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Abstract

The path integral in quantum mechanics is a very important mathe-

matical tools. It is widely applied in quantum electrodynamics and quan-

tum �eld theory. But its basic concepts confuse all of us. The �rst thing

is the propagation of the probability. The second is the path can be any

paths you can draw. How this can work? In this article, a new de�ni-

tion of energy pipe streamline integral is introduced in which the mutual

energy theorem and the mutual energy �ow theorem, mutual energy prin-

ciple, self-energy principle, Huygens principle, and surface integral inner

product of the electromagnetic �elds are applied to o�er a meaningful and

upgraded path integral. The mutual energy �ow is the energy �ow from

the emitter to the absorber. This energy �ow is built by the retarded

wave radiates from the emitter and the advanced wave radiates from the

absorber. The mutual energy �ow theorem guarantees that the energy of

the photon go through any surface between the emitter and the absorber

are all equal. This allow us to build many slender �ow pipes to describe

the energy �ow. The path integral can be de�ned on these pipes. This

is a updated path integral and it is referred as the energy pip streamline

integral. The Huygens principle allow us to insert virtual current sources

on any place of the pipes. Self-energy principle tell us that any particles

are consist of 4 waves: the retarded wave, the advanced wave and another

two time-reversal waves. All these waves are canceled and, hence, the

waves do not carry or transfer any energy. Energy is only carried and

transferred by the mutual energy �ow. Hence, the mutual energy �ow

theorem is actually the energy �ow theorem. Wave looks like probability

wave, but mutual energy �ow are real energy �ow, it is not a probability

�ow. In this article the streamline integral is applied to photon which

satisfy Maxwell equation. However, this concept can be easily widened

to other particle for example electrons which satis�es the Schrödinger or

Dirac equation.
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1 Introduction

1.1 The traditional way to introduce the path integral

The traditional way to introduce the path integral in quantum mechanics are
Feynman's way or Dirac's way.

In Feynman's way, it said a professor teach the double slits excrement and
tell the students there are two slits. The wave can go from the source to the sink
through the two slits. The amplitudes of the two wave can be superposed. A
student ask what happens if there are 3 slits? What happens if there is another
partition board in which also have a few slits? This way the concept of the path
integral is built.

In the Dirac's way, let us divide the time T as N segments each lasting
δt = T/N , then write,

〈qF | e−iHT |qI〉 = 〈qF | e−iHδte−iHδt · · · e−iHδt |qI〉 (1)

Considering, ˆ
dq |qn〉 〈qn| = 1 (2)

〈qF | e−iHT |qI〉 =
N−1∏
n=1

(

ˆ
dqn) 〈qF | e−iHδt |qN−1〉 〈qN−1| e−iHδt |qN−2〉 〈qN−2| · · ·
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· · · 〈q2| e−iHδt |q1〉 〈q1| e−iHδt |qI〉 (3)

Focus on an individual factor 〈qn+1| e−iHδt |qn〉, consider H = p̂2

2m . The hat
on p̂ is a operator. Denote by |p〉 the eigenstate of p̂. Namely p̂ |p〉 = p |p〉.
Do you remember from your course in quantum mechanics that

〈
q
∣∣∣p〉 = eipq.

Considering 1
2π

´
dp |p〉 〈p| = 1

〈qn+1| e−iHδt |qn〉 =
1

2π

ˆ
dp
〈
qn+1

∣∣∣e−ip̂2δt/2m
∣∣∣p〉〈p∣∣∣qn〉

=
1

2π

ˆ
dpe−ip

2δt/2m
〈
qn+1

∣∣∣p〉〈p∣∣∣qn〉
=

1

2π

ˆ
dpe−ip

2δt/2meip(qn+1−qn) (4)

Above is Gaussian integral, it can integral out.

〈qn+1| e−iHδt |qn〉 = (
−im
2πδt

)
1
2 e[im(qn+1−qn)2]/2δt

= (
−im
2πδt

)
1
2 eiδt(m/2)[(qn+1−qn)/δ(t)]2 (5)

Hence,

〈qF | e−iHT |qI〉 = (
−im
2πδt

)N (

N−1∏
n=1

ˆ
dqn)eiδt(m/2)

∑N−1
n=0 [(qn+1−qn)/δ(t)]2 (6)

In the above qF = qN , qI = q0. De�ne

ˆ
Dq(t) = lim

N→∞
(
−im
2πδt

)N (

N−1∏
n=1

ˆ
dqn) (7)

Considering

q̇ =
qn+1 − qn

δt
(8)

T̂

t=0

dt = δt

N−1∑
n=0

(9)

i

T̂

t=0

emq̇/2dt = iδt(m/2)

N−1∑
n=0

[(qn+1 − qn)/δ(t)]2 (10)

〈qF | e−iHT |qI〉 =

ˆ
Dq(t)ei

´ T
t=0

emq̇/2dt (11)
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Figure 1: In this example, a integral is done at the place close to I ′. Another
integral is done in the place close to F ′. Are these integral in the same 3D
space?

1.2 The problems for the path integral

The above looks good. But the problem is the de�nition of the integral
´
Dq(t)

is a limit of in�nite integral that is too complicated. Dirac can de�ne the
integral this way, but how we can understand it? How this in�nite integral
can be converged to some thing? Another thing is that the path integral is
de�ne on the top of the concept of the probability. Einstein do not agree the
probability interpretation of Copenhagen school, why should we can agree it?
How this probability propagates to produce a particle? Feynman said �no one
can understand it�. This author thinks it is true!

In the mathematics there is also problem. Why
´
dq |qn〉 〈qn| = 1 estab-

lished? This need the inner product (·, ·) or the integral
´
dq is made in the

same place. Even in the integral in the path integral de�nition is a whole 3D
space, but actually the center of integral has shift along the path, see Figure 1.

If the original inner product is at the place I, you can have
´
dq |qn〉 〈qn| = 1

at I, that is clear, but in the path integral we need to apply
´
dq |qn〉 〈qn| = 1

to another place for example Γ or F . That is not self-explanatory. In Figure 1
we have show two place I ′ and F ′. I ′ is a place close to the start point I, F ′ is
a place close to the end point F . In both places the integrals are on 3D in�nite
space. My argument is that: are these two integrals in a same 3D region? I do
not think so. Hence, even you can make

´
dq |qn〉 〈qn| = 1 at I ′ that doesn't

guarantee you can do it at F ′!
For example I is the place of emitter and F is the place of absorber, assume

the distance from emitter to the absorber has a few light years, even you know
in the place I ′ you can have

´
dq |qn〉 〈qn| = 1, how you can know in the place F '

you still can have
´
dq |qn〉 〈qn| = 1? If the integral

´
dq is converge, it should

have signi�cant region which close to its centers. Since the two centers are far
away, this led the integral at I ′ and F ′ are actually in di�erent places. This is
a big problem for path integral.

Actually the integral
´
dq in path integral can be de�ned on a serial of

surfaces. This way the de�nition of the path integral become simple, but in
that case Dirac has to deal the problem (The surface I ′ and the surface F ′ are
clear not the same surface) distinctly. Dirac de�ne the integral in a 3D space,
try to hide behind the problem.
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I think Feynman has been aware of this problem. He doesn't think Dirac's
derivation is meaningful. Hence, in his paper[8] he spend a lot of ink on the
probability presumptions. He started from this presumptions and when ob-
tained the results, he prove his result to be same with Schrödinger equation.
That means in Feynman's paper, he didn't sure the operation of the path in-
tegral is correct, but because the result is inspected and verify by Schrödinger
equation, he �nally believe it. My argument is even you get correct result, but
if the de�nition and derivation has something problem, we still need to correct
it.

We also know in the 3D space the amplitude of the �eld is decrease with
distance, hence, the �eld cannot be written as,

exp(j(SomethingReal)) (12)

However, in the path integral a constant amplitude has been applied without
any explanation!

In this article I will simplify the de�nition of path integral, in order to do
this. I will abandon the interpretation of probability or the interpretation of
Copenhagen school. The energy �ow will be used instead. The concepts of
the mutual energy theorem, mutual energy �ow theorem, mutual energy princi-
ple, self-energy principle, inner product of the electromagnetic �elds, Huygens
principle will be applied. In the following, I �rst introduction all these concepts.

By the way Huygens principle has been mentioned in the path integral[8]
by Feynman, but he did not o�er any details how to apply this concept. It
is important to combine the Huygens principle with the mutual energy �ow
theorem which will be done in this article.

I will also shown that the path integral and the updated version stream-
line integral are better formalism compare to the corresponding wave equation
Schrödinger and Dirac equation, because streamline integral is agreed with the
mutual energy principle which is a better formalism compare to the correspond-
ing wave equations.

1.3 Review the work on the topic of mutual energy and

mutual energy �ow

In this article the author will updated the concept path integral with the energy
pipe streamline integral. In order to build the pipe streamline integral the theory
of the mutual energy �ow is involved, which Further related the concept of the
retarded wave, advanced wave and the time-reversal waves corresponding to the
retarded wave and the advanced waves.

The �eld theory is �rst introduced by Faraday and later it is introduced
by Maxwell in 1865. The action at a distance which are introduced by Weber
1848 [31]. Maxwell's theory allow existent of the advanced potential with the
retarded potential. Advanced potential or is referred as advanced wave. Weber's
theory also allow the advanced wave. But these two theories did not say that the
advance wave must exist. Hence, there are two theories in physics one supported
the concept of advanced wave, one denied the exist of the advanced wave.
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There is also another action-at-a-distance principle, which was introduced
by introduced by Schwarzschild, Tetrode and Fokker [26, 9, 29]. According to
this principle, a retarded wave and an advanced wave must be sent by the cur-
rent source together. Following the action-at-a-distance J.A. Wheeler and R.P.
Feynman introduced the absorber theory [1, 2]. In the absorber theory, the
absorber is the reason of a emitter can radiate. Based on the absorber the-
ory, John Cramer has introduced the transactional interpretation for quantum
physics [5, 6]. In the transaction process the retarded wave and the advanced
wave can have a �handshake�. Stephenson has o�er a good tutorial about the
advanced wave[28].

W.J. Welch has introduced a reciprocity theorem in arbitrary time-domain
[30] in 1960 (this will be referred as Welch's reciprocity theorem in this article).
In 1963 V.H. Rumsey mentioned a method to transform the Lorentz reciprocity
theorem to a new formula[25], (this will be referred as Rumsey's reciprocity
theorem). In the early of 1987 Shuang-ren Zhao (this author) has introduced
the concept of mutual energy and the mutual energy theorem, the inner product
of two electromagnetic �eld on the surface [12] (this will be referred as Zhao's
mutual energy theorem). In the end of 1987 Adrianus T. de Hoop introduced
the time domain cross-correlation reciprocity theorem[7], (this will be referred
as Hoop's reciprocity theorem). Welch's reciprocity theorem is a special case
of the Hoop's reciprocity theorem. Welch proved his reciprocity theorem by a
retarded wave and advanced wave, that means Welch's reciprocity theorem is
a theorem between a retarded wave and an advanced wave for electromagnetic
�eld. Since the reciprocity theorem need to applied to antenna system, this
reciprocity theorem tell us the transmitting antenna sends a retarded wave, the
receiving antenna sends an advanced wave.

All the above 4 theorems are in touch with Fourier transform and can be
seen as a same theorem in both time and frequency domains. Welch's reci-
procity theorem and Hoop's reciprocity theorem are in time-domain. Rumsey's
reciprocity theorem and Zhao's mutual energy theorem are in Fourier domain.
In the following this theorem will be referred as Welch-Rumsey-Zhao-Hoop's
theorem.

It should be say that Welch-Rumsey-Zhao-Hoop's theorem is not a sub-
theorem of Lorentz reciprocity theorem. However, the two theorems are link by
the conjugate transform[10]. But anyway, the Lorentz reciprocity theorem con-
tent some important information of Welch-Rumsey-Zhao-Hoop's theorem. This
author noticed that Welch-Rumsey-Zhao-Hoop's theorem is physical theorem,
hence, call it mutual energy theorem. The Lorentz reciprocity is only a math-
ematical theorem which can be used to do the calculation for the directivity
diagram.

Similar to the Lorentz reciprocity theorem, Welch-Rumsey-Zhao-Hoop's the-
orem is a reciprocity theorem, this is true. But Shuang-ren Zhao (this author)
has noticed this theorem is not only a reciprocity theorem but also a energy
theorem and, hence, the theorem is referred as the mutual energy theorem[12].
Shuang-ren Zhao also found out the surface integral in this theorem is a good
inner product for two electromagnetic �elds. This inner product can be used
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to produce a inner product space for all kind of electromagnetic �elds[12, 33].
Shuang-ren Zhao also applied this inner product for spherical wave expansion
and plane wave expansion problems [12, 32]. The concept of this surface inner
product will together with the concept of the mutual energy �ow be applied in
this article to de�ne the energy pipe streamline integral.

After around 30 years working on di�erent topic: medical image processing
and numerical calculation, this author decided to go back to the topic of the
mutual energy again. In the beginning this author �rst proved that the mutual
energy theorem is a energy theorem. This author did not successfully doing
this 30 years ago. This is done by proving that the mutual energy theorem is a
sub-theorem of the Poynting theorem. Poynting theorem is a energy theorem,
hence, the mutual energy theorem is worth of it's name [19].

The articles [22][23] built a photon model with the mutual energy �ow. It
also guess the possibility for the self-energy �ow. There are two major possibility
for the self-energy �ow: (1) the self-energy �ows are collapsed to its target, for
example the retarded wave sent from the emitter collapse to an absorber, the
advanced wave sent from the absorber collapse to an emitter. Some authors (I
forget the citations) call this double collapse. (2) it is return to their sources by
time-reversal waves. That means the retarded wave return to the emitter, the
advanced wave return to the absorber.

The article [24] introduced the mutual energy �ow and the mutual energy
�ow theorem. This theorem tell us there are energy �ow go from the emitter to
the absorber. The energy go through in any surface between the emitter and
the absorber is a constant. The author believe this energy is the energy of the
photon. Hence, the photon is nothing else, it is the mutual energy �ow. In this
article the mutual energy �ow theorem is a foundation stone for the de�nition
of the energy pipe streamline integral.

The article [27] discussed the wave and particle duality with the mutual
energy �ow.

The article [14] found the bug in Poynting theorem. It found that Maxwell
equations and Poynting theorem together with superposition principle which
con�icts with the energy conservation condition law. This lead to the introduce
of the self-energy principle and the mutual energy principle. In the self-energy
principle, two time-reversal waves are introduced. Hence, any particles are all
built with 4 waves: the retarded wave, the advanced wave and the two time-
reversal waves.

The article [16] further introduced the self-energy principle and also the
mutual energy principle.

The article [20] discussed the possibility to make a experiment for advanced
wave using classical electromagnetic �eld instead of the method of the quantum
mechanics.

The articles [13][21] o�er a new interpretation for quantum mechanics which
is the mutual energy �ow interpretation.

The article [15] widened the concept of self-energy principle and the mutual
energy principle to the Schrödinger equations and Dirac equations. It point
out that for a quantum system which satis�es the Schrödinger equations and
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the Dirac equations similar to the electromagnetic �eld which satis�es Maxwell
equations, hence, the mutual energy �ow theorem, inner product can also be
de�ned. There is also 4 waves, the retarded wave and the advanced wave and
the 2 time-reversal waves. Hence all the concept this author has obtained in
electromagnetic �eld theory can be widened to Schrödinger equation and Dirac
equation. This will guarantees the energy pipe streamline integral can also be
de�ned based on the system with Schrödinger equation and Dirac equation.

The article [18] discussed the wave and particle duality. Especially in this
article, it is proved that in the wave guide, cone-beam wave guide and the
free space with a uniformly distributed absorber on the in�nite big sphere, the
result by using the mutual energy principle and Poynting theorem are equivalent.
That means for this 3 situations, even in the beginning you have assumed the
electromagnetic �eld includes the advanced wave and the retarded wave, you still
can obtained same results as Poynting theorem is applied in which there is only
the retarded wave. Hence, for most engineering problem the Poynting theorem
and Maxwell equations still can be applied. In the situation the absorbers are
not uniformly distributes on the in�nite sphere, the Poynting theorem cannot be
applied. For example, for a two antenna system in which one is the transmitting
antenna and another is a receiving antenna or an emitter with a scatter. In this
situation, in order to correct the wrong doing of the Poynting theorem, the
concept of e�ective scatter section must be applied. In the case of wire antenna,
the e�ective section area is possible to have 1000 times bigger than the original
section area of the wire. If we calculate an e�ective section area of an absorber
(for example a charge) which can be in�nite times larger. That means that the
Poynting theorem get totally wrong result! In case Poynting theorem is wrong,
the mutual energy theorem and the mutual energy �ow theorem still can o�er
correct results. It should be say that in the wave guide situation, we calculated
the energy with Poynting theorem or mutual energy theorem. But pleas do
not use the mutual energy energy together with self-energy. If we add the
energy of self-energy, the transferred energy doubled which violated the energy
conservation. This also further tell us the self-energy items do not transfer any
energy. This further con�rm the self-energy principle which tells us there are 2
time-reversal wave which cancels all self-energy items. Since the electron in a
orbit is same as the electromagnetic �eld in a wave guide, hence, in a orbit a
electron can be applied with only retarded wave. We do not need to consider
the advanced wave. However the retarded wave and advanced wave both exist.
Each of that contributed the half of the �eld.

