∞(x, y), for some x, y ∈ A∗,

(is
′
∞

1 , is
′
∞

2 , is
′
∞

3 ) < (is∞

1 , is∞

2 , is
′
∞

3 )

⇒ is
′
∞

1 < is∞

1 , is
′
∞

2 < is∞

2 , is
′
∞

3 > is∞

3

where IS
′
∞(x, y) and IS∞(x, y) denote the incidence connectedness between x and y in G

′
= G̃−{uv}

and G̃, respectively.

Definition 12. Let G̃ = (A, B, C) be an SVNIG. A vertex, v, in G̃ is a cutvertex if, and only if, it is a

cutvertex in G∗ = (A∗, B∗, C∗)—that is G∗ − {v} is a disconnect graph.

A vertex, v, in an SVNIG is called a neutrosophic cutvertex if the connectedness between any two vertices

in G
′
= G̃−{v} is less than the connectedness between the same vertices in G̃—that is,

S
′
∞(x, y) < S∞(x, y), for some x, y ∈ A∗.

A vertex, v, in SVNIG G̃ is a neutrosophic incidence cutvertex if for any pair of vertices, x, y, other than

v, the following condition holds:

IS
′
∞(x, y) < IS∞(x, y),

where IS
′
∞(x, y) and IS∞(x, y) denote the incidence connectedness between x and y in G

′
= G̃−{v} and G̃,

respectively.
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Definition 13. Let G̃ = (A, B, C) be an SVNIG. A pair (u, uv) is called a cutpair if, and only if, (u, uv) is

a cutpair in G∗ = (A∗, B∗, C∗)—that is, after removing the pair (u, uv), there is no path between u and uv.

Let G̃ = (A, B, C) be an SVNIG. A pair (u, uv) is called a neutrosophic cutpair if deleting the pair

(u, uv) reduces the connectedness between u, uv ∈ A∗ ∪ B∗, that is,

S
′
∞(u, uv) < S∞(u, uv),

where S
′
∞(u, uv) and S∞(u, uv) denote the connectedness between u and uv in G

′
= G̃G̃−{(u, uv)}

and G̃, respectively.

A pair (u, uv) is called neutrosophic incidence cutpair if

IS
′
∞(u, uv) < IS∞(u, uv), for u, uv ∈ A∗ ∪ B∗,

where IS
′
∞(u, uv) and IS∞(u, uv) denote the incidence connectedness between u and uv in

G
′
= G̃−{(u, uv)} and G̃, respectively.

Example 6. In the SVNIG, G̃, given in Figure 6, ab and bc are bridges, since their removal disconnects the

underlying graph, G∗.

In G̃, ab, bc, cd and de are neutrosophic bridges, since, for a, e ∈ A∗,

S
′
∞(a, e) < S∞(a, e)

after the removal of each of the bridges. The edges—ab, bc, cd and de—are neutrosophic incidence bridges in G̃

as well.

b and c are cutvertices. In addition, all the vertices of G̃ are neutrosophic cutvertices, except for a, since

the removal of a does not affect the connectedness of G̃. b, c, d and e are neutrosophic incidence cutvertices in G̃.

The pairs (a, ab), (b, ab), (b, bc) and (c, bc) are the cutpairs, neutrosophic cutpairs and also neutrosophic

incidence cutpairs in the given graph.
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Figure 6. Single-valued neutrosophic incidence graph.

Theorem 1. Let G̃ = (A, B, C) be a SVNIG. If uv is a neutrosophic bridge, then uv is not a weakest edge in

any cycle.

Proof. Let uv be a neutrosophic bridge and suppose, on the contrary, that uv is the weakest edge of

a cycle. Then, in this cycle, we can find an alternative path, P1, from u to v that does not contain the

edge uv, and S(P1) is greater than or equal to S(P2), where P2 is the path involving the edge uv. Thus,

removal of the edge uv from G̃ does not affect the connectedness between u and v—a contradiction

to our assumption. Hence, uv is not the weakest edge in any cycle.
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Theorem 2. If (u, uv) is a neutrosophic incidence cutpair, then (u, uv) is not the weakest pair in any cycle.

Proof. Let (u, uv) be a neutrosophic incidence cutpair in G̃. On contrary suppose that (u, uv) is a

weakest pair of a cycle. Then we can find an alternative path from u to uv having incidence strength

greater than or equal to that of the path involving the pair (u, uv). Thus, removal of the pair (u, uv)

does not affect the incidence connectedness between u and uv but this is a contradiction to our

assumption that (u, uv) is a neutrosophic incidence cutpair. Hence (u, uv) is not a weakest pair in

any cycle.