When the advanced wave is considered, it is clear the superposition principle
become diversi�cation. Because even the retarded wave can be superposed,
the advanced wave can be superposed, how are about the retarded wave and
advanced wave? Can the retarded wave and advanced be superposed? What
is the result of the superposition of the retarded wave and advanced wave?
This author has deal this kind problem and also discussed the di�erence of the
superposition with or without test charge in the reference[17].
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2 Important theorems

Assume there are two current sources J1 and J2. J1 is the current of a trans-
mitting antenna. J2 is the current of a receiving antenna. The �eld of J1 is
described as E1 and H1. The �eld of the current J2 is E2 and H2. Assume
J2 has a some distance with J1. Some time we will use ξ = [E,H] to describe
the �eld together with electric �eld and magnetic �eld. J1 is inside the volume
V1. J2 is inside the volume V2.

Hoop's reciprocity theorem can be written as,

−
∞̂

t=−∞

ˆ

V1

J1(t+ τ) ·E2(t)dV =

∞̂

t=−∞

ˆ

V2

E1(t+ τ) · J2(t)dV (13)

if τ = 0, we have,

−
∞̂

t=−∞

ˆ

V1

J1(t) ·E2(t)dV =

∞̂

t=−∞

ˆ

V2

E1(t) · J2(t)dV (14)

This is Welch's reciprocity theorem. The Fourier transform of Hoop's reciprocity
theorem can be written as,

−
ˆ

V1

J1(ω) ·E2(ω)∗dV =

ˆ

V2

E1(ω) · J2(ω)∗dV (15)

Where �*� is the complex conjugate operator. In this article, for simpli�cation,
we do not use di�erent symbol to distinguish the time domain and the Fourier
domain. If the variable t is applied in the formula it is in time domain. If ω is
applied, it is in Fourier domain. For simpli�cation, we do not use Ã to describe
a variable in Fourier domain. Eq.(15) is the Rumsey's reciprocity theorem and
also Zhao's mutual energy theorem. Hence, this 4 theorems can be seen as one
theorem in di�erent domain: time-domain and Fourier domain.

2.1 Conjugate transform

Assume that a �eld system with its source is ζ,

ζ = [E(t),H(t),J(t),K(t), ε(t), µ(t)] (16)

where K(t) is magnetic current intensity. The magnetic current intensity K is
normally as 0. The conjugate transform [10] can be de�ned as,

Cζ = [E(−t),−H(−t),−J(−t),K(−t), ε(−t), µ(−t)] (17)

In the frequency domain,

ζ = [E(ω),H(ω),J(ω),K(ω), ε(ω), µ(ω)] (18)
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The conjugate transform can be de�ned as,

Cζ = [E(ω)∗,−H(ω)∗,−J(ω)∗,K(ω)∗, ε(ω)∗, µ(ω)∗] (19)

This author has proved that: after a conjugate transform, a retarded wave
become an advanced wave and an advanced wave becomes a retarded wave.

2.2 Lorentz reciprocity theorem

In frequency domain Lorentz reciprocity theorem [3, 4] can be written as,

ˆ

V1

J1(ω) ·E2(ω)dV =

ˆ

V2

E1(ω) · J2(ω)dV (20)

In the Lorentz reciprocity theorem ζ1 and ζ2 are all retarded �eld. It can be
shown that from Lorentz reciprocity theorem applied the conjugate transform
to one of the �eld for example ζ2, the above formula become the mutual energy
theorem Eq.(15). From last subsection we know if ζ2 is a retarded �eld, after the
conjugate transform, ζ2 become the advanced �eld. Hence, inside the mutual
energy formula the two �elds one is retarded �eld and another must be advanced
�eld. We will further prove that ζ2 is an advanced �eld in later sections.

2.3 Inner product of electromagnetic �elds

Shuang-ren Zhao has de�ned the inner product for electromagnetic �elds[12].
Assume ξ1 = [E1,H1], ξ2 = [E2,H2] we have inner product,

(ξ1, ξ2) =

"

Γ

(E1 ×H∗2 +E∗2 ×H1) · n̂dΓ (21)

Γ is closed surface. It should be noticed here, the character ξ is electromagnetic
�eld, ζ is the electromagnetic �eld together with its source. Shuang-ren �nd
that this formula satisfy inner product 3 conditions[12],

(I) Conjugate symmetry:

(ξ1, ξ2) = (ξ2, ξ1)∗ (22)

(II) Linearity:

(aξ′1 + bξ”1, ξ2) = a(ξ′1, ξ2) + b(ξ”1, ξ2) (23)

(III) Positive-de�niteness:

(ξ, ξ) > 0 (24)

(ξ, ξ) = 0⇒ ξ = 0 (25)
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�⇒� means �can derive�. Shuang-ren Zhao found that the mutual energy
theorem can be also written as [12, 33],

− (J1, ξ2)V1
= (ξ1, J2)V2

(26)

where

(J1, ξ2)V1
=

ˆ

V1

E2(ω)∗ · J1(ω)dV (27)

(ξ1, J2)V2
=

ˆ

V2

E1(ω) · J2(ω)∗dV (28)

Shuang-ren Zhao also derived the mutual energy �ow theorem[13],

− (J1, ξ2)V1 = (ξ1, ξ2) = (ξ1, J2)V2 (29)

where,

(ξ1, ξ2) = (ξ1, ξ2)Γ =

"

Γ

(E1 ×H∗2 +E∗2 ×H1) · n̂dΓ (30)

It is clear that the integral on V1 and V2 Eq.(27,28) are also the inner product.
The in product Eq.(30) at surface Γ is not clear, but shuang-ren Zhao has
discovered that it is a inner product. It is found that Γ does not need to be
written, since it can be proved that Γ can be taken at arbitrary surface between
the two volumes, V1 and V2. Hence, (ξ1, ξ2) can be seen as energy �ow. This
theorem is used by Shuang-ren as the Huygens principle [12, 33]. Since, if we
let J2 = δ(x− x′)m̂

− (J1, ξ2)V1
= (ξ1, J2)V2

= E1 · m̂ (31)

can tell us the �eld ξ1 at the direction m̂. E1 is calculated at integral V2. But
the following formula can calculate ξ1 at the place V2 at a direction m̂ from any
surface Γ.

(ξ1, ξ2)Γ = (ξ1, J2)V2
= E1 · m̂ (32)

In the above formula E1 is calculated at V2. This is just the Huygens principle,
which tell us the wave can be calculated on the surface Γ instead on its sources.
The inner product is also applied to the spherical wave expansions and the plane
wave expansions[12, 32].

Since now this author has known the work of Welch and de Hoop, the de�-
nition of the inner product can be widened to time-domain,

(ξ1, ξ2)Γ =

∞̂

−∞

"

Γ

(E1(t+ τ)×H2(t) + E2(t)×H1(t+ τ)) · n̂dΓdt (33)

where τ can be taken as any value, it is often just take as 0, hence we have,
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(ξ1, ξ2)Γ =

∞̂

−∞

"

Γ

(E1(t)×H2(t) + E2(t)×H1(t)) · n̂dΓdt (34)

In this article, Eq.(34) will be our de�nition of surface inner product. Since in
this article the research is done mostly at the time-domain.

q =

"

Γ

(E1(t)×H2(t) + E2(t)×H1(t)) · n̂dΓ (35)

is the mutual energy �ow �ux at time t. Hence (ξ1, ξ2)Γ is the total energy
(from t = −∞ to t = +∞) go through the surface Γ.

S12 = E1(t)×H2(t) + E2(t)×H1(t) (36)

is the mixed Poynting vector or the mutual energy �ux intensity vector. It
should be noticed that the word �mutual� can be taken a way, since the mutual
energy �ow is actually the energy �ow which carries the energy from the emitter
to the absorber. Hence the mutual energy �ow is the microscopic energy �ow.
the energy �ow corresponding to the Poynting vector is an average energy �ow
corresponding there are in�nite more absorbers and the absorbers uniformly
distribute on a surface. In the following section we will further prove this. It
should be notice that the Fourier transform of Eq.(33) is Eq.(30).

3 The mutual energy �ow theorem

First we need to prove the mutual energy theorem[12] is really a energy theo-
rem. To do this we should prove it from the Poynting theorem instead to prove
it from Lorentz reciprocity theorem. In the sub-section 2.2 we have mentioned
that the mutual energy theorem can be proved from Lorentz reciprocity theo-
rem. It should be noticed even the mutual energy theorem can be proved by
using conjugate transform from Lorentz reciprocity theorem, the mutual energy
theorem is not a sub-theorem of the Lorentz reciprocity theorem, that is because
the conjugate transform is not a mathematical transform like Fourier transform,
conjugate transform is a physical transform. This can be seen by notice that
the conjugate transform needs the Maxwell equations to prove it. Hence, the
mutual energy theorem is still an independent theorem to Lorentz reciprocity
theorem.

3.1 Proving the above mentioned theorem is an energy

theorem

Assume there are two charges, the superposition of the two �elds of the two
charges are ξ1 = [E1,H2], ξ1 = [E1,H2], can be written as ξ = [E,H], where,

E = E1 +E2 (37)
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H = H1 +H2 (38)

The Poynting theorem[11] can be written as

−
"

Γ

E ×H) · n̂dΓ =

ˆ

V

E · JdV +

ˆ

V

(E · ∂D +H · ∂B)dV (39)

where ∂ ≡ ∂
∂t . This is referred as total energy formula. Similarly there is,

−
"

Γ1

E1 ×H1) · n̂dΓ =

ˆ

V1

E1 · J1dV +

ˆ

V1

(E1 · ∂D1 +H1 · ∂B1)dV (40)

−
"

Γ1

E2 ×H2) · n̂dΓ =

ˆ

V2

E2 · J2dV +

ˆ

V2

(E2 · ∂D2 +H2 · ∂B2)dV (41)

The above two formula is referred as self-energy formulas. Substitute Eq.(37,38)
to Eq.(39) and then subtract Eq.(40) and Eq.(41) we obtains,

−
"

Γ

(E1 ×H2 +E2 ×H1) · n̂dΓ

=

ˆ

V

(E1 · J2 +E2 · J1)dV

+

ˆ

V

(E1 · ∂D2 +E2 · ∂D1 +H1 · ∂B2 +H2 · ∂B1)dV (42)

We can call the above formula as the mutual energy formula. Considering to
make a time integral

´∞
t=−∞to the above formula, we have,

−
∞̂

t=−∞

"

Γ

(E1 ×H2 +E2 ×H1) · n̂dΓdt

=

∞̂

t=−∞

ˆ

V

(E1 · J2 +E2 · J1)dV dt

+

∞̂

t=−∞

ˆ

V

(E1 · ∂D2 +E2 · ∂D1 +H1 · ∂B2 +H2 · ∂B1)dV dt (43)

Considering,

∞̂

t=−∞

ˆ

V

(E1 · ∂D2 +E2 · ∂D1 +H1 · ∂B2 +H2 · ∂B1)dV dt

14



Figure 2: J1 is inside V1. J2 is inside V2. V1 and V2 are inside V . The boundary
surface of V is Γ.

=

∞̂

t=−∞

dU = [U(∞)− U(−∞)]

= 0 (44)

where

U =

ˆ

V

(εE1 ·E2 + µH1 ·H2) dV (45)

is the mutual energy in the space. We have assumed that in the time t = −∞,
U(−∞) = const, t = ∞, U(∞) = const. Substitute Eq.(44) to Eq.(43) We
obtain,

−
∞̂

t=−∞

"

Γ

(E1×H2 +E2×H1)·n̂dΓdt =

∞̂

t=−∞

ˆ

V

(E1 ·J2 +E2 ·J1)dV dt (46)

This formula is called the mutual energy theorem with surface integral see Figure
2.

Assume ξ1 is retarded wave. ξ2 is advanced wave. Assume Γ is an in�nite big
sphere. And assume the current J1 and J2 inside the volume V . The volume
V is inside of the surface Γ. Since the retarded wave reach the surface Γ at a
future time. The advanced wave reach the surface Γ at a past time, hence the
two �eld ξ1 and ξ2 do not reach the surface Γ in the same time, that means they
are not nonzero at the same time. Hence, there is,

"

Γ

(E1 ×H2 +E2 ×H1) · n̂dΓ = 0 (47)

The proof of the above formula can be found in [30]. It should be notice if ξ1
and ξ2 are all retarded wave, in general, we cannot prove the above equation.
It is same if ξ1 and ξ2 are all advanced waves. Hence, it is important that here
the two waves, one is a retarded wave, the another is an advanced wave. The
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mutual energy do not �ow out o� our universe only in the situation when a
retarded wave meet an advanced wave.

Considering Eq.(47,44), Eq.(43) can be written as,

∞̂

t=−∞

ˆ

V

(E1 · J2 +E2 · J1)dV dt = 0 (48)

Considering that the current J1 is inside V1 and the current J2 is inside V2.
V1 ⊂ V and V2 ⊂ V . We have,

−
∞̂

t=−∞

ˆ

V1

J1(t) ·E2(t)dV =

∞̂

t=−∞

ˆ

V2

E1(t) · J2(t)dV dt (49)

The proof of this formula can be found in[30]. The above formula is the Welch's
reciprocity theorem[30]. The proving process of this formula in the above is in
principles nearly same as that of Welch. The only di�erence is that Welch started
form Maxwell equations, this article we started from the Poynting theorem.
Our propose of proof is not to prove this formula satisfy Maxwell equations,
but to prove it is a sub-theorem of the Poynting theorem and hence, it is a
energy theorem. This proof can also be easily widened to the Hoop's reciprocity
theorem, which is,

−
∞̂

t=−∞

ˆ

V1

J1(t) ·E2(t+ τ)dV =

∞̂

t=−∞

ˆ

V2

E1(t) · J2(t+ τ)dV (50)

after the Fourier transform the abpve becomes,

−
ˆ

V1

J1(ω) ·E2(ω)∗dV =

ˆ

V2

E1(ω) · J2(ω)∗dV (51)

This is Rumsey's reciprocity theorem or Zhao's mutual energy theorem[12].
From this derivation, it is clear the above formulas Eq.(49,50,51) are energy
theorems. Since the formula Eq.(42) is corresponding to the mutual energy
part of the Poynting theorem, Shuang-ren Zhao call the formula Eq.(51) as the
mutual energy theorem that is correct. It is worth to it's name. The formula
is a energy conservation formula. Here J1 is the current of a transmitting
antenna. E1(ω) is the �eld of the transmitting antenna which is the retarded
�eld. J2 is the current of a receiving antenna. E2(ω) is the �led of the receiving
antenna which is advanced wave. The mutual energy theorem tell us that the
energy sucked by the advanced wave E2(ω) from the current of the transmitting
antenna J1 is equal to the energy of the retarded �eld E1(ω) applied to the
current of the receiving antenna J2. The negative sign in the left of the above
formula tell us that the left can o�er some energy. Hence, J1 is electric power
source. The right side has a positive sign that means it consumes energy and
hence J2 is a electric load or sink. The reader perhaps has some confusion
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Figure 3: J1 is inside V1. J2 is inside V2. V1 and V2 are inside V . The boundary
surface of V1 is Γ1. The surface norm unit vector is n̂1.

with the advanced waves. But think that if E2(ω) is also a retarded wave,
then the two antenna all radiate retarded waves and they are all transmitting
antenna. That is con�ict the assumption that the current J2 is a current of
a receiving antenna. That is also wrong! Hence E2(ω) cannot be retarded
wave. About the advanced wave please see the reference of Welch[30], or the
Wheeler and Feynman's absorber theory [1, 2], or John Cramer's transactional
interpretation[5, 6], or Stephenson's book [28].

By the way, the above theorem Welch, Rumsey and de Hoop call it as some
reciprocity theorem that is also correct, it is true a reciprocity theorem similar
to the Lorentz reciprocity theorem. But it is also important to notice that it is
not only a reciprocity theorem, but also an energy theorem. This author call it
as mutual energy theorem[12], in this article this author will explain that the
mutual energy theorem actually is also an energy conservation law! The word
�mutual� can be take out.

3.2 The mutual energy �ow theorem

In the Eq.(46) the surface Γ can be chosen in any place. If it is chosen as Γ1

which is the boundary surface of the volume V1 the results become:

−
∞̂

t=−∞

"

Γ1

(E1 ×H2 +E2 ×H1) · n̂dΓdt =

∞̂

t=−∞

ˆ

V1

J1 ·E2dV dt (52)

See Figure 3. Here the surface norm vector n̂ is direct from volume V1 to V2.
If the surface is chosen as Γ2 which is the boundary surface of volume V2.

−
∞̂

t=−∞

"

Γ2

(E1 ×H2 +E2 ×H1) · n̂dΓdt =

∞̂

t=−∞

ˆ

V2

E1 · J2dV dt (53)

Here the surface norm vector n is direct to the outside of V2 which is directed
from V2 to V1, see Figure 4.
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Figure 4: J1 is inside V1. J2 is inside V2. V is chosen as V2. The boundary
surface of V2 is Γ2. The surface norm unit vector is n̂2 is at the direction form
V2 to V1.

Figure 5: J1 is inside V1. J2 is inside V2. V is chosen as V2. The surface norm
unit vector is n̂2 is changed the direction. Now it is from V1 to V2.

We can adjusted the surface normal vector from going to outside to going
inside. After corrected the direction of the surface norm vector, a negative sign
should be added to the above formula, and hence, we have

∞̂

t=−∞

"

Γ2

(E1 ×H2 +E2 ×H1) · n̂dΓdt =

∞̂

t=−∞

ˆ

V2

E1 · J2dV dt (54)

Substitute Eq.(52) and Eq.(54) to the mutual energy theorem Eq.(49), we
obtain,

−
∞̂

t=−∞

ˆ

V1

J1(t) ·E2(t)dV

=

∞̂

t=−∞

"

Γ1

(E1 ×H2 +E2 ×H1) · n̂dΓdt

=

∞̂

t=−∞

"

Γ2

(E1 ×H2 +E2 ×H1) · n̂dΓdt
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Figure 6: J1 is inside V1. J2 is inside V2. V1 and V2 are inside V . The boundary
surface of V1 is Γ1. The boundary surface of V1 is Γ1. The surface norm unit
vector is n̂1. boundary surface of V2 is Γ2. The surface norm unit vector is n̂2.
The surface Γ are at the middle of V1 and V2. All the surface norm vector n̂1,
n̂n, n̂2 all are at the same direction, i.e. for V1 to V2.

=

∞̂

t=−∞

ˆ

V2

E1(t) · J2(t)dV dt (55)

This can be written as,

−
∞̂

t=−∞

ˆ

V1

J1(t) ·E2(t)dV

= (ξ1, ξ2)Γ1 = (ξ1, ξ2)Γ = (ξ1, ξ2)Γ2

=

∞̂

t=−∞

ˆ

V2

E1(t) · J2(t)dV dt (56)

This is referred as the mutual energy �ow theorem[21]. See Figure 6. In the
formula, there is,

Q =

"

Γ

(E1 ×H2 +E2 ×H1) · n̂dΓ (57)

as the mutual energy �ow,

EnergyΓ =

∞̂

t=−∞

Qdt (58)

is the total energy go though the surface Γ. The mutual energy �ow theorem tell
us that for any surface Γ which is between volume V1 and V2, the mutual energy
EnergyΓ go through the surface Γ (integral with time) is a constant. The Γ can
be close surface for example a boundary of volume V1 or a in�nite open surface
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Figure 7: J1 is inside V1. J2 is inside V2. V1 and V2 are inside V . The boundary
surface of V1 is Γ1. The boundary surface of V2 is Γ2 For the surface Γ1, the
surface norm unit vector is n̂1. For the surface Γ2 the norm unit vector is n̂2,
we can see the norm unit vector n̂1, n̂ and n̂2 are all at the direction form I to
F .

for example any in�nite plane separated the volume V1 and V2. Here the �eld
ξ1 = [E1,H1] is the retarded wave, ξ2 = [E2,H2] is the advanced wave. The
requirement that one �eld is retarded and another is advanced is because of
Eq.(47). Eq.(47) is established only when the two �elds one is a retarded �eld
and another is an advanced �eld.

In this article we work at very short time �eld or short time signal. If
ξ1 = [E1,H1] and ξ2 = [E2,H2] are all retarded �eld, there is,

EnergyΓ =

∞̂

t=−∞

Qdt = (ξ1, ξ2)Γ = 0 (59)

This is because when the wave ξ1 reached to the V2, the current J2 will send
a retarded wave ξ2 to the surface Γ. But when ξ2 reached Γ, ξ1 has passed Γ
long time ago, hence ξ1 = 0 on the surface. ξ1 and ξ2 can not be synchronized,
hence, in general there is above formula.

The mutual energy �ow theorem can be summarized as following:
(I) If the surface Γ separated the two volume V1 and V2, If J1 and J2 are

not all retarded wave or all advanced wave there is

(ξ1, ξ2)Γ = constant (60)

Where Γ is arbitrary surface between V1 and V2. See Figure 7
(II) If the ξ1, ξ2 are all retarded waves or all advanced waves, we have,

(ξ1, ξ2)Γ = 0 (61)

See �gure 8.
(III) If ξ1 and ξ2 one is retarded wave and one is advanced wave, there

current J1 and J2 are inside the volume V . There is

(ξ1, ξ2)Γs
= 0 (62)
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Figure 8: J1 is inside V1. J2 is inside V2. Γ is a surface between V1 and V2.
The two wave are all retarded wave. The inner product is 0 on the surface Γ.

Figure 9: J1 is inside V1. J2 is inside V2. V1 and V2 are inside V . Γs is a
boundary surface of V . One of the wave is retarded wave, the other is advanced
wave. The inner product is 0 on the surface Γs.
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.

Figure 10: J1 is inside V1. J2 is inside V2. V1 and V2 are inside V . Γs is
a boundary surface of V . The two waves are all retarded waves. The inner
product is constant.

Here Γs is in�nite big sphere surface. Γs is also any surface surrounds the
volume of V . See Figure 9

(IV) If ξ1 and ξ2 are all retarded wave, we have,

(ξ1, ξ2)Γs
= constant (63)

Here the surface Γs is any surface surrounds the volume V , assume the two
current sources J1 and J2 are all inside the volume V . (IV) is also e�ective if
the two �eld ξ1 and ξ2 are all advanced �elds. See Figure 10

(V) We know that a retarded wave with it's source at the center of a in�nite
big sphere can be seen as an advanced wave if its source at uniformly distributed
in�nite big sphere. Hence the above (VI) can be also seen as if the �eld ξ1 is
retarded �eld, its source is inside V and ξ2 is an advanced wave and its sink
is uniformly distributed on the Γs, Here Γs is at in�nite big sphere. Γ is any
surface between V and Γs. If ξ1 is the retarded wave sent from J1. ξ2 is the
advanced wave sent from J2. J2 is uniformly distribute on Γs, we have,

(ξ1, ξ2)Γ = constant (64)

See Figure 11.
(VI). Same as (V), but if J1 is emitter and ξ1 is the retarded wave, J2 is

also emitter and sent the retarded wave we have ξ2, there will be

(ξ1, ξ2)Γ = 0 (65)

See Figure 12.

3.3 Example

Assume J1 is the current of a transmitting antenna which is inside the volume
V1 and J2 is the current of a receiving antenna which is inside of volume V2.
The �eld ξ1 = [E1,H1] is produced by J1 and it is a retarded wave. The �eld
ξ2 = [E2,H2] is produced by J2 and it is an advanced wave wave. (I) tell
us there is energy current �ow from V1 to V2, the energy �ow to any surface
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Figure 11: J1 is inside V1. J2 is at outside of in�nite big sphere Γs. J2 is
produce by uniformly distributed absorber. The �eld ξ1 is retarded wave, the
�eld ξ2 is advanced wave. The inner product is a constant on any surface Γ.

Figure 12: J1 is inside V1. J2 is at outside of in�nite big sphere Γs. J2 is
uniformly distributed emitters on Γs. The �eld ξ1 is retarded wave, the �eld ξ2
is also retarded wave. The inner product is a 0 on any surface Γ. Γ is inside Γs.
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Figure 13: J1 is inside V1 which is a transmitting antenna and sends the retarded
wave out. J2 is inside V2, which is a receiving antenna and sends advanced wave
out. The mutual energy current go to outside of the surface Γs is 0. The mutual
energy current go through Γ is a constant, Γ can be in any place between V1

and V2. The red arrowhead is the mutual energy �ow which is sent out from V1

and has been received in V2

Γ is all the same. Γ is the arbitrary surface between V1 and V2. (III) tell us
there is no any energy go outside of our universe. This give a double guarantee
for condition (I). The mutual energy theorem Eq(49), Eq(50) or Eq(51) o�ers
the energy sent by the transmitting antenna just equal the energy received by
the receiving antenna. See Figure 13. The red arrowhead is the mutual energy
�ow. The mutual energy �ow cannot go outside of Γs. The mutual energy
�ow are constant at any surface of Γ. The surface Γ is at any place between
the transmitting antenna to the receiving antenna. Through the mutual energy
�ow, the energy sent by the transmitting antenna is received by the receiving
antenna.

It should be noticed that for the energy radiate from the transmitting an-
tenna, it is possible to be received by other receiving antenna or background
environment. It is important its energy is radiate only by the form of the mu-
tual energy. We will prove that the self-energy do not transfer energy, this proof
cannot be done inside the Maxwell's theory. It need to introduce the self-energy
principle which will be done in the following sections.

4 The path integral based on the mutual energy
�ow

Feynman has mentioned Huygens principle in his article about path integral [8].
But he did not o�er any formula based on Huygens principle. And the Huygens
principle is also not combined with mutual energy �ow and mutual energy �ow
theory[21]. Hence, Feynman did not o�er a very clear picture that the path
integral related to Huygens principle. In this section this author will discusses
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Figure 14: Huygens virtual source, which can replace the �eld, i.e., ξΓ
I ⇐⇒ σΓ

I

this in details.

4.1 Huygens virtual sources

Assume τI = [JI ,KI ], JI is a source current which sends the retarded wave to
radiate out the energy. KI is the magnetic current source. Normally we have
KI = 0. Assume τF = [JF ,KF ], is a sink which sends the advanced wave to
receive the energy. JF is the electric current of the sink. KF is the magnetic
current of the sink. Normally we have KF = 0. We de�ne the following inner
product,

(ξIF , τI)I =

∞̂

t=−∞

ˆ

VI

(EI
F (t) · JI(t) +HI

F (t) ·KI(t))dV dt (66)

(τF , ξ
F
I )F =

∞̂

t=−∞

ˆ

VF

(JF (t) ·EF
I (t) +KF (t) ·HF

I (t))dV dt (67)

Γ can be any surface between the source and sink. This author will choice Γ as a
in�nite big plane. The normal vector n̂ is at the direction from the source point
to the sink. In the above formula, for the �eld, for example ξFI , the subscript
I is for the source or sink position, the superscript F is the �eld position. And
hence, ξFI is the �eld at the position F and sends from the source I. Similarly
HΓ

I (t) is the magnetic �eld at the position Γ send by the source I. According
the mutual energy theorem we have,

(τF , ξ
F
I )F = −(ξIF , τI)I (68)

Where ξFI is the �eld at the position of F and produced by the emitter τI . ξ
I
F

is the advanced �eld at the position I and produced by the absorber τF . The
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mutual energy �ow theorem can be written as,

(τF , ξ
F
I )I = (ξΓ

F , ξ
Γ
I )Γ = −(ξIF , τI)I (69)

where

τI = [JI(t),KI(t)] (70)

τF = [JF (t),KF (t)] (71)

Here, KF (t) = 0 and KI(t) = 0. Where ξΓ
F is the �eld at Γ and produced by

the absorber F . ξΓ
I is the �eld at Γ and produced by the emitter at I. (ξΓ

F , ξ
Γ
I )Γ

is the mutual energy �ow, Which is de�ned as,

(ξΓ
F , ξ

Γ
I )Γ =

∞̂

t=−∞

¨

Γ

(EΓ
I (t)×HΓ

F (t) +EΓ
F (t)×HΓ

I (t)) · n̂dΓdt (72)

Where Γ is a surface between I and F . We can assume Γ is an in�nite big plane.
n̂ is the surface unit normal vector which is at the direction from I to F .

(EΓ
F (t)×HΓ

I (t)) · n̂ = EΓ
F (t) · (HΓ

I (t)× n̂)

= EΓ
F (t) · (−n̂×HΓ

I (t)) (73)

and
(EΓ

I (t)×HΓ
F (t)) · n̂ = n̂ · (EΓ

I (t)×HΓ
F (t))

= (n̂×EΓ
I (t)) ·HΓ

F (t) (74)

We can de�ne Huygens virtual current source as,

JΓ
I (t) = −n̂×HΓ

I (t) (75)

KΓ
I (t) = n̂×EΓ

I (t) (76)

Please notice, in the electromagnetic �eld theory text book, the Huygens virtual
current source usually is de�ned as,

JΓ
I (t) = n̂outside ×HΓ

I (t) (77)

KΓ
I (t) = −n̂outside ×EΓ

I (t) (78)

In that situation, the n̂outside is a surface normal unit vector in outside direction.
n̂outside is at the direction from Γ to I. In our situation, our n̂ is at the direction
from Γ to F . Hence, we need a negative sign, so that the formula Eq.(75,76) is
correct. We can write Huygens virtual current source as σΓ

I ,

σΓ
I = [JΓ

I (t),KΓ
I (t)] (79)

Eq.(72) can be written as,
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(ξΓ
F , ξ

Γ
I )Γ =

∞̂

t=−∞

¨

Γ

(EΓ
F (t) · JΓ

I (t) +HΓ
F (t) ·KΓ

I (t))dΓ = (ξΓ
F , σ

Γ
I )Γ (80)

(ξΓ
F , ξ

Γ
I )Γ =

∞̂

t=−∞

¨

Γ

(JΓ
F (t) ·EΓ

I (t) +KΓ
F (t) ·HΓ

I (t))dΓ = (σΓ
F , ξ

Γ
I )Γ (81)

From this formula, we know that the �eld, ξΓ
I is equivalent to the Huygens

source, see Figure 14.
ξΓ
I ⇐⇒ σΓ

I (82)

Certainly, this equivalent is made on di�erent form of the inner product,

(ξΓ
F , ξ

Γ
I )Γ =

∞̂

t=−∞

¨

Γ

(EΓ
F (t)×HΓ

I (t) +EΓ
I (t)×HΓ

F (t)) · n̂dΓ (83)

(ξΓ
F , σ

Γ
I )Γ =

∞̂

t=−∞

¨

Γ

(EΓ
F (t) · JΓ

I (t) +HΓ
F (t) ·KΓ

I (t))dΓ (84)

but the above inner products are exactly equal. The above can be written as,

(ξΓ
F , σ

Γ
I )Γ =

∞̂

t=−∞

dt

¨

Γ

dΓ

6∑
k=1

ξΓk
F (t)σΓk

I (t) (85)

σΓ
I is corresponding to ξΓ

I which is the �eld at Γ produced by the source τI . If
we only consider one component of the source τI for example the j component
we have,

(ξΓ
Fi, σ

Γ
Ij)Γ =

∞̂

t=−∞

dt

¨

Γ

dΓ

6∑
k=1

ξΓk
Fi (t)σ

Γk
Ij (t)) (86)

Where ξΓ
Fi is the i component of the �eld produced by sink τF at F . We can

de�ne, ∑
≡
∑
Γk

≡
∞̂

t=−∞

dt

¨

Γ

dΓ

6∑
k=1

(87)

We have,

(ξΓ
Fi, τ

Γ
Ij)Γ =

∑
Γk

ξΓk
Fi (t)σ

Γk
Ij (t) (88)
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Figure 15: The �elds produced by a current source. The magnetic �eld produced
by the current can be decided by the right hand law, and hence only in one
direction showed as H. There are two possibility, for the electric �eld. It can
direct up or direct to down. The up direction electric �eld is the retarded �eld
Er and the down direction electric �eld is the advanced �eld Ea.

4.2 The di�erence between the normal current and Huy-

gens virtual sources

Consider a current J it has the ability to produce two kind of �elds, the retarded
�eld and the advanced �eld. The current J can produce a magnetic �eld which
can be decided by the right hand law, the magnetic �eld is shown in Figure 15.
However if we known the wave propagate along the direction n̂, for the electric
�eld there are two possibilities. The electric �eld can be direct to up or down.
These two possibilities are corresponding to the two kind of �elds, the retarded
wave and the advanced wave. If the electric �eld E at down direction, it is
corresponding to the retarded electric �eld, hence we, will write it as Er. This
is because the electric �eld Er is at opposite direction of the current J . The
current J will o�er some energy and hence, its �eld will be the retarded �eld.

If the electric �eld E at up direction, E is corresponding to the advanced
�eld. It will be write as Ea This is because the electric �eld has the same
direction with the current J . That means the �eld consume the energy, hence,
its �eld should be advanced wave.

Hence, the �elds of the current element radiate in all directions. there are
two di�erent electric �elds, one is the retarded wave, another is the advanced
wave. The �eld of Huygens virtual source is di�erent.

The mutual energy �ow theorem can be written as,

(τF , ξ
F
I )F = (ξΓ

F , ξ
Γ
I )Γ = −(ξIF , τI)I (89)

where τI = [JI , 0] is the real source. τF = [JF , 0] is the real sink. Assume
σI ,σF are Huygens virtual sources at the place I and F , we have,

(σF , ξ
F
I )F = (ξΓ

F , ξ
Γ
I )Γ = (ξIF , σI)I (90)

If we only consider one component, then we have,

28



Figure 16: The �elds produced by a current source. In the place close to the
current source, there are a in�nite plane Γ. The �eld produced by the source
JI can be described by ξΓ

I . This �eld can also be described as Huygens virtual
sources σΓ

I = [JΓ
I ,K

Γ
I ] .

(σFi, ξ
F
I )F = (ξΓ

Fi, ξ
Γ
Ij)Γ = (ξΓ

Fi, σIj)I (91)

If we use Huygens source and sink to replace the real source and sink, the
minus sign in the mutual energy �ow theorem disappear, that is the advan-
tage. The formula looks more symmetrical. Huygens source cannot produce
two kind of �elds like the real current does. If original �eld is retarded �eld, the
corresponding Huygens source can only produce retarded �eld. If the original
�eld is advanced �eld, the corresponding Huygens source can only produce ad-
vanced �eld. This is because Huygens source always have two kind of currents
σΓ = [JΓ,KΓ], electric current and magnetic current and the both are not zero.

The above formula looks more simple. In the above the mutual energy �ow
can be written as,

(ξΓ
Fi, ξ

Γ
Ij)Γ = (ξΓ

Fi, σ
Γ
Ij)Γ = (σΓ

Fi, ξ
Γ
Ij)Γ (92)

The above formula, considering

(ξΓ
Fi, σ

Γ
Ij)Γ =

∑
Γk

ξΓk
Fi (t)σ

Γk
Ij (t) (93)

we often written as,

(ξΓ
Fi, ξ

Γ
Ij)Γ = (ξΓk

Fi , ξ
Γk
Ij )Γ = (ξΓk

Fi , σ
Γk
Ij )Γ = (σΓk

Fi , ξ
Γk
Ij )Γ (94)

For Huygens source please see Figure 16.