Theorem 3. Let G̃ = (A, B, C) be a SVNIG. If uv is a neutrosophic bridge in G̃, then

S∞(u, v) = (s∞

1 , s∞

2 , s∞

3 ) = (TB(uv), IB(uv), FB(uv)).

Proof. Let G̃ be an SVNIG, and uv is a neutrosophic bridge in G̃. On the contrary, suppose that

S∞(u, v) > (TB(uv), IB(uv), FB(uv)).

Then, there exists a u-v path, P, with

S(P) > (TB(uv), IB(uv), FB(uv))

and

(TB(xy), IB(xy), FB(xy)) > (TB(uv), IB(uv), FB(uv)),

for all edges on path P. Now, P, together with the edge, uv, forms a cycle in which uv is the weakest

edge, but it is a contradiction to the fact that uv is a neutrosophic bridge. Hence,

S∞(u, v) = (s∞

1 , s∞

2 , s∞

3 ) = (TB(uv), IB(uv), FB(uv)).

Theorem 4. If (u, uv) is a neutrosophic incidence cutpair in an SVNIG G̃ = (A, B, C), then

IS∞(u, uv) = (is∞

1 , is∞

2 , is∞

3 ) = (TC(u, uv), IC(u, uv), FC(u, uv)).

Proof. The proof is on the same line as Theorem 3.

Theorem 5. Let G̃ = (A, B, C) be an SVNIG and G∗ = (A∗, B∗, C∗) is a cycle. Then, an edge, uv, is a

neutrosophic bridge of G̃ if, and only if, it is an edge common to two neutrosophic incidence cutpairs.

Proof. Suppose that uv is a neutrosophic bridge of G̃. Then, there exist vertices u and v with the uv

edge lying on every path with the greatest incidence strength between u and v. Consequently, there

exists only one path, P, (say) between u and v which contains a uv edge and has the greatest incidence

strength. Any pair on P will be a neutrosophic incidence cutpair, since the removal of any one of them

will disconnect P and reduce the incidence strength.

Conversely, let uv be an edge common to two neutrosophic incidence cutpairs (u, uv) and (v, uv).

Thus both (u, uv) and (v, uv) are not the weakest cutpairs of G̃. Now, G∗ = (A∗, B∗, C∗) being a cycle,

there exist only two paths between any two vertices. Also the path P1 from the vertex u to v not

containing the pairs (u, uv) and (v, uv) has less incidence strength than the path containing them.

Thus, the path with the greatest incidence strength from u to v is

P2 : u, (u, uv), uv, (v, uv), v.
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Also,

S∞(u, v) = S(P2) = (TB(uv), IB(uv), FB(uv)).

Therefore, uv is a neutrosophic bridge.

Definition 14. Let G̃ = (A, B, C) be an SVNIG. An edge, uv, of G̃ is called a strong edge if

S
′
∞(u, v) ≤ (TB(uv), IB(uv), FB(uv)),

where S
′
∞(u, v) represents the connectedness between u and v in G′ = G̃−{uv}.

In particular, an edge, uv, is said to be an α-strong edge if

S
′
∞(u, v) < (TB(uv), IB(uv), FB(uv)),

and it is called a β-strong edge if

S
′
∞(u, v) = (TB(uv), IB(uv), FB(uv)).

Definition 15. A pair (u, uv) in an SVNIG, G̃, is called a strong pair if

IS
′
∞(u, uv) ≤ (TC(u, uv), IC(u, uv), FC(u, uv)),

where IS
′
∞(u, uv) represents the incidence connectedness between u and uv in G′ =G̃−{(u, uv)}.

In particular, (u, uv) is called α-strong pair if

IS
′
∞(u, uv) < (TC(u, uv), IC(u, uv), FC(u, uv)),

and it is called β-strong pair if

IS
′
∞(u, uv) = (TC(u, uv), IC(u, uv), FC(u, uv)).

It is not necessary for all edges and pairs to be strong. Edges and pairs exist which are not strong

in an SVNIG. Such edges and pairs are given in the following definition.

Definition 16. Let G̃ = (A, B, C) be an SVNIG. An edge, uv, is said to be a δ-edge if

(TB(uv), IB(uv), FB(uv)) < S
′
∞(u, v).

Similarly, a pair (u, uv) in G̃ is called a δ-pair if

(TC(u, uv), IC(u, uv), FC(u, uv)) < IS
′
∞(u, uv).

Theorem 6. In an SVNIG, every neutrosophic incidence cutpair is a strong pair.

Proof. Let G̃ = (A, B, C) be an SVNIG. Let (u, uv) ∈ C∗ be a neutrosophic incidence cutpair. Then,

by Definition 13, we have

IS
′
∞(u, uv) < IS∞(u, uv).