4.3 δ function expansion

We know that, f(x) can be expanded as δ function,
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f(x) =

∞̂

−∞

c(x′)δ(x′ − x)dx′ (95)

where c(x′) is unknown coe�cient, which can be obtained by

(δx′ , f)X” ≡
∞̂

−∞

δ(x”− x′)f(x”)dx” (96)

=

∞̂

x”=−∞

∞̂

x=−∞

c(x)δ(x− x”)dxδ(x”− x′)dx”

=

∞̂

x=−∞

c(x)

∞̂

x”=−∞

δ(x− x”)δ(x”− x′)dx”dx

=

∞̂

x=−∞

c(x)δ(x′ − x)dx

= c(x′) (97)

or

c(x′) = (δx′ , f)X” =

∞̂

x”=−∞

c(x”)δ(x′ − x”)dx” (98)

Hence we have,hence we always have,

f(x) =

∞̂

x′=−∞

(δx′ , f)X”δ(x
′ − x)dx′ (99)

This is corresponding to the formula in quantum mechanics,∣∣∣f〉 =
∑∣∣∣q〉〈q∣∣∣f〉

Hence, δ(x′ − x) is used in the integral, x′ is integral variable. In the inner
product the integral variable can be omit. Hence we written as, (δx′ , f)X” the
integral of variable of f(x′) also can be omit. This is same to

∑
.

(δx′ , f)x” ≡ (δ(x′ − x”), f(x”))x”

f(x) =

∞̂

x′=−∞

(δx′ , f)x”δxdx
′
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≡
∞̂

x′=−∞

(δ(x′ − x”), f(x”))x”δ(x
′ − x)dx′ (100)

According to this, we need unit Huygens virtual source in Γ,

δ(γ − γ′) ≡ δ(t− t′)δ(Γ− Γ′)δkk′ (101)

where γ = {t,Γ, k},γ′ = {t′,Γ′, k′}. Here i = 1, 2 · · · 6, corresponding to the 6
component of �eld. It is similar to j and k,

ξΓ
F1 = [EΓx

F1, E
Γy
F1, E

Γz
F1, H

Γx
F1, H

Γy
F1, H

Γz
F1] (102)

ξΓ
F2 = [EΓx

F2, E
Γy
F2, E

Γz
F2, H

Γx
F2, H

Γy
F2, H

Γz
F2] (103)

· · · · · ·

ξΓ
F6 = [EΓx

F6, E
Γy
F6, E

Γz
F6, H

Γx
F6, H

Γy
F6, H

Γz
F6] (104)

f = {F, kF , tF }

i = {I, kI , tI}

Here the superscript 1, 2 · · · 6 is corresponding to the �eld components: Ex, Ey, Ez, Hx, Hy, Hz.
The subscript

We can expend σΓk
Ij with δΓk

Γ′k′ , and hence we have,

σγi =
∑
γ′

(δγ′ , σ
γ”
i )γ”δγ

∑
γ′

(δ(γ′ − γ”), σγ”
i )γ”δ(γ − γ′) (105)

Please notice if γ′ is a variable belong to the integral variable of the inner
product it can be omit δγ = δ(γ − γ′). Where

∑
γ′ =

´∞
t′=−∞ dt′

˜
Γ′
dΓ′

∑6
k′=1.

Eq.(105) is similarly to Eq.(101).

σγi =
∑
γ′

(δγ′ , σ
γ”
i )γ”δγ

=
∑
γ′

〈
δγ′
∣∣∣σγ”
i

〉∣∣∣δγ〉
=
∑
γ′

∣∣∣δγ〉〈δγ′∣∣∣σγ”
i

〉
(106)

Hence, we have the is the formula in quantum mechanics,

q =
∑∣∣∣q〉〈q∣∣∣q〉 (107)

1 ≡
∣∣∣q〉〈q∣∣∣ (108)
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4.4 Path integral derivation

Now, let us see the following the �eld ξfi is the �eld at the f = {F, kF , tF }
(position,component,time) sent by the position i = {F, kI , tI}.

ξfi = (δ(f − f ′), ξf
′

i )f ′ (109)

Or,

ξfi ≡ ξ
FkF
Ij =

∞̂

t=−∞

dtF ′

˚

F ′

dF ′
6∑

kF ′=1

δ(F − F ′)δ(t− t′)δkFkF ′ ξ
F ′kF ′
Ij (110)

In the above, the inner product de�nition at the position f ′ = {{F ′, kF ′ , tF ′}}.
Where F ′ is region, the point F is inside the region of F ′. And the de�nition
of δ has been applied. We have,

(δ(f − f ′), ξf
′

i )f ′ = (ξγf , ξ
γ
i )γ (111)

In the above formula, the mutual energy �ow theorem Eq.(91) has been applied.
(ξγf , ξ

γ
i )γ are the mutual energy �ow of the retarded �eld ξγi and advanced �eld

ξγf . γ = {Γ, tΓ}. Γ is any surface between the �nal point F and the initial point
I.

(ξγf , ξ
γ
i )γ =

∞̂

tΓ=−∞

¨

Γ

(EΓ
F (t)×HΓ

I (t) +EΓ
I (t)×HΓ

F (t)) · n̂dΓdt

Further we have,

(ξγf , ξ
γ
i )γ = (ξγf , σ

γ
i )γ (112)

We have done ξγi =⇒ σγi , that means we use the Huygens source σγi replace the
�eld ξγf . The �eld can be replaced with its Huygens virtual source. Apply the
Eq.(105) we have,

(ξγf , σ
γ
i )γ = (ξγf ,

∑
γ′

(δ(γ′ − γ”), σγ”
i )γ”δ(γ − γ′))γ

=
∑
γ′

(ξγf , δ(γ − γ
′))γ(δ(γ′ − γ”), σγ”

i )γ” (113)

Assume the think δf produced the advanced �eld which is ξγf , The Huygens

sourceδ(γ−γ′) produce the retarded �eld is ξfγ′ . Considering the mutual energy
theorem, that is,

(ξγf , δ(γ − γ
′))γ = (δf , ξ

f
γ′)f (114)

where ξγf is the think at f produced advanced wave at the place γ. ξfγ′ is the
source at γ′ produced �eld retarded �eld at place f . In the above formula, the
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inner product is done at the point f = {F, k, t} hence the δ do not need to give
any region, it is also at the position f .

Considering,

ξfγ′ = Gfγ′δγ′ (115)

where Gfγ′ is the coe�cient of �eld at f produced by the source γ′, hence we
have,

(δf , ξ
f
γ′)f = (δf , G

f
γ′δγ′)f (116)

Eq(105) can be written as,∑
γ′

(ξγf , δ(γ − γ
′))γ(δ(γ′ − γ”), σγ”

i )γ”

=
∑
γ′

(δf , ξ
f
γ′)f (δ(γ′ − γ”), σγ”

i )γ”

=
∑
γ′

(δf , G
f
γ′δγ′)f (δ(γ′ − γ”), σγ”

i )γ” (117)

Considering,
σγ”
i = Gγ”

i δi (118)

Hence we have,

∑
γ′

(δf , G
f
γ′δγ′)f (δ(γ′ − γ”), σγ”

i )γ” =
∑
γ′

(δf , G
f
γ′δγ′)f (δ(γ′ − γ”), Gγ”

i δi)γ”

(119)
Considered Eq(109, 111, 112, 113, ??,117, 119) we have,

ξfi = (δf , ξ
f
i ) =

∑
γ′

(δf , G
f
γ′δγ′)f (δ(γ′ − γ”), Gγ”

i δi)γ” (120)

In the above formula,

(δf , G
f
γ′δγ′)f = (δ(f − f ′), Gf

′

γ′δ(f
′ − γ′)f ′ (121)

f ′ can be omit because it is a integral variable, after integral it will disappear.
This can be written as,

〈
δf

∣∣∣ξfi 〉
f

=
〈
δf

∣∣∣Gfi ∣∣∣δi〉
f

=
∑
γ′

〈
δf

∣∣∣Gfγ′ ∣∣∣δγ′〉
f

〈
δ(γ′ − γ”)

∣∣∣Gγ”
i

∣∣∣δi〉
γ”

(122)

The above formula can be written as,〈
qf

∣∣∣ξfi 〉
f

=
〈
qf

∣∣∣Gfi ∣∣∣qi〉
f

=
∑
γ

〈
qf

∣∣∣Gfγ∣∣∣qγ〉
f

〈
qγ

∣∣∣Gγi ∣∣∣qi〉
γ

(123)
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It should be notice that in the formula
〈
qf

∣∣∣Gfγ∣∣∣qγ〉
f
, the subscript f means the

inner product is take at the place f . The above formula can be seen as insert∑
γ

∣∣∣qγ〉
f

〈
qγ

∣∣∣
γ
≡ 1 (124)

to
〈
qf

∣∣∣Gfi ∣∣∣qi〉
f
, hence we have,

〈
qf

∣∣∣Gfi ∣∣∣qi〉
f

=
〈
qf

∣∣∣GfγGγi ∣∣∣qi〉
f

=
〈
qf

∣∣∣Gfγ∑
γ

∣∣∣qγ〉
f

〈
qγ

∣∣∣Gγi ∣∣∣qi〉
γ

=
∑〈

qf

∣∣∣Gfγ∣∣∣qγ〉
f

〈
qγ

∣∣∣Gγi ∣∣∣qi〉
γ

(125)

It should notice that, in the time the above formula is inserted,
〈
qγ

∣∣∣
γ
has the

ability to change the inner product from f to γ. We have considered in the
above formula,

qγ ≡ δ(t− t′)δ(Γ− Γ′)δkk′ (126)

where γ = {t,Γ, k}. γ′ = {t′,Γ′, k′} is integral variable. It should be notice that
Eq.(124) is not same as ∑∣∣∣q〉〈q∣∣∣≡ 1 (127)

For Eq.(127) the bra
〈
q
∣∣∣ and kit

∣∣∣q〉 are in the same region which is the 3D

space. For Eq.(124) the bra and kit do not at the same region. One is at f and
the other is at γ. The source qi is at the place i = {I, kI , tI}.

The reader perhaps noticed this author has spent much more inc just to
make this step (from Eq.(127) to Eq.(124)) to work. However, this step is very
important. This allow us to de�ne the inner space for the path integral at a
surface instead of a 3D volume (Actually de�ne the path integral in the 3D
volume is also problematic. We have shown the problem in Figure 1 of the
section 1.2.

In the proof of Eq(222) we have applied one time of the mutual energy
�ow theorem, Eq.(111), one time Huygens principle Eq.(112), one time mutual
energy theorem, Eq.(114). Hence, this proof is based on all the theory of mutual
energy.

We can see in the proof of Eq.(127) from Dirac, the �proof� (see section 1.1)
is so simple, but in the proof of this author, it is become more complicated.
However, it should be point out, in this author's proof,

1. the author has proved that the electric �elds can be written as a inner
product (ξ1, ξ2)Γ which is de�ned on surface Γ, instead on the 3D volume.

2. the author has proved that the mutual energy theorem has to be used in
the proof of path integral.

34



3. the author has proved that the mutual energy �ow theorem has to be
used in the proof of path integral.

4. the author has used Huygens sources and sinks.
5.The advanced waves are involved, since the mutual energy �ow is consist

of the retarded wave and the advanced wave.
6. the author has de�ned the integral for the variable q which is at the

surface instead of 3D volume. Dirac use 3D volume, the author uses the surface
Γ which is 2D surface.

7. Only the mutual energy �ow is involved, there is nothing related to the
probability �ow.

8. the author has only proved one step in the path integral the rest should
be similar to that of Dirac's and Feynman's proof.

It should be notice that the Dirac's �proof� actually need also the above
concepts, He didn't o�er the corrected of the proof of his path integral, but
he has guessed the correct results. It should be mention, without any of the
above 7 things, the path integral cannot work. This author has only showed the
path integral in the case of electromagnetic �elds, however for other particles,
for example electron, it can also satis�es the extended Maxwell equations, the
citation is some where can be googled. Normally people said that the electron
satisfy the Dirac equation, but there are references that electron also satis�es
some kind of the extended Maxwell equations. Hence, if we have corrected the
path integral for electromagnetic �eld or photon, it can also be extended to the
electron and other particles. In a following section this author will prove the
mutual energy �ow theorem corresponding the Schrödinger equation and Dirac
equation.

4.5 Replace the path integral with Energy pipe streamline

integral

In the above we have worked with very important step of path integral. After
this step, The Eq.(125) can be extended as,〈

qF

∣∣∣GFI ∣∣∣qI〉
F

=
〈
qF

∣∣∣GFΓN−1
G

ΓN−1

ΓN−2
G

ΓN−2

ΓN−3
· · ·GΓ2

Γ1
GΓ1

I

∣∣∣qI〉
F

(128)

In last subsection we have use the variable f , γ, i, In this section we re-write it
as F , Γ, I. Hence, considering Eq.(124) we have,〈

qF

∣∣∣GFI ∣∣∣qI〉
F

=∑
ΓN−1

∑
ΓN−2

· · ·
∑
Γ1

〈
qF

∣∣∣GFΓN−1

∣∣∣qΓN−1

〉
F

〈
qΓN−1

∣∣∣GΓN−1

ΓN−2

∣∣∣qΓN−2

〉
ΓN−1

·
〈
qΓN−2

∣∣∣GΓN−2

ΓN−3
· · ·GΓ2

Γ1
qΓ1

〉
Γ1

〈
qΓ1

∣∣∣GΓ1

I

∣∣∣qI〉
F

(129)

Since we have energy �ow theorem, the energy �ow can be seen as many
pipes in the space, each pipe can be seen as streamline. Energy is go through the
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Figure 17: This �gure shows there is streamline between the emitter I and the
absorber F.

streamline. The summation,
∑

ΓN−1

∑
ΓN−2

· · ·
∑

Γ1
can be simpli�ed to only one

summation, since the energy �ow goes through only the energy pipe streamline.
Hence the path integral can be calculated on the streamline. That means we
have, ∑

ΓN−1

∑
ΓN−2

· · ·
∑
Γ1

⇐⇒
∑

Γ

(130)

〈
qF

∣∣∣GFI ∣∣∣qI〉
F

=
∑

Γ

〈
qF

∣∣∣GFΓN−1

∣∣∣qΓN−1

〉
F

〈
qΓN−1

∣∣∣GΓN−1

ΓN−2

∣∣∣qΓN−2

〉
ΓN−1

〈
qΓN−2

∣∣∣GΓN−2

ΓN−3···

· · ·GΓ2

Γ1
qΓ1

〉
Γ1

〈
qΓ1

∣∣∣GΓ1

I

∣∣∣qI〉
F

(131)

The above integral is referred as energy pipe streamline integral. The energy is
transferred on the streamline. See Figure 17.〈

qF

∣∣∣GFI ∣∣∣qI〉
F

=
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qΓN−2

∣∣∣GΓN−2

ΓN−3···

· · ·GΓ2

Γ1
qΓ1

〉
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〈
qΓ1

∣∣∣GΓ1

I

∣∣∣qI〉
Γ1

(132)

This means there doesn't need a in�nite integral in the path integral. The
energy stream line can guarantee the energy �ow goes through inside a stream-
line. Hence, the above formula is much much simpler than the traditional path
integral. It is referred as energy pipe streamline integral.
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It should be noticed, we have not o�er a mathematics proof that the in�nite
summation of Eq.(129) can be simpli�ed to only one summation. However, we
think that from the point view of the energy �ow, it should be possible. I hope
some reader can o�er a more detail proof. Taking a step back, even this in�nite
summation cannot be take away, the above discussion to move the inner product
of the path integral from 3D volume to 2D surface is also very meaningful.

5 From mutual energy pipe streamline to energy
pipe streamline

In the above, we have proved that the path integral can be simpli�ed as energy
pipe streamline integral. The deference of path integral and the energy pipe
streamline integral is that the path integral includes a in�nite 3D integral but
the streamline integral is a normal 2D surface integral. That vastly simpli�ed
the de�nition that make this technology easy to be implemented as numerical
calculations.

But there is one thing still not solved when I speak about the energy pipe
streamline that actually that means the mutual energy pipe streamline. This is
because all the derivation is based on the mutual energy theorem and mutual
energy �ow theorem. This two theorems speak all about the mutual energy.
The mutual energy is only part of energy, there is also the self-energy. What is
the role that the self-energy plays in energy transfer?

In this section I will prove the that the self-energy items has no any con-
tribution to the energy transfer. The energy is transferred only by the mutual
energy �ow. Hence, the mutual energy and the mutual energy �ow can be rec-
ti�ed the name as energy and energy �ow. The word �mutual� can be dropped
out. Last section we have introduced the streamline integral, which is based on
the mutual energy �ow theorem. Only when the mutual energy �ow theorem is
the energy �ow theorem, the de�nition of energy pipe streamline is worthy of
it's name.

In this section we begin to prove the mutual energy �ow theorem is an
energy �ow theorem. This proof cannot be put inside the Maxwell's theory. It
need a totally new theory. I will introduce the mutual energy principle and the
self-energy principle.

5.1 The con�ict of the classical electromagnetic �eld the-

ory

We all know that the electromagnetic �eld theory can be started from a system
with N charges. For this system, we have,

I. Maxwell equations. Maxwell equations can be seen as axioms. From
Maxwell equations we can obtained the Poynting theorem which can be written
as,
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−
"

Γ

(E ×H) · n̂dΓ =

ˆ

V

(J ·E)dV +

ˆ

V

(E · ∂D
∂t

+H · ∂B
∂t

)dV (133)

We also know that electromagnetic �eld also satisfy,
II. The superposition principle. Assume there are N charges, the i-th charge

has the �elds ξi = [Ei,Hi]. The superposition principle tell us the total �eld
can be written as,

ξ =

N∑
i=1

ξi (134)

Normally people often said that Maxwell equations are linear and hence, that
means, the superposition principle is included inside the Maxwell equations.
However, here the Maxwell equations is restrict to only one charge. We use
superposition principle to describe the �eld of many charges. Hence, here we
can separate the superposition principle to the Maxwell equations. Hence, the
superposition principle can be used as a independent principle.

III. energy conservation. We also know the i-th charge received energy from
j-the charge is,

∞̂

t==∞

ˆ

V

(Ej(t) · J i(t))dV dt (135)

where Ji(t) are current of i-th charge. Assume there are only the N charges
in the empty space. That means in our universe there is only N charges. It is
clear that if j-th charge o�er i-th charge some energy, j-th charge will loss the
same energy, hence the energy of the whole system which is,

N∑
i=1

N∑
j=1,j 6=i

∞̂

t==∞

ˆ

V

(Ej(t) · J i(t))dV dt (136)

will be zero, i.e.,

N∑
i=1

N∑
j=1,j 6=i

∞̂

t==∞

ˆ

V

(Ej(t) · J i(t))dV dt = 0 (137)

The above formula is the energy conservation law of the system with N charges.
The above conditions III Eq.(137) is self-explanatory. We also know that the
conditions I and II is enough to get a solution for an electromagnetic system.
The condition III is an additional condition. It is added to the normal elec-
tromagnetic �eld system. Normally an electromagnetic system do not need the
condition III.

Please notice that in the above formula the summation
∑N
j=1,j 6=i has been

applied, which means we have assumed that a charge's �eld cannot o�er a force
to its self. This is according to the Newton's law. There are a few researcher
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believe this law can be broken for a charge with radiation. However this author
think newton's law still should be insistent here.

Now let us substitute Eq.(134) to Eq.(133), we have,

−
N∑
i=1

N∑
j=1

"

Γ

(Ei ×Hj) · n̂dΓ

=

N∑
i=1

N∑
j=1

ˆ

V

(J i ·Ej)dV +

N∑
i=1

N∑
j=1

ˆ

V

(Ei ·
∂Dj

∂t
+Hi ·

∂Bj

∂t
))Γs

dV (138)

It is clear if we need to prove Eq.(136) from Eq.(138), we need to prove the
following 3 conditions,

−
N∑
i=1

"

Γ

(Ei×Hi)·n̂dΓ =

N∑
i=1

ˆ

V

(J i·Ei)dV +

N∑
i=1

ˆ

V

(Ei·
∂Di

∂t
+Hi·

∂Bi

∂t
)dV = 0

(139)
This is referred as self-energy formula. The above equation tell us all self energy
items should be 0. Substitute the above self-energy formula to the total energy
formula Eq.(138) we have,

−
N∑
i=1

N∑
j=1,j 6=i

"

Γ

(Ei ×Hj) · n̂dΓ

=

N∑
i=1

N∑
j=1,j 6=i

ˆ

V

(J i ·Ej)dV +

N∑
i=1

N∑
j=1,j 6=i

ˆ

V

(Ei ·
∂Dj

∂t
+Hi ·

∂Bj

∂t
)dV (140)

This is the mutual energy formula, in the above mutual energy formula, if we
can prove that,

N∑
i=1

N∑
j=1,j 6=i

"

Γ

(Ei ×Hj) · n̂dΓ = 0 (141)

and
N∑
i=1

N∑
j=1,j 6=i

∞̂

t==∞

ˆ

V

(Ei ·
∂Dj

∂t
+Hi ·

∂Bj

∂t
)dV dt = 0 (142)

If the above 3 formula is correct, we have

∞̂

t==∞

N∑
i=1

N∑
j=1,j 6=i

ˆ

V

(J i ·Ej)dV dt = 0 (143)

This is Eq.(137), i.e., the energy conservation formula. In the following section
we will prove Eq.(141, 142). In the following section we can prove Eq.(141,
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142), however we cannot prove Eq.(138) inside the frame of Maxwell's theory.
However I think that the energy conservation Eq.(143) should be reserved any
way, hence we assume that

"

Γ

(Ei ×Hi) · n̂ = 0 (144)

ˆ

V

(J i ·Ei)dV = 0 (145)

ˆ

V

(Ei ·
∂Dj

∂t
+Hi ·

∂Bj

∂t
)dV = 0 (146)

This is referred as self-conditions which means all self-energy items are 0. I do
not claim the above Eq.(144-146) are correct, but please just accept it for the
time being.

5.2 In case there is only two charges

We will prove Eq.(141, 142) in the situation of two charges. That means there
is only two charges in the empty space. The result can be extended to many
charge situation.

The 3 formula Eq.(144,145 and 146) are referred as self-energy conditions.
The self-condition tell us all self-energy items are 0. We do not claim the above
3 formulas are all correct. But in the time being, we just accept that. This
3 formulas will guarantee the mutual energy formula Eq(139) succeeds. This
further leads the Eq.(140) succeeds. Eq.(140) can be rewritten as,

−
N∑
i=1

j<i∑
j=1

"

Γ

(Ei ×Hj +Ej ×Hi) · n̂dΓ

=

N∑
i=1

j<i∑
j=1

ˆ

V

(J i ·Ej + J j ·Ei)dV

+

N∑
i=1

j<i∑
j=1

ˆ

V

(Ei ·
∂Dj

∂t
+Ej ·

∂Di

∂t
+Hi ·

∂Bj

∂t
+Hj ·

∂Bi

∂t
)dV (147)

Assume N = 2, the above formula can be rewritten as,

−
2∑
i=1

j<i∑
j=1

"

Γ

(Ei ×Hj +Ej ×Hi) · n̂dΓ

=

2∑
i=1

j<i∑
j=1

ˆ

V

(J i ·Ej + J j ·Ei)dV
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+

2∑
i=1

j<i∑
j=1

ˆ

V

(Ei ·
∂Dj

∂t
+Ej ·

∂Di

∂t
+Hi ·

∂Bj

∂t
+Hj ·

∂Bi

∂t
)dV (148)

or

−
"

Γ

(E1 ×H2 +E2 ×H1) · n̂dΓ

=

ˆ

V

(J1 ·E2 + J2 ·E1)dV

+

ˆ

V

(E1 ·
∂D2

∂t
+E2 ·

∂D1

∂t
+H1 ·

∂B2

∂t
+H2 ·

∂B1

∂t
)dV (149)

This can be rewritten as di�erential formula,

−∇ · (E1 ×H2 +E2 ×H1)

= J1 ·E2 + J2 ·E1

+E1 ·
∂D2

∂t
+E2 ·

∂D1

∂t
+H1 ·

∂B2

∂t
+H2 ·

∂B1

∂t
(150)

Considering the following mathematical formulas,

∇ · (E1 ×H2) = ∇×E1 ·H2 −∇×H2 ·E1 (151)

∇ · (E2 ×H1) = ∇×E2 ·H1 −∇×H1 ·E2 (152)

We have,

−(∇×E1 ·H2 −∇×H2 ·E1 +∇×E2 ·H1 −∇×H1 ·E2)

= J1 ·E2 + J2 ·E1

+E1 ·
∂D2

∂t
+E2 ·

∂D1

∂t
+H1 ·

∂B2

∂t
+H2 ·

∂B1

∂t
(153)

or

−(∇×E1 +
∂B1

∂t
) ·H2 + (∇×H2 − J2 −

∂D2

∂t
) ·E1

− (∇×E2 +
∂B2

∂t
) ·H1 + (∇×H1 − J1 −

∂D1

∂t
) ·E2 = 0 (154)

It is clear, if {
∇×E1+

∂B1

∂t =0

∇×H1 − J1 − ∂D1

∂t = 0
(155)
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{
∇×E2 + ∂B2

∂t = 0

∇×H2 − J2 − ∂D2

∂t = 0
(156)

This are two group of Maxwell equations. If two group Maxwell equations are
satis�ed, the Eq.(154) can be satis�ed.

In other hand, if we assume, {
E2 ≡ 0

H2 ≡ 0
(157)

We obtain, {
∇×H1 − J1 − ∂D1

∂t <∞
∇×E1 + ∂B1

∂t <∞
(158)

We have, {
E1 = anything <∞
H1 = anyting <∞

(159)

This is not an acceptable solution.
Similarly if {

E1 ≡ 0

H1 ≡ 0
(160)

we have, {
E2 = anything <∞
H2 = anyting <∞

(161)

This is also not an acceptable solution. Hence, for the equation Eq.(153), the
solution are two Maxwell equations, which mast be satis�ed in the same time.
That means the two �elds ξ1 = [E1,H1] must synchronized with ξ2 = [E2,H2].

Now lets to prove the Eq.(141). When N = 2, it become,

"

Γ

(E1 ×H2 +E2 ×H1) · n̂dΓ = 0 (162)

We can chose Γ as a in�nite big sphere surface with in�nite radius. If the two
�elds are all retarded �elds or the two �elds are all advanced �eld, the above
formula, is not zero in general. If the two �elds are one is retarded wave, another
is advanced wave, since two wave reach the sphere surface, one is the future,
another one is in the past. Hence, the two �eld cannot reach the sphere surface
Γ in the same time. This will guarantee the Eq.(162) succeeds. Hence the two
�eld ξ1 and ξ2 must one is retarded �eld and another is the advanced �eld. We
also know the two �eld must synchronized. The proof can be widened to the
situation where N is not 2. Hence Eq.(141) is established.
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Now let us to prove Eq.(142), if N = 2, it can be written as,

∞̂

t==∞

ˆ

V

(E1 · ∂D2 +E2 · ∂D1 +H1 · ∂B2 +H2 · ∂B1)dV dt

=

∞̂

t=−∞

dU

= U |∞t=−∞
= U(∞)− U(−∞)

= 0 (163)

where

U =

ˆ

V

(E1 ·D2 +H1 ·B2)dV (164)

is the mutual energy in the space, it can be choose so that U(∞)=U(−∞) =
constant. This proof can be easily widened to the general situation where N is
not equal 2. Hence Eq.(142) is established. The proof of Eq.(162, 163) are �rst
been done on the Welch's reciprocity theorem [30]. Welch �rst mentioned that
only the retarded wave and the advanced wave can made the integral vanish on
the in�nite big sphere.

Substitute the Eq.(162, 163) to the mutual energy formula Eq.(149) we ob-
tain,

∞̂

t=−∞

ˆ

V

(J1 ·E2 + J2 ·E1)dV = 0 (165)

Assume J1 is inside V1. J2 is only inside V2, and there is V1 ⊂ V and V2 ⊂ V ,
we have,

−
∞̂

t=−∞

ˆ

V1

J1(t) ·E2(t)dV =

∞̂

t=−∞

ˆ

V2

J2(t) ·E1(t)dV (166)

This is Welch's reciprocity theorem. The formula can also be generalized to
obtain the de Hoop's reciprocity theorem[7],

−
∞̂

t=−∞

ˆ

V1

J1(t) ·E2(t+ τ)dV =

∞̂

t=−∞

ˆ

V2

J2(t+ τ) ·E1(t)dV (167)

de Hoop's reciprocity theorem is also referred as cross correlation reciprocity
theorem. According the Fourier transform of the correlation function, the above
theorem can be written as,

−
ˆ

V1

J1(ω) ·E2(ω)dV =

ˆ

V2

J2(ω) ·E1(ω)dV (168)
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This is the reciprocity theorem of Rumsey's reciprocity theorem[25] and also
Zhao's mutual energy theorem[12]. The di�erence of the contribution this au-
thor compare to Welch, Rumsey and de Hoop is that the author �rst believe this
theorem is an energy theorem. All the other three thought it is a reciprocity
theorem. It is clear this theorem is a reciprocity theorem, however, this author
believe it is not only a reciprocity theorem but also an energy theorem. For a
reciprocity theorem, the two �eld one can be real another can be virtual. But
for an energy theorem, the both �eld ξ1 and ξ2 must all be real.

It should be notice that, in the derivation of the Welch's reciprocity theorem
in this article, I started from Poynting theorem, Welch started from Maxwell
equations. Welch would like to prove his reciprocity theorem that is correct,
and hence, it can be derived from Maxwell equations. I started from Poynting
theorem, this way to show this theorem is really a energy theorem. In the time I
derived the mutual energy theorem, I planed to prove it from Poynting theorem,
but I didn't realized that. After pasting around 30 years, in the second time
when I work on this problem I realized it[13]. When there is the concept mutual
energy, I begin to ask the energy �ow. Usually the energy �ow is corresponding
to the Poynting vector and Poynting theorem. Hence I call this new energy �ow
mutual energy �ow. When I have the concept mutual energy �ow, I get the
mutual energy �ow theorem Eq.(56).

5.3 There is a con�ict between the Maxwell theory and

energy conservation

Eq.(163, 164, 165) can be generalized to Eq.(141, 142, 143). From the derivation
of last sub-section, we know that the 2 waves must be synchronized, the two
wave one must be a retarded wave and an advanced wave. This results is also
correct to the situation where have more charges instead of only two charges.

We also know the wave should still satisfy the Maxwell equations. There
are additional requirement for the electromagnetic �elds, which means that for
the pair waves, one must be retarded and another must be an advanced �eld.
And the two must be synchronized. The concept of the synchronization for the
retarded wave and the advanced wave is similar to the transactional process in
the transactional interpretation of quantum mechanics of John Cramer [5, 6].
John Cramer guess that the retarded wave and advanced wave have a handshake
or transaction. The above is a proof of handshake. In my word the handshake
is the process of synchronization of the retarded wave and the advanced wave.

The problem we have derived that the wave still satisfy Maxwell equations
Eq.(155,156). If the Maxwell equations satis�es, the Poynting theorem must also
be satis�ed and hence, cannot have the self-energy condition Eq.(144,145,146).
Hence cannot have Eq.(139). But without Eq.(139), we cannot obtained the
energy conservation formula Eq.(137). However energy conservation should be
reserved �rst. What is wrong? I assume the wrong side is at Maxwell equations.
This con�ict cannot be solved inside the theory of Maxwell.
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5.4 Self-energy principle

In order to solve the con�ict, I assume the electromagnetic �eld is not only with
the retarded �eld and the advanced �eld. There are two another kind of elec-
tromagnetic �les: time-reverse �elds which satisfy the time-reversal Maxwell
equations, which can cancel all the energy of the retarded wave and the ad-
vanced wave. The time-reversal electromagnetic �elds satis�es the time-reversal
Maxwell equations. The time-reversal transformation R can be written as fol-
lowing,

Rt = −t = τ (169)

where t is time. τ = −t, is the new time after the time-reversal transform.
Hence we have,

R(x(t)) = x(−t) = x(τ) (170)

similarly we have,

R[E(t),H(t),D(t),B(t), µ(t), ε(t)] = [E(−t),H(−t),D(−t),B(−t), µ(−t), ε(−t)]

= [E(τ),H(τ),D(τ),B(τ), µ(τ), ε(τ)] (171)

Rv = R(
dx(t)

dt
) =

dx(−t)
dt

= −dx(−t)
d(−t)

= −dx(τ)

d(τ)
= −v (172)

Hence the speed v will change the sign after the time-reversal transform, this
also leads the current change the sign:

RJ(t) = R(qv) = −qv = −J(τ) (173)

similarly, we have,
RK(t) = −K(τ) (174)

R
∂E(t)

∂t
=
∂E(−t)
∂t

= −∂E(−t)
∂(−t)

= −∂E(τ)

∂(τ)
(175)

or

R[
∂

∂t
E(t),

∂

∂t
H(t),

∂

∂t
D(t),

∂

∂t
B(t)]

= [− ∂

∂τ
E(τ),− ∂

∂τ
H(τ),− ∂

∂τ
D(τ),− ∂

∂τ
B(τ)] (176)

Assume
ζ = [E(t),H(t),D(t),B(t), ε(t), µ(t),

t,J(t),K(t),
∂

∂t
E(t),

∂

∂t
H(t),

∂

∂t
D(t),

∂

∂t
B(t)] (177)

then we have,
Rζ = [E(τ),H(τ),D(τ),B(τ), ε(τ), µ(τ),
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τ,−J(τ),−K(τ),− ∂

∂τ
E(τ),− ∂

∂τ
H(τ),− ∂

∂τ
D(τ),− ∂

∂τ
B(τ)] (178)

We know the Maxwell equations are the following,

∇ ·D(t) = ρ(t) (179)

∇ ·B(t) = ρM (t) (180)

∇×H(t) = J(t) +
∂

∂t
D(t) (181)

∇×H(t) = −K(t)− ∂

∂t
B(t) (182)

{
D(t) = ε(t)E(t)

B(t) = µ(t)H(t)
(183)

After the time-reversal transform we have the time-reversal Maxwell equa-
tions:

∇ ·D(τ) = ρ(τ) (184)

∇ ·B(τ) = ρM (τ) (185)

∇×E(τ) = −J(τ)− ∂

∂τ
D(τ) (186)

∇×H(τ) = +K(τ) +
∂

∂τ
B(τ) (187){

D(τ) = ε(τ)E(τ)

B(τ) = µ(τ)H(τ)
(188)

It should be notice the time-reversal Maxwell equations are not the Maxwell
equations, Maxwell equations are not time reversible. Considering after the
time-reversal transform, the �eld is not the normal electromagnetic �elds which
satisfy Maxwell equations, we give another symbol. The time τ can be change
back to t. Hence, the time-reversal equation can be written as,

∇ · d(t) = %(t) (189)

∇ · b(t) = %M (t) (190)

∇× e(t) = −j(t)− ∂

∂τ
d(t) (191)

∇× h(t) = +k(t) +
∂

∂τ
b(t) (192)

{
d(t) = ε(t)e(t)

b(t) = µ(t)h(t)
(193)
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The Poynting theorem is,

−∇ · (E ×H) = J ·E +K ·H +E · ∂D
∂t

+H · ∂B
∂t

(194)

After time-reversal transform, we obtain the Poynting theorem for time-reversal
�eld, which is,

−∇ · (e× h) = −j · e− k · h− e · ∂d
∂t
− h · ∂b

∂t
(195)

or

∇ · (e× h) = +j · e+ k · h+ e · ∂d
∂t

+ h · ∂b
∂t

(196)

The items,
j · e+ k · h (197)

this corresponding to heat energy loss.

e · ∂d
∂t

+ h · ∂b
∂t

=
∂U

∂t
(198)

where

U =
1

2
(e · d+ h·b) (199)

is the energy of the time-reversal wave, ∂U
∂t is the energy increase. It is the

energy from outside �ow in to the inside. It is possible to make,

J ·E + j · e = 0 (200)

K ·H + k · h = 0 (201)

E · ∂D
∂t

+ e · ∂d
∂t

= 0 (202)

H · ∂B
∂t

+ h · ∂b
∂t

= 0 (203)

−∇ · (E ×H) +∇ · (e× h) = 0 (204)

The two Poynting theorem put together we have,

−∇ · (E ×H) +∇ · (e× h)

= J ·E +K ·H + j · e+ k · h+E · ∂D
∂t

+H · ∂B
∂t

+ e · ∂d
∂t

+ h · ∂b
∂t

= 0 (205)

If time-reversal �eld exist, the Poynting theorem doesn't transfer energy, because
all self-items together are 0. This can be widened to if the charge equal to N .
For every charge the self energy are 0. Eq.(139) can be replaced as,
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−
N∑
i=1

"

Γ

(Ei ×Hi − ei × hi) · n̂dΓ

=

N∑
i=1

ˆ

V

(J i ·Ei +Ki ·Hi + ji · ei + ki · hi)dV

+

N∑
i=1

ˆ

V

(Ei ·
∂Di

∂t
+Hi ·

∂Bi

∂t
+ ei ·

∂di
∂t

+ hi ·
∂bi
∂t

)dV

= 0 (206)

This is updated Eq.(139), it tell us self energy items doesn't carry any energy.
This formula do not con�ict with Maxwell equations which led Poynting theo-
rem. For Poynting theorem the self-items are not as 0. If the items Poynting
theorem is 0, that will leads the Maxwell equations also have only 0 solution.
In this way Poynting theorem is not 0, but the total self-energy includes the
self-energy items of time-reversal wave will vanish.