On the contrary, suppose that (u, uv) is not a strong incidence pair. Then, it follows that

IS
′
∞(u, uv) > (TC(u, uv), IC(u, uv), FC(u, uv)).

Let P be the path from u to uv in G′ =G̃−{(u, uv)} with the greatest incidence strength. Then, P

together with (u, uv), forms a cycle in G̃. Now, in this cycle, (u, uv) is the weakest pair, but, based on
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Theorem 2, it is not possible, since (u, uv) is a neutrosophic incidence cutpair. Hence, our assumption

is wrong, and (u, uv) is a strong incidence pair.

Theorem 7. In an SVNIG G̃ = (A, B, C). The pair (u, uv) is a neutrosophic incidence cutpair if, and only if,

it is α-strong.

Proof. Let (u, uv) be a neutrosophic incidence cutpair in G̃. Then, according to the Definition 13

of cutpair,

IS∞(u, uv) > IS
′
∞(u, uv).

Then, based on Theorem 4, it follows that

(TC(u, uv), IC(u, uv), FC(u, uv)) > IS
′
∞(u, uv),

which is the definition of α-strong pair. Hence, (u, uv) is an α-strong pair in G̃.

Conversely, let (u, uv) be an α-strong pair in G̃. Then, by definition

(TC(u, uv), IC(u, uv), FC(u, uv)) > IS
′
∞(u, uv).

It follows that P : u, (u, uv), uv is a unique path from u to uv which has the greatest incidence

strength of all paths.Therefore, any other path from u to uv will have a lower incidence strength.

IS∞(u, uv) > IS
′
∞(u, uv).

Hence, (u, uv) is a neutrosophic incidence cutpair.

Definition 17. Let G̃ = (A, B, C) be an SVNIG.

(i) G̃ is called a block if G∗ = (A∗, B∗, C∗) is block. That is, there are no cutvertices in G∗.

(ii) G̃ is called a neutrosophic block if G̃ has no neutrosophic cutvertices.

(iii) G̃ is called a neutrosophic incidence block if it has no neutrosophic incidence cutvertices.

Example 7. Consider the SVNIG G̃ = (A, B, C) shown in Figure 7 with A∗ = {a, b, c} and B∗ =

{ab, bc, ac}. G̃ is a block, since the crisp graph, G∗, has no cutvertex and it is a neutrosophic incidence block.

G̃ is not a neutrosophic block, since it has a neutrosophic cutvertex, namely, a.

b

b b
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Figure 7. Single-valued neutrosophic incidence graph.

Theorem 8. Let G̃ = (A, B, C) be a neutrosophic incidence block. A pair, (u, uv), in G̃, such that

(TC(u, uv), IC(u, uv), FC(u, uv)) = (max TC(x, xy), max IC(x, xy), min FC(x, xy)),



Axioms 2018, 7, 47 12 of 14

for all (x, xy) ∈ C∗, is a strong pair.

Proof. Let G̃ be a neutrosophic incidence block. By definition, there are no neutrosophic incidence

cutvertices in G̃. Let (u, uv) be a pair in G̃, such that

(TC(u, uv), IC(u, uv), FC(u, uv)) = (max TC(x, xy), max IC(x, xy), min FC(x, xy)).

We will prove that (u, uv) is a strong pair by showing that

(TC(u, uv), IC(u, uv), FC(u, uv)) ≥ IS
′
∞(u, uv).

The incidence strength of any path, P, from u to uv will be less than or equal to

(TC(u, uv), IC(u, uv), FC(u, uv)). If (u, uv) is the only pair in G̃ with

(TC(u, uv), IC(u, uv), FC(u, uv)) = (max TC(x, xy), max IC(x, xy), min FC(x, xy)),

then every other path from x to xy in G̃ will have less incidence strength than

(TC(u, uv), IC(u, uv), FC(u, uv)), and hence,

(TC(u, uv), IC(u, uv), FC(u, uv)) > IS
′
∞(u, uv).

Thus, (u, uv) is an α-strong pair.

If (u, uv) is not unique, then the maximum possible value for the incidence strength of any path

in G
′
= G̃−{(u, uv)} will be equal to (TC(u, uv), IC(u, uv), FC(u, uv)). Therefore, there exists a path

from u to uv with an incidence strength equal to (TC(u, uv), IC(u, uv), FC(u, uv)), that is

(TC(u, uv), IC(u, uv), FC(u, uv)) = IS
′
∞(u, uv).

Then, (u, uv) is β-strong.