5.5 Mutual energy principle

The above discussion can be referred as self-energy principle. The self-energy
principle tell us in the space not only have the retarded waves and advanced
waves, but there are time-reversal waves corresponding to the retarded waves
and the time-reversal waves corresponding to the advanced waves. The total self
energy of these 4 waves are completely canceled or balanced out. And hence,
the energy is only transferred by the mutual energy items.

After I have introduced the self energy principle I will also call the mutual
energy formula Eq.(140) as the mutual energy principle. The reason is that the
Maxwell equations cannot correctly describe the electromagnetic phenomenal.
For example we cannot derive the time reverse waves from Maxwell equations.
Hence I have to �nd other formula to as axioms to replace the Maxwell equations.
The mutual energy formula is a very good candidate to do so. From mutual
energy formula we can derive Maxwell equations. Important thing is that the
derived Maxwell equations must be paired. Each pair need to have the retarded
wave and advanced wave, and the two waves have to be synchronized.

If we started from Maxwell equations adding also the time-reversal Maxwell
equations, it is still di�cult to obtained the concept of advanced wave. Because
even Maxwell equations can derive the advanced wave, but the advanced wave
derived from Maxwell equations is not clear which is a physical solution all only
a Mathematics formula. In the other hand, started from the mutual energy
formula, the advanced wave cannot be avoid. I believe the advance wave, hence,
I choose the mutual energy formula as the axioms and call it as mutual energy
principle.

We have derived the mutual energy theorem and mutual energy �ow theorem
from mutual energy principle with a system only having two charges. This result
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can be widened to there are N charges. From the mutual energy principle
Eq.(140) we can derive the mutual energy theorem with N charges Eq.(143).

After we have the self-energy principle the self-energy items do not con-
tribute to the energy transfer, the mutual energy theorem become the energy
conservation theorem. The mutual energy �ow theorem can be also referred as
energy �ow theorem.

The mutual energy pipe streamline integral now can be referred as energy
pipe streamline integral. The word �mutual� can be dropped o�. This is very
important. The path integral and streamline integral all should base on only
energy �ow, it is not probability �ow.

5.6 Action-at-a-distance vs Mutual energy principle

The theory of action-at-a-distance are introduced by K. Schwarzschild, H. Tetrode
and A.D. Fokker. According to this theory, a electric current will produce two
electromagnetic potentials or two electromagnetic waves: one is the retarded
wave, another is advanced wave. The emitter can send the retarded wave, but
in the same time it also sends an advanced wave. The absorber can send the
advanced wave, but in the same time it also sends a retarded wave. According
to this theory, the sun cannot send the radiation wave out, if it stayed alone in
the empty space. In�nite absorbers are the reason that the sun can radiate its
light. The action formula can be written as following,

S = −
∑
i

mic

ˆ
(
dxiµ
dτi

dxµi
dτi

)
1
2 dτi −

∑
i

∑
j<i

eiej
c

ˆ ˆ
δ(s2

ij)
dxiµ
dτi

dxµj
dτj

dτidτj

= extremum (207)

where mi is mass of the i-th charge, c is the speed of light, ei is the charge
amount of the i-th charge, xiµ is the 4-D space-time coordinates and,

s2
ij = (xiµ − xjµ)(xµi − x

µ
j ) (208)

ds = c2dt2 − dx2
1 − dx2

2 − dx2
3 (209)

It is possible that the mutual energy principle are equivalent to the above action
at distance principle. The mutual energy principle is still a �eld theory that
is di�erent compare to the action at a distance theory. For a �eld theory,
the �eld value can be obtained form only its neighborhood. For an action at
distance formula, at least two points and with a distance will be involved, the
two points in space separated with a distance can perhaps in di�erent time-
space coordinates, things become very complicate. I think they are equivalent
is because in both formula they have a same summation

∑N
i=1

∑
j<i (This can

also be written as
∑N
i=1

∑N
i=1,j 6=i). Comparing to the Maxwell theory and the

theory, the action-at-a-distance has many advantages. If the mutual energy
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principle is equivalent to the theory action at a distance, the mutual energy
principle can absorber all advantages from the theory of action-at-a-distance.
The mutual energy principle can derive the Maxwell equations and hence inherit
all correct results from Maxwell equations.

I think that from the above action distance principle we can also obtain
that the two Maxwell equations must synchronized. This is because of the same
summation

∑N
i=1

∑
j<i. But it is not so clear like the mutual energy principle.

From mutual energy principle it is easy to obtained two group Maxwell equations
and which must synchronized. From synchronization we can get the conclusion
that the two waves obtained from the two Maxwell equations must one is a
retarded wave and an advanced wave. If this is still not clear. Welch's condition
Eq.(47) or Eq.(162) in the in�nite big sphere tell us that only a retarded wave
and advanced wave can make the surface integral vanished. This condition will
strongly suggest there must exist the advanced wave. Only a retarded wave
and an advanced wave can be synchronized in 3D space, can make the surface
integral vanish at in�nite big sphere. This will guarantees the mutual energy
theorem and mutual energy �ow theorem can be established. In other hand,
the action-at-a-distance tell us the retarded wave and the advanced wave must
be sent out in the same time from the current source.

We have know the current source some time only looks like a source for
example the transmitting antenna, some time looks likes sink, for example the
receiving antenna. If action-at-a-distance Eq.(207) is correct, we have to answer
the question what about the advanced wave for a transmitting antenna and
what is the retarded wave of the receiving antenna? Now since we have the self-
energy principle, this problem is also solved, the energy of the corresponding
time-reversal wave cancels the advanced wave of the transmitting antenna. The
corresponding time-reversal wave cancels the retarded wave of the receiving
antenna. Hence the self-energy principle support also the action-at-a-distance
principle. This further prove that if we accept the action-at-a-distance principle
we need also to accept the self-energy principle.

Mutual energy theorem actually is same to the energy conservation condition
that further suggests that the self-energy can not send or carry any energy and
the further suggest the self-energy principle. All this further guarantees the
energy pipe streamline integral can be de�ned properly. All this kind thing is
not easy to obtained from only the action-at-a-distance principle. Hence, using
the mutual energy principle and self-energy principle as axioms are reasonable.

5.7 Mutual energy principle for the time-reversal waves

The time-reversal wave will have also the mutual energy principle, which can
be obtained by applying the time-reversal transform R to the mutual energy
principle Eq.(140), we obtained,

N∑
i=1

N∑
j=1,j 6=i

"

Γ

(ei × hj) · n̂dΓ
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=

N∑
i=1

N∑
j=1,j 6=i

ˆ

V

(ji · ej)dV +

N∑
i=1

N∑
j=1,j 6=i

ˆ

V

(ei ·
∂dj
∂t

+ hi ·
∂bj
∂t

)dV (210)

From the above the time-reversal Maxwell equations Eq.(189-192) can be de-
rived. There is also the concept of time-reversal mutual energy theorem and
time-reversal mutual energy �ow theorem. It should be notice that the time-
reversal mutual energy �ow can cancel the mutual energy �ow. In case of race,
for example there are two absorbers and one emitter in a system. The two ad-
vanced waves synchronized to one retarded wave. Each absorber can only obtain
a half or a part of photon. In this case, the current J2 jump to a half way to
the higher level and then, there is a time-reversal current j2 take place, which
produced a time-reversal mutual energy �ow and bring the energy back from
the absorber to the emitter. In the emitter, there is a current j1 which cancels
J1. Hence, we can say the time-reversal mutual energy principle is responsible
to bring the half or the part photon back to the emitter. That is the reason we
can only �nd the whole photon and did not �nd any thing like a half photon.

The two mutual energy principles Eq.(140) and Eq.(210) are axioms. The
self-energy principle Eq.(205) is also a axioms. The static �eld equation Eq.(184,
185) and Eq.(189190) can not be derived from mutual energy principle. It can
be taken also as the axioms. The superposition principle is also belong to the
axioms. It should be notice that the superposition principle cannot work with
Poynting theorem that will leads the con�ict. We have spend a lot of inc to
discuss that con�ict, and that lead to introduce two principles, i.e. the self-
energy principle and the mutual energy principle. However the superposition
principle can work with the mutual energy principle. All this formula become
an axioms system.

The superposition principle established need an test charge. When the ab-
sorber exist the retarded �elds can be superposed on the place of the test charge.
When a emitter exist the advanced �eld can be superposed on the place of the
test charge. It should be clear, that a test charge is required, this has been
found also in the absorber theory[1, 2]. In order to measure the advanced wave
we also need an emitter charge. Only when this charge exist, the advanced wave
can be superposed. In the mutual energy principle always has the emitters and
the absorbers hence, there is no problem for the mutual energy principle. In
mutual energy principle, we can superpose the retarded wave. We can also
superpose the advanced wave. I will often use the superposition principle to
the charges which are uniformly distributed on the in�nite big sphere. The ad-
vanced wave of all these absorbers can be superposed together. In other hand,
if apply Poynting theorem with superposition principle will lead Eq.(138) which
is not correct. I have call it is a bug of Poynting theorem[14]. The solution of
this bug is add the self-energy principle that means the self-energy items do not
have any contribution to energy transfer, hence, all self-energy items Eq.(139)
can be taken away. After taken away the self-energy items we obtain the mutual
energy principle. That is equivalent to direct apply the mutual energy principle
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with superposition principle.
The axioms system of the mutual energy principle and self-energy principle

has much less formulas than other axioms system. There 2 mutual energy
principle formula, 1 self-energy principle formula, 2 Gauss formula and 2 Gauss
formula for time-reversal �eld, the superposition principle can be derive from
mutual energy theorem. The number of the total axioms is 7. If we use Maxwell
equations as axioms we have 4 Maxwell equations and 4 time-reversal Maxwell
equations and 1 superposition principle that is 9 formula. But in addition,
there still need additional formula to discuss the relation between the retarded
wave and the advanced wave and additional formula to deal the problem of
the connection between the time-reversal wave and the normal electromagnetic
waves. Hence, things become much more complicate. According the principle
that the axioms should be as simple as possible, we should take the axioms
system with the mutual energy principle.

It should be notice that since there is no counterpoint of self-energy principle
in the action-at-a-distance axiom system, the axiom system of the mutual energy
principle and the self-energy principle is much more complete than the action-
at-a-distance axiom system. For example we even can add the action of the
time-reverse waves to the action-at-a-distance principle, to correct the action-
at-a-distance principle. It is also possible to obtained an axiom system with
much less formulas. However, the advantage of the mutual energy principle
and self-energy principle are that they are easy to obtained the mutual energy
theorem and the mutual energy �ow theorem, and further the Huygens theorem.
In the topic of path integral, the mutual energy theorems, the mutual energy
�ow theorem, Huygens theorem play a very important role. Huygens theorem is
often referred as Huygens principle, since we have derived the Huygens theorem
from the mutual energy �ow theorem, hence we can call it as Huygens theorem.

With the mutual energy �ow theorem the path integral can be simpli�ed
to an energy pipe streamline integral. The streamline integral is much simpler
than the path integral of Feynman. The path integral of Feynman is de�ned on
in�nite more 3D volume integrals. The streamline integral is de�ned only 2D
surface integral.

6 The macroscopic wave

In last section we have spent a lot inc to prove the mutual energy �ow theorem
is an energy �ow theorem, the mutual energy theorem is the energy conservation
law. That will allow us to drop o� the �mutual� from the streamline integral,
otherwise we must speak about the �mutual� energy pipe streamline instead just
the energy pipe streamline.

Lets come back to the topic of the path integral or streamline integral. In
the derivation of path integral. Assume from point I to point F is a straight
line. In the derivation of path integral, Dirac and Feynman applied the following
method. 〈

qF

∣∣∣GFI ∣∣∣qI〉 = 〈qF | e−iHt |qI〉 (211)
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Figure 18: The wave inside the wave guide. Assume there is a source J1 which
sends the retarded �led ξ1 and a load J2 which sends the advanced wave ξ2. In
this wave guide, we can calculate the energy �ow with Maxwell equations and
Poynting theorem or calculate the energy �ow with mutual energy principle.

That means
GFI = e−iHt (212)

or
||GFI || = ||e−iHt|| = 1 (213)

This means from point I to the point F the �eld has the same amplitude.
We know that in 3D space the �eld E and H decrease with the distance. Then
which physical amount go from I to to F does not decrease? Dirac and Feynman
did not o�er a clear explanation. Feynman try to let us to accept that is the
probability, why the probability is not decrease from a point in space to another
point? We know that the probability is related to the square of amplitude of
the �elds. If the �eld decreases with the distance how can the probability does
not decrease with the distance? I would like to study this with details that need
some background knowledge.

6.1 Wave in wave cylinder guide

Assume we have a wave guide, see Figure 18. In one side I there is a source
which is a current J1, and in another ends F , there is a sink or load which has
also a current J2. In subsection 4.2 we have show a current have two possibility,
sends a retarded wave or sends an advanced wave. If it sends the retarded wave,
it is a source, if it sends advanced wave it is a sink. Since the wave guide is
1-D structure, in this special situation, if the retarded wave sent from J1 and
the advanced wave sent from J2 are synchronized, the two waves are exactly
same. The synchronization of the retarded wave and the advanced wave is a
requirement of the mutual energy principle. This principle should be also work
inside the wave guide. The mutual energy principle Eq.(149) inside the wave
guide can be written as,

−
"

Γ

(E1 ×H2 +E2 ×H1) · n̂dΓ
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=

ˆ

V

(J1 ·E2 + J2 ·E1)dV

+

ˆ

V

(E1 ·
∂D2

∂t
+E2 ·

∂D1

∂t
+H1 ·

∂B2

∂t
+H2 ·

∂B1

∂t
)dV (214)

Assume the �eld of the retarded �eld and the advanced �eld are exactly
same wave ξ1 = ξ2 that is, {

E1 = E2

H1 = H2

(215)

Hence, we have

−
"

Γ

(E1 ×H1 +E1 ×H1) · n̂dΓ

=

ˆ

V

(J1 ·E1 + J1 ·E1)dV

+

ˆ

V

(E1 ·
∂D1

∂t
+E1 ·

∂D1

∂t
+H1 ·

∂B1

∂t
+H1 ·

∂B1

∂t
)dV (216)

In the above formula the volume V can be taken in any place. If we take it
close to the region of source, i.e.,

V = V1 (217)

Inside V1 we have J2 = 0, hence, we have,

−
"

Γ1

(E1 ×H1 +E1 ×H1) · n̂dΓ

=

ˆ

V1

(J1 ·E1)dV

+

ˆ

V1

(E1 ·
∂D1

∂t
+E1 ·

∂D1

∂t
+H1 ·

∂B1

∂t
+H1 ·

∂B1

∂t
)dV (218)

Γ1 is the boundary surface of volume V1, or

−2

"

Γ1

(E1 ×H1) · n̂dΓ

=

ˆ

V1

(J1 ·E1)dV
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+ 2

ˆ

V1

(E1 ·
∂D1

∂t
+H1 ·

∂B1

∂t
)dV (219)

We know that the whole �eld are the retarded �eld and the advanced �eld,
hence the total �eld E are two times of the retarded �eld, i.e.,{

E1 = 1
2E

H1 = 1
2H

(220)

Considering this, we have,

−1

2

"

Γ1

(E ×H) · n̂dΓ

=
1

2

ˆ

V1

(J1 ·E)dV +
1

2

ˆ

V1

(E · ∂D
∂t

+H · ∂B
∂t

)dV (221)

or

−
"

Γ1

(E′ ×H ′) · n̂dΓ

=

ˆ

V1

(J ′1 ·E′)dV +

ˆ

V1

(E′ · ∂D
′

∂t
+H ′ · ∂B

′

∂t
)dV (222)

where E′ = 1√
2
E, H ′ = 1√

2
H, J ′1 = 1√

2
J1. The above is the point theorem for

the volume V1 with the source J1 inside the volume V1.
In the Eq.(221) I did not remove the 1

2 from the two side of the equation but
move the 1

2 to each variable to produce a normalized variable. The reason is that
each item in the formula Eq.(221) has clear the physic meaning, for example
1
2

!
Γ1

(E×H) · n̂dΓ is the energy �ow in the wave guide, 1
2

´
V1

(J1 ·E)dV is the

consumed energy by the source J1.
1
2

´
V1

(E · ∂D∂t + H · ∂B∂t )dV is the energy
increase for the volume V1.

We can omit the normalized constant 1√
2
, hence, E′,H ′, J ′1, will be written

as E, H and J1.
This means, the �eld in the wave guide can be calculated with also with

Poynting theorem which get the same result as the mutual energy theorem
does. The Poynting theorem can be rewritten as,

−∇ · (E ×H) = J1 ·E +E · ∂D
∂t

+H · ∂B
∂t

(223)

Considering,
∇ · (E ×H) = ∇×E·H −E · ∇×H (224)

we have,

−∇×E·H +E · ∇×H = J1 ·E +E · ∂D
∂t

+H · ∂B
∂t

(225)
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or

− (∇×E +
∂B

∂t
) ·H +E·(∇×H − J1 −

∂D

∂t
) = 0 (226)

We know that E and H are not zero, hence, we have,{
∇×E + ∂B

∂t = 0

∇×H − J1 − ∂D
∂t = 0

(227)

This is the Maxwell equations for current source J1. Hence even here the
axioms is self-energy principle and mutual energy principle, according which the
retarded wave and Poynting vector do not carry energy, but the mutual energy
of the retarded wave and the advanced wave together still make the Poynting
theorem succeeds and hence, make the Maxwell equations succeeds. It should
notice these Maxwell equations is for the macroscopic wave. This means in
macroscopic situation, inside a cylinder wave guide, the Poynting theorem and
Maxwell equations are still correct!

It should notice that when we speak here the Maxwell equations are for
macroscopic wave, this Maxwell equation is not same as the Maxwell equation
direct derive from the mutual energy principle which is the Maxwell equation for
microscopic wave. For the microscopic wave there are two waves the retarded
wave and the advanced wave the two wave are synchronized. The two waves
satisfy the Maxwell equation. For the macroscopic wave, there is only one
Maxwell equations, this equation only send the retarded wave.

However this wave actually is derived from the mutual energy principle. In
the derivation the self-energy is not involved. This also prove that all guess
that the self-energy have no contribution to the energy transfer. This further
support the self-energy principle!

6.2 Self-energy items in cylinder guide

In the last sub-section I have discussed the contribution of the mutual energy
items, all mutual energy items together can have the same e�ect with the result
of Poynting theorem and Maxwell equations. Now let us to study the contribu-
tion of the self-energy items. In the cylinder guide, we can have the Poynting
theorem for the source and sink, considering a volume V1. Inside V1 J2=0

−
"

Γ1

(E2 ×H2) · n̂dΓ

=

ˆ

V1

((J2 = 0) ·E2)dV

+

ˆ

V1

(E2 ·
∂D2

∂t
+H2 ·

∂B2

∂t
)dV (228)
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This formula, we can omit the item
´
V1

(E2 · ∂D2

∂t +H2 · ∂B2

∂t )dV , since in the
stable situation the increase of energy is 0. This tell us that the advanced wave
can not come to the inside of the volume V1. Here Γ1 is the all boundary of the
volume V1.

−
"

Γ1

(E2 ×H2) · n̂dΓ = 0 (229)

This means the advanced wave either not come inside of the volume V1 or it
come inside but from another side of wave guide go to the outside of the volume.

For the retarded wave, we have,

−
"

Γ1

(E1 ×H1) · n̂dΓ

=

ˆ

V1

(J1 ·E1)dV

+

ˆ

V1

(E1 ·
∂D1

∂t
+H1 ·

∂B1

∂t
)dV (230)

Considering E1 = 1
2E and E1 = 1

2H we have,

−1

4

"

Γ1

(E ×H) · n̂dΓ

=
1

2

ˆ

V1

(J1 ·E)dV

+
1

4

ˆ

V1

(E · ∂D
∂t

+H · ∂B
∂t

)dV (231)

The above formula have the di�erent constant 1
4 and 1

2 and hence cannot
be normalized to a form of the Poynting theorem. If we put the contribution of
the self-energy �ow together with the mutual energy principle we cannot derive
a macroscopic wave which satisfy the Poynting theorem and hence macroscopic
Maxwell equations.

This strongly suggest to us that if we would like the energy can be transferred
by the mutual energy we can only use the mutual energy. A mixed with mutual
energy and self-energy doesn't work. If energy is transferred by the mutual
energy, we need to assume all self-energy items have no contribution to the
energy transfer. This further support the self-energy principle, the self-energy
has be canceled by the energy of the time-reversal wave.

The contribution of self-energy items are canceled by the time-reversal waves.
There are two time-reversal waves in the wave guide, which can transfer the same
energy as self-energy items, but the direction of energy �ow are negative. Hence,
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Figure 19: The wave inside cone beam wave guide. Assume there is a source J1

which sends the retarded �led ξ1 and a load J2 which sends the advanced wave
ξ2. In this wave guide, we can calculate the energy �ow with Maxwell equations
and Poynting theorem or calculate the energy �ow with mutual energy �ow.

together with the contribution of self-energy items and the contribution of the
time-reversal waves, the total contribution for self-energy is 0. Hence we can say
that the self-energy items do not have any contribution to the energy transfer.
The mutual energy �ow actually is the energy �ow in the wave guide. In the
above we have proven in the cylinder wave guide, the energy contribution of the
mutual energy items is same as the contribution with Poynting theorem.

Hence, for engineering started from the mutual energy principle and self-
energy principle we have obtained the same result with that if we started from
Maxwell equations and Poynting theorem for the cylinder wave guide.

6.3 Wave in cone-beam wave guide

Assume that we have a cone beam wave guide. In the vertex of the cone there
is a source current J , in another end of the cone, the absorbers are distributed
uniformly. In lase section we have mentioned that the superposition principle
can still be applied to these absorbers to produce an advanced wave. In this
situation the advanced wave produced by the absorbers can also be same with
the retarded wave. This cannot be seen very clearly, hence we make this as
a presumption, i.e, a uniformly distributed absorb can be seen as black body
which can absorb all radiation sends from the source, this kind of sinks can
produce an advanced waves in the cone beam wave guide which is exactly same
as the retarded wave sends from the source J . If a uninformed distributed
absorbers do not produce the same advanced wave with the retarded wave, we
can always �nd a suitable distribution of absorbers to produce same retarded
wave. For example, we can use the �eld ξ to calculate the Huygens sources and
put it at the in�nite end surface of the cone. This kind of absorber will produce
the same advanced wave as the retarded wave.

According this assumption, the same result can be achieve like last sub-
section. Hence, in the cone-beam wave guide, the macroscopic wave satisfy
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Maxwell equations and Poynting theorem. It can also be derived from the
mutual energy principle and self-energy principle. It should be noticed that this
is only correct in macroscopic view. In microscopic wave, the source J send the
retard wave, the absorber sends the advanced wave. There are also self-energy
items which are canceled by the time-reversal waves.

6.4 Waves in free space

For a free 3D space, it can be seen as also a special situation of the cone beam
wave guide, where the cone angle is 4π. Hence, in the 3D space, if the ab-
sorbers are uniformly distribute at in�nite big sphere, the Poynting theorem
and Maxwell equations also succeeds. This means even we have started from
self-energy principle, mutual energy principle and we have assumed the advanced
wave and time-reversal wave, the calculation result is same as the traditional
way (only with the retarded wave) to calculate . The only thing we need is the
absorbers must equally distribute on the in�nite big sphere. This point view
is agree with the absorber theory[1, 2]. In the absorber theory Wheeler and
Feynman also mentioned the uniformly distributed absorbers are needed to the
Maxwell equations.

Notice, same as last subsection, it is possible we need a not uniformed dis-
tribution to produce the same advanced wave with the retarded wave. However
considering the free space is symmetrical, if the point source sit on the center of
sphere, it is also symmetrical that means it sends photons in all direction with
the same distribution, the absorbers with uniformly distribution will produce
average advanced wave which is equal to the average retarded waves of the point
source in the center of the sphere.

It should be noticed that for a system with two antenna, one is a transmitting
antenna, one is a receiving antenna, the absorber is not uniformly distributed.
The absorber will have more e�ect on the direction of the receiving antenna. In
this situation even for the macroscopic wave the above derivation is not suitable.
Hence, the Poynting theorem and Maxwell equations is also not suitable to this
situation. The testimony of this is we cannot us the section area times the value
of Poynting vector to calculate the power received by the receiving antenna. We
have to use the �e�ective� section area of the antenna times the Poynting vector
to calculate the power received by the receiving antenna. The e�ective section
area can be a few times larger than the real section area for a plate antenna.
It can be thousand times larger for a wire antenna. In order to calculate the
receiving energy of the antenna actually the mutual energy theorem should be
applied. This is also why the directivity diagram can be calculated with the
mutual energy theorem (or using the Lorentz reciprocity theorem which can
obtained same directivity diagram with the mutual energy theorem).

By the way the receiving antenna has the same directivity diagram with the
same antenna applied as a transmitting antenna means the receiving antenna
send the advanced wave. This result can only be obtained with the mutual
energy theorem (or the Lorentz reciprocity theorem) which assume exists a
advanced wave. This result cannot be derived with the theory there is only the
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retarded wave.
In electronic engineering, in the macroscopic situation, Maxwell equations,

Poynting theorem with only the retarded wave can only be applied where the
absorbers can be seen as uniformly distributed at a sphere.

6.5 Wave in the path or streamline

In the energy pipe of a streamline, let us look the mutual energy �ow

(ξ1, ξ2)Γ =

"

Γ

(E1 ×H2 +E2 ×H1) (232)

{
ξ1 = [E1,H1]

ξ2 = [E2,H2]
(233)

ξ1 is decrease from the source place I to the sink place F . But the ξ2 is decrease
from F to I. Hence the advanced wave is increase from I to F . When we
put ξ1, ξ2 the together the mutual energy �ow (ξ1, ξ2)Γ is not changed in any Γ
surface between I and F .

In the streamline the �eld amputate changes, however, we can de�ne an
e�ective �eld which is, ξe1 and ξe2 which satisfy,{

||ξe1|| =
√
||(ξ1, ξ2)Γ||

||ξe2|| =
√
||(ξ1, ξ2)Γ||

(234)

{
F(ξe1) = F(ξ1)

F(ξe2) = F(ξ2)
(235)

The normal of ||ξe1|| and ||ξe2|| are square root of mutual energy �ow (ξ1, ξ2)Γ.
The phase of the ξe1 and ξe2 are same as ξ1 and ξ2 respectively. F is the symbol
to take the phase of a complex number.

For this e�ective �eld ξe1, ξ
e
2 they are looks like the �eld of cylinder wave

guide, and hence, the amplitude is not changed. Hence, the amplitude do not
change is come from the energy �ow which does not change.

||(ξe1, ξe2)Γ|| =
√
||(ξ1, ξ2)Γ||

√
||(ξ1, ξ2)Γ|| = ||(ξ1, ξ2)Γ|| (236)

F(ξe1, ξ
e
2)Γ = F(ξ1, ξ2)Γ (237)

Hence, we have,
(ξe1, ξ

e
2)Γ = (ξ1, ξ2)Γ (238)

Hence we can use e�ective �eld to calculate the mutual energy �ow.
In case energy �ow in the streamline it doesn't change, we can de�ne the

e�ective �eld, the amplitude of which will not change. In case this kind of
amplitude doesn't change we can have,

(ξe2, ξ
e
1)F = (σe2, Gσ

e
1)F (239)
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σe1 is Huygens source. We have proved that the �eld ξe1 can be replaced as
Huygens source σe1. This replace is taken place at the point I. The �eld at the
F will be ξe1 = Gσe1. G is propagation coe�cient. Since for the e�ective �elds,
the amplitude does not change, we know that inside this wave guide, it can only
have the plane wave, hence, we have,

||G|| = 1

and hence,
G = exp(j(something)) (240)

where j =
√
−1. something is a phase fact.

For the quantummechanics we know the plane wave is applied to Schrödinger
equation, the plane wave can be written as

G = exp(−iHT ) (241)

(ξe2, Gσ
e
1)F = (σe2, exp(−iHT )σe1)F (242)

or 〈
σe2

∣∣∣exp(−iHT )
∣∣∣σe1〉 (243)

It is notice in all my derivation, the �elds are all electromagnetic �elds, how-
ever we know there is some theory that the �elds of electron also satis�ed an
extended Maxwell equations instead of Dirac equation or Schrödinger equation.
We can see the Dirac equation and Schrödinger equation are a simpli�ed ver-
sion of that extended Maxwell equations. In this way, all the discussion of this
article for electromagnetic �eld theory should be also correct for the case of
the �eld of electron or other particles. In section 8 we will discuss in case of
Schrödinger equation replace the Maxwell equations. There we will extended
all the result from the mutual energy theory corresponding to Maxwell equation
to the corresponding theory of Schrödinger equation.

In this sub-section, we can see that the �eld amplitude doesn't change with
the time and distance is because the e�ective �eld ξe1, ξ

e
2 and the fact there is

the mutual energy �ow theorem which guarantees the energy �ow inside the
streamline is not changed. It should be notice that the amplitude of the actual
�eld ξ1 and ξ2 always change in a path or a streamline!

7 Important notices

7.1 It is not possible to have the other path than the

streamline

It is often heard that the path integral includes all paths for example in the
Figure 20 we have showed 3 paths The �rst one is a strait line. The second
line is a streamline. The third is a arbitrary path. We have know that the �rst
two paths are allowed in by the mutual energy �ow theorem and belong to the
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Figure 20: In the �gure there are 3 paths. Path (1) is straight line. The path
(2) is a streamline, this is a line the mutual energy �ow will go. The path (3)
path is arbitrary path.

energy pipe stream line. The third line doesn't belong the streamline, many
quantum mechanics text book showed this kind of paths. The question is that
is this kind of path really allowed in the path integral?

First let us see if we can create a path like this. The energy pipe stream
line is decided by the retarded wave and the advanced wave, in that line we can
de�ne the energy �ow stream line. in the other arbitrary line it is not possible
to de�ne the energy �ow, there is no any physics variable not changed along
that line. Hence it is not possible to get the result,〈
σe2

∣∣∣exp(−iHT )
∣∣∣σe1〉

F
=
〈
σe2

∣∣∣exp(−iH2T )
∣∣∣ξΓ〉

F

〈
ξΓ

∣∣∣exp(−iH1T )
∣∣∣σe1〉

Γ
(244)

where H is Hamilton,
H = H1 +H2 (245)

ξΓ is the �eld at the a meddle point Γ between the two ends I and F . This
means there is no any reason that the path integral can includes that kind of
paths. That kind of paths make the concept path integral become very confuse!

In general it is not possible to build an arbitrary path in which we can
de�ne a physical amount with amplitude is a constant. If that physical amount
is energy, we have to adjust the section area of the pipe to keep the energy inside
as a constant. That become very strange.

7.2 Probability

According to the mutual energy principle, in the photon situation, the probabil-
ity comes from the following reason. The emitter randomly sends the retarded
wave. The absorber randomly sends the advanced wave. Since there are many
absorbers, which absorber can send the advance wave and synchronized with
the retarded wave is also random event. If an advanced wave sends from an ab-
sorber charge just win the synchronization, it absorbs the photon. This events
is clear a random event and hence, the probability comes.
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Even which absorber is randomly decided, but once it is decided, the energy
�ow is a real physical energy �ow. Hence, the streamline or path integral should
based on energy and not the probability!

About why the probability of a place received photons is proportional to the
square of the amplitude of the �eld that is because that normally an absorber
in the beginning can only received a part of photon instead of a whole photon,
this part of photon is returned (by a time-reversal wave) to the emitter and
re-sends from the emitter. After the energy is resented, some absorber can win
the energy from its neighbor. Hence, the energy received on a region can be
received �nally by only one absorber inside this region. This energy will equal
to the area of the region multiplies the square of the amplitude of the �eld. This
made the probability of receiving a photon for an absorber is proportional to
the square of the amplitude of the �eld.

The energy can return from the absorber to the emitter is because of the
time-reversal mutual energy �ow which is responsible to return all part photon
or the half photon. This is also the reason we cannot receive the half photon.
It should be notice that, the energy return to the emitter from absorber that
uses a negative time, this is because of the time-reverse wave. The total time
the energy send from the emitter to the absorber and then return to the emitter
is 0. Hence, the streamline (and also the path integral) is really because of the
energy not the probability!

7.3 Streamline integral is a well better formalism than

Schrödinger equation

It is often found in the quantum mechanic text book that the path integral for-
malism is equal to other formalism for example the formalism with Schrödinger
equation. This is also not correct. The stream line integral is based on the
mutual energy theorem, mutual energy �ow theorem, the mutual energy princi-
ple. After we have accept the self-energy principle, the mutual energy theorem
and mutual energy �ow theorem become the energy conservation law and en-
ergy �ow theorem. the word �mutual� can be taken away. We also know that
the mutual energy theorem and the mutual energy �ow theorem is based on
the mutual energy principle and self-energy principle which is not equal to the
Maxwell equations. It is better than Maxwell equations in the microscopic view!
The system with mutual energy principle and self-energy principle have 4 waves
which are more than that a system of Maxwell equations which at most to have
2 waves. The system with mutual energy �ow principle have successfully inter-
preted all phenomenon of wave particle duality. It is not possible to achieve this
by using Maxwell equations or Schrödinger equation.