3. Application

According to the Federal Investigation Agency (FIA), Pakistan is among the fourth largest

country in terms of its citizens who illegally enter Europe. There is no formally declared policy of the

Government of Pakistan for Migration and Pakistani Migrants. Every year, thousands of Pakistanis

fleeing poverty, unemployment, law and other problems attempt to illegally enter Europe. A lot of

them even die before reaching the destination. These illegal immigrants use land routes featuring

Pakistan, Iran, Turkey and Greece to enter Europe. Greece is a gateway to the west, and roughly nine

out of ten people illegally entering Europe follow this route. Below, we present a mathematical model

of this phenomenon.

Consider SVNIG G̃ = (A, B, C) as shown in Figure 8, a mathematical model of the situation of

illegal migration from Pakistan to European, where

A = {(Pakistan, 0.9, 0.8, 0.7), (Iran, 0.8, 0.6, 0.8), (Turkey, 0.9, 0.8, 0.7), (Greece, 0.9, 0.8, 0.6)}

is the set of countries under consideration,

B = {((Pak, Iran), 0.7, 0.6, 0.4), ((Iran, Turkey), 0.5, 0.5, 0.5), ((Turkey, Greece), 0.6, 0.8, 0.5)}

represents the flow of people traveling legally from country x to country y and

C ={((Pak, (Pak, Iran)), 0.5, 0.6, 0.3), ((Iran, (Pak, Iran)), 0.4, 0.2, 0.8), ((Iran, (Iran, Turkey)), 0.5, 0.5, 0.4),

((Turkey, (Iran, Turkey)), 0.3, 0.5, 0.4), ((Turkey, (Turkey, Greece)), 0.6, 0.8, 0.2),

((Greece, (Turkey, Greece)), 0.2, 0.2, 0.6)}
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represents the flow of people traveling illegally from country x to the country y. It is clear that

each pair in this model is a neutrosophic incidence cutpair. So, every government of the countries

featuring in this path must make hard and fast rules to control illegal migration as it creates lot

of problems for both sending and receiving countries. Policy makers and practitioners need to

develop a comprehensive understanding of the phenomenon of illegal migration in order to manage

it effectively. We present our proposed method in Algorithm 1.

b

b

b

(Pak,0, 9, 0.8, 0.7)

(0.4, 0.2, 0.8)

b

b

b

(Iran,0.8, 0.6, 0.8)

(Greece,0.9, 0.8, 0.6)

(Turkey,0.9, 0.8, 0.7)

b (0.7, 0.6, 0.4)

(0.5, 0.6, 0.3)

b

b

(0.2, 0.2, 0.6)

b
(0.5, 0.5, 0.4)

(0.5, 0.5, 0.5)(0.3, 0.5, 0.4)(0.6, 0.8, 0.2)

(0.6, 0.8, 0.5)

G̃ = (A, B, C)

Figure 8. Model of the situation of illegal migration from Pakistan to Europe.

Algorithm 1 Method of Finding Neutrosophic Incidence Cutpair

1. Input the vertex set, V.

2. Input the edge set, E ⊆ V × V.

3. Construct the single-valued neutrosophic set, A, on V.

4. Construct the single-valued neutrosophic relation, B, on E.

5. Construct the single-valued neutrosophic set, C, on V × E.

6. Calculate the incidence strength, IS(ui, uj), of all possible paths from ui to uj, such that

is1 = min{TC(ui, uiui+1) : (ui, uiui+1) ∈ I},

is2 = min{IC(ui, uiui+1) : (ui, uiui+1) ∈ I},

is3 = max{FC(ui, uiui+1) : (ui, uiui+1) ∈ I}.

7. Calculate the greatest incidence strength, IS∞(ui, uj), of paths from ui to uj.

8. Remove the pair (ui, uiui+1) from I.

9. Repeat step 6 and step 7 to calculate the incidence strength, IS
′
∞(ui, uj) from ui to uj.

10. Compare the two greatest incidence strengths.

11. If IS
′
∞(ui, uj) < IS∞(ui, uj), then (ui, uiui+1) is the required neutrosophic incidence cutpair.

4. Conclusions

Graph theory is a useful tool for analyzing and modeling different mathematical structures.

However, its failure to determine relationships between vertices (nodes) and edge (arcs) led to

the introduction of the fuzzy incidence graph. The single-valued neutrosophic incidence graph

is an extension of fuzzy incidence graph, which can be used as a tool for constructing different

mathematical models with indeterminate information and interconnected supporting links. In this
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paper, we discussed different properties of single-valued neutrosophic incidence graphs. We studied

the block structure of single-valued neutrosophic incidence graphs. We aim to extend the application

of single-valued neutrosophic incidence graphs to human trafficking.
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