Hence, the streamline integral (the path integral) is a well better formalism
than the formalism of Schrödinger equation, Dirac equation or Maxwell equa-
tions. Here the streamline integral is a updated version of the path integral. The
path integral itself is also a formalism better than the corresponding formalism
of Schrödinger equation. That is the reason why it is often that the problem
which cannot be solved by Schrödinger equation can be solved by path integral.
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Now the path integral can be replace by streamline integral. The de�nition of
the streamline integral is much simpler than the path integral. The author hope
the stream line integral can further o�er better results in numerical calculation
than the path integral.

8 The mutual energy �ow for the Schrödinger
equation

For photon we have obtained the results that the waves of photon obey the
mutual energy principle and self-energy principle. In this section we will ex-
tended the results from photon to other quanta. The mutual energy principle
and self energy principle corresponding to the Schrödinger equation are intro-
duced. The results are that an electron, for example, travel in the empty space
from point A to point B, there are 4 di�erent waves: the retarded wave started
from point A to in�nite big sphere; the advanced wave started from point B to
in�nite big sphere; the time-reversal wave corresponding to the above retarded
wave; the time-reversal wave corresponding to the above advanced wave . There
are 6 di�erent energy �ows corresponding to these waves: the self-energy �ow
corresponding to the retarded wave; the self-energy �ow corresponding to the
advanced wave; the energy �ows corresponding to the above two time-reversal
waves; the mutual energy �ow of the retarded wave and the advanced wave.
The time-reversal mutual energy �ow. It is found that the mutual energy �ow
is the energy �ow, or the charge intensity �ow, or electric current of the elec-
tron. Hence, the electron travel in the empty space is a complicated process
and do not only obey one Schrödinger equation. This result can also extend to
Dirac equations. This 4 waves and 6 energy �ows together can o�er a correct
interpretation for the duality of the quantum mechanics.

We assume the quantum, for example electron, runs in the empty space from
point a to b. This electron must satisfy in the Schrödinger equation,

i~
∂

∂t
Ψ(r, t) =

[
−~2

2µ
∇2 + V (r, t)

]
Ψ(r, t) (246)

where i =
√
−1. Ψ(r, t) is the wave function.

8.1 The retarded equation for point a

In empty space there is,
V (r, t) = 0 (247)

We have know that the wave Ψa(r, t) is retarded wave started from point a
and spread to the in�nite big sphere. This wave satis�es,

i~
∂

∂t
Ψa(r, t) =

[
−~2

2µ
∇2

]
Ψa(r, t) (248)
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We do not know the exact wave should be, but we know that this wave should
be a retarded wave, from the experience of photon we know that a retarded
wave should look like the following,

Ψa(r, t) =
1

|r − a|
expT (iω(t− |r − a|ω

k

+ ta)) (249)

where ω
k = v is the speed of the particle. expT is a truncated exp function,

expT (iτ) =

{
exp(iτ) 0 < τ < 2π

0 otherwise
(250)

Where ta is a initial constant, since we do not assume the wave is started at
time t = 0. We assume the wave has been truncated with only one wave length.
This may be not true, perhaps the wave has a life time more than one wave
length. Since the frequency of electron is very high, for example if the electron
have speed of v = c

10 , where c is light speed. Then moment of the electron is
around,

p = mv = 9 ∗ 10−31[kg] ∗ (3 ∗ 108[m]/[s] ∗ 1

10
)

= 2.7 ∗ 10−23[kg][m]/[s] (251)

The wave length of the electron is,

λ =
h

p
=

6.62607004 ∗ 10−34[kg][m]2/s

2.7 ∗ 10−23[kg][m]/s
= 2.4541 ∗ 10−11[m] (252)

The frequency of the wave is,

λf = v (253)

f =
v

λ
=

3 ∗ 108[m]/[s] ∗ 0.1

2.4541 ∗ 10−11[m]
= 1.22244407 ∗ 1018 1

[s]
(254)

Assume the period of the wave is

fT = 1 (255)

T =
1

f
= 8.1803 ∗ 10−19[s] (256)

If we assume the wave is only have a length of a wave length, then the wave will
appear in space with the λ = 2.4541 ∗ 10−11[m]. The wave can also have a life
time T = 8.1803 ∗ 10−19[s]. This is a very short wave.

We assume that the distance from point a to the origin point of the coordi-
nates r = o point is |o− a| = l, we assume when this retarded wave reach the
point o the time is t = 0, hence we have,

(0− |o− a|ω
k

+ ta) = 0 (257)
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hence,

ta =
l
ω
k

(258)

Ψa(r, t) =
1

|r − a|
expT (jω(t− |r − a| − lω

k

)) (259)

This wave when r = a, |r − a| = 0

(t− 0− l
ω
k

) = 0 (260)

t+
l

v
= 0 (261)

t = − l
v

(262)

This means t = − l
v , the wave is at the r = a. The wave is started at t = − l

v .
This wave when r = b,

|r − a| = |b− a| = 2l (263)

(t− 2l − l
ω
k

) = 0 (264)

t =
l

v
(265)

This means that, when t = l
v , the wave come to the point b. We also

obtained, that if t = 0 there is r = o.

8.2 The advanced wave started from point b

According to the experience with photon, the retarded wave and the advanced
wave satisfy the same Maxwell equations. This should be also true for other par-
ticles, hence, here for the advanced wave it should also satisfy same Schrödinger
equation (if Schrödinger equation cannot o�er a correct format of advanced
wave, we believe at least the Dirac equation should be, which will be discussed
in section 10, here we assume Schrödinger equation is possible to described the
advanced wave),

i~
∂

∂t
Ψb(r, t) =

[
−~2

2µ
∇2

]
Ψb(r, t) (266)

We have write τ as t. Ψb(r, t) is the retarded wave starting from point b. The
advanced wave starting from point b.

[Ψb(r, t)]ad =
1

|r − b|
expT (ωj(t+

|r − b|
k
ω

+ tb)) (267)
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The above formula tell us the advanced wave [Ψb(r, t)]ad from started b can be
expressed with the retarded wave from b.

We assume when t = 0 the advanced wave just pass the origin point r = o
and

|o− b| = l (268)

(0 +
l
k
ω

+ tb) = 0 (269)

hence, we have

tb = − l
k
ω

(270)

8.3 The advanced wave is synchronized with the retarded

wave

Advanced wave and the retarded wave can be synchronized, this section we will
show this. For the above advanced wave, when r = a,

|r − b| = 2l (271)

(t+
2l − l
k
ω

) = 0 (272)

t = − l
v

(273)

For this wave, when r = b

|r − b| = |b− b| = 0 (274)

(t+
0− l
k
ω

) = 0 (275)

t =
l

v
(276)

We have evaluated that the wave retarded Ψa(r, t) and the advanced wave
Ψb(r, t) are reach the points a, o, b at time t = − l

v , t = 0, and t = l
v .

Hence these two waves are synchronized at this 3 points. Actually the wave are
synchronized at the whole line from point a to b.

This way the wave Ψb(r, t) is said to be synchronized with Ψa(r, t).We look
the wave on the connection line between a and b. This means that on this line
when the retarded wave just started from point a the advanced wave has from
in�nite big sphere runs to reached the point a, when the retarded wave reach
the point o the advanced wave also reached the point o. When the retarded
wave reach the point b the advanced wave also reach the point b. We can see
the Figure 21 about the synchronization of the two waves. It is clear that the
most energy �ow are go through the region close to the line between a to b.
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Figure 21: Retarded wave and the advanced wave of the particle, the particle
move from point a to point b. In the time t = 0 the both wave reach the point
r = o. The red wave is the retarded wave. And the blue wave is the advanced
wave. The retarded wave is a divergent wave. The advanced wave is convergent
wave. The two waves is synchronized along the line from a to b.

8.4 The mutual energy �ow from a to b

The complex conjugate of the advanced wave Ψ∗b(r, t) satisfy the following equa-
tion which is the complex conjugate of the Schrödinger equation,

− i~ ∂
∂t

Ψ∗b(r, t) =

[
−~2

2µ
∇2

]
Ψ∗b(r, t) (277)

Using Ψ∗b multiply Eq(248) from right we have

(i~
∂

∂t
Ψa)Ψ∗b =

[
−~2

2µ
∇2

]
ΨaΨ∗b (278)

Using Ψa multiply the Eq(277) from the left, we have

− i~Ψa
∂

∂t
Ψ∗b = Ψa

[
−~2

2µ
∇2

]
Ψ∗b (279)

Subtract the Eq.(279) from Eq.(278) we obtain

(i~
∂

∂t
Ψa)Ψ∗b + i~Ψa

∂

∂t
Ψ∗b

=
−~2

2µ
(∇2ΨaΨ∗b −Ψa∇2Ψ∗b) (280)

or
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∂

∂t
(ΨaΨ∗b) = − ~

2µi
∇ · (∇ΨaΨ∗b −Ψa∇Ψ∗b) (281)

or
∂

∂t
(ρab) = −∇ · Jab (282)

where
ρab = ΨaΨ∗b (283)

Jab =
~

2µi
(∇ΨaΨ∗b −Ψa∇Ψ∗b) (284)

The above formula are mutual energy �ow principle. Jab are mutual energy
�ow.

d

dt

ˆ

V

ρabdV = −
"

Γ

·Jabn̂dΓ (285)

This �ow is not a divergence �ow Jab. It is a point to point converged �ow.
This can be proved similar to the photon as following, assume Γ is big sphere,
the radius of the big sphere is in�nity. Assume the wave Ψa(r, t) is a short time
wave. In the time ta0 = 0 the wave is at the place of point a. afterwards the
wave begin to spread out. When the wave reached the big sphere surface Γ, it
happened at a future time

ta =
R

v
(286)

where R is the radius of the sphere.
The advanced wave started at the time when the retarded wave reached the

point b, which is the time tb0 = 2l
v , where 2l is the distance from point a to

point b.
v is the speed of the wave. The advanced wave Ψb(r, t) reach the big sphere

is at the past time,

tb =
2l

v
− R

v
(287)

We have assume
2l� R (288)

Since the retarded wave come to the big sphere in the future, the advanced
wave come to the big sphere in the past. The retarded wave and the advanced
wave are not nonzero in the same time at the in�nite big sphere Γ, hence

∇ΨaΨ∗b −Ψa∇Ψ∗b = 0 (289)

at the sphere Γ. The Jab has no any �ux go out of the big sphere Γ.

∞̂

−∞

"

Γ

Jab · n̂dΓdt = 0 (290)
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Figure 22: In this picture we assume between the two points points a and b, we
put a partition board with big hole on it. The mutual energy �ow theorem tell
us the time integral of the mutual energy �ow Jab will be same at any surface
Si where i = 1, 2, 3, 4, 5, between the two points a and b. The shape of the
mutual energy �ow is shown in this picture.

where Γ is in�nite big sphere. This means that mutual energy �ow Jab do not
go outside our universe. Inside the volume V there is only the two sources for
the charges at a and b hence the energy �ow can only started from a to b. The
�ow Jab is very thin in the two ends point a and b. The �ow Jab are very thick
in the middle between the two points a and b. The �ow will has the same �ux
integral with time in any surface between the two point a and b. If the particle
is an electron, this �ow Jab is the current. This �ow is the electron itself, it is
the electric current between a and b.

The above formula also means that

∞̂

−∞

"

Si

Jab · n̂abidS = const, i = 1, 2, ..n (291)

See Figure 22, where n̂abi is unit vector of the surface Si, the direction of n̂abi
is from a to b. This can be referred as the mutual energy �ow theorem, The
time integral of the total �ux of the �ows in any di�erent surface Si are same
for any give i. This is same as the situation of the photon.

Assume there is a partition board. The mutual energy �ow between point
a and b, see Figure 23. If there are double slits on the partition board, it is no
any problem for this kind of mutual energy �ow to go through the two slits.

Since the mutual energy �ow go through the double slits in the same time,
and the �ow at two end points a and b looks like a particle, and at the middle
between two end points a and b looks like wave. This explains the particle and
wave duality for all particle includes electron, see Figure 24.
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Figure 23: The mutual energy �ow between the two point a and b. Assume
there is a partition board. This wave is quasi-plane wave.

Figure 24: Assume there is a partition board which is put between the point a
and b. Double slits are opened on the partition board which allow the particle
to go through. The shape of the mutual energy �ow for the double slits are
shown.
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8.5 Inner product for the wave satis�es Schrödinger equa-

tion

Inner product can be de�ned as,

(Ψb,Ψa) =

∞̂

−∞

"

Γ

·Jabn̂dΓdt

=

∞̂

−∞

"

Γ

~
2µi

(Ψ∗b∇Ψa −∇Ψ∗bΨa) · n̂dΓdt (292)

Ψa is retarded wave, Ψb is advanced wave. Since the inner product (Ψb,Ψa)
is the receiving energy at b, we always use an advanced wave at b: Ψb to receive
the energy. Hence we have,

(Ψb,Ψa)∗ =

∞̂

−∞

"

Γ

~
2µ(−i)

(∇Ψ∗aΨb −Ψ∗a∇Ψb) · n̂dΓdt

=

∞̂

−∞

"

Γ

~
2µi

(Ψ∗a∇Ψb −∇Ψ∗aΨb) · n̂dΓdt

= (Ψa,Ψb) (293)

We also have,

(Ψb,Ψa1
+ Ψa2

)

=

∞̂

−∞

"

Γ

~
2µi

(Ψ∗b∇(Ψa1
+ Ψa2

)−∇Ψ∗b(Ψa1
+ Ψa2

) · n̂dΓdt

=

∞̂

−∞

"

Γ

~
2µi

(Ψ∗b∇Ψa1 −∇Ψ∗bΨa1) · n̂dΓdt

+

∞̂

−∞

"

Γ

~
2µi

(Ψ∗b∇Ψa2
−∇Ψ∗bΨa2

) · n̂dΓdt

= (Ψb,Ψa1
) + (Ψb,Ψa2

) (294)

We can easy to see that we have,

(Ψb, kΨa1
) = k(Ψb,Ψa1

) (295)

And hence, (Ψb,Ψa) indeed is a inner product. Hence, that it can be applied in
streamline integral. Apply this kind of inner product that has the mutual energy
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�ow theorem to guarantees we can correctly de�ne the streamline integral. The
inner space de�ned on surface Eq.(292) is better than to use the inner product
de�ned on 3D volume as following,

(Ψb,Ψa) =

∞̂

−∞

ˆ

V

(Ψ∗bΨa)dV dt (296)

If we use the above de�nition we can only de�ne the path integral, and can not
de�ne the streamline integral. However the problem of path integral in section
1.2 cannot be solved. Please see Figure 1.

8.6 Self energy �ow

The equation of the retarded waveΨa(r, t) satis�es,

i~
∂

∂t
Ψa(r, t) =

−~2

2µ
∇2Ψa(r, t) (297)

The complex conjugate wave Ψ∗a(r, t) satis�es,

− i~ ∂
∂t

Ψ∗a(r, t) =
−~2

2µ
∇2Ψ∗a(r, t) (298)

Use Ψ∗a(r, t) right times Eq.(297),

i~
∂

∂t
Ψa(r, t) Ψ∗a(r, t) =

−~2

2µ
∇2Ψa(r, t) Ψ∗a(r, t) (299)

Use Ψa(r, t) left times Eq.(298),

− i~Ψa(r, t)
∂

∂t
Ψ∗a(r, t) =

−~2

2µ
Ψa(r, t) ∇2Ψ∗a(r, t) (300)

Subtract the above two formulas,

i~
∂

∂t
Ψa(r, t)Ψ∗a(r, t) + i~Ψa(r, t)

∂

∂t
Ψ∗a(r, t) (301)

=
−~2

2µ
[∇2Ψa(r, t)Ψ∗a(r, t)−Ψa(r, t)∇2Ψ∗a(r, t)] (302)

or

∂

∂t
(i~Ψa(r, t)Ψ∗a(r, t)) =

−~2

2µ
[(∇2Ψa(r, t))Ψ∗a(r, t)−Ψa(r, t)∇2Ψ∗a(r, t)]

(303)
Considering that in the place a the retarded wave is sent out, the energy in a
should be decrease, we rewrite the above formula as,

− ∂

∂t
(Ψa(r, t)Ψ∗a(r, t)) =

~
2µi

[∇·(∇Ψa(r, t))Ψ∗a(r, t)−Ψa(r, t)∇Ψ∗a(r, t)] (304)

73



We also know that for the retarded wave started from point a there is,

− ∂

∂t
(ρa) = ∇ · Ja (305)

where
ρa = Ψa(r, t)Ψ∗a(r, t)

Ja =
~

2µi
(∇ΨaΨ∗a −Ψa∇Ψ∗a) (306)

This Ja from point a go to the outside.
For the advanced wave started from point b, in the place b the energy is

increase, hence we can write as

∂

∂t
(ρb) = −∇ · Jb (307)

Jb =
~

2µi
(∇ΨbΨ

∗
b −Ψb∇Ψ∗b) (308)

Jb is the �ow go to the outside. Since we know that in point b is a sink.
Hence, −Jb is the �ow go to the inside of b.

−Jb =
~

2µi
(∇Ψ∗bΨb −Ψ∗b∇Ψb) (309)

Ja is the so called probability current of retarded wave Ψa which is a current
sends energy from point a to in�nite big sphere.
Jb is the so called probability current of advanced wave Ψb which is a current

send energy from point b to in�nite big sphere. Since this is advanced wave the
energy current is at reversal direction. The energy �ux is go from in�nite big
sphere Γ to the point b.

It should notice here, in this article we do not call Ja and Jb probability
current instead we call them self-energy �ows. The reason will be cleared at
section 10.6.

We know that

∞̂

t=∞

"

Γ

Ja · n̂dΓdt = const (310)

The wave started from point a is retarded wave and hence this part of energy
is at a future time to reach the big sphere Γ.

∞̂

t=∞

"

Γ

·(−Jb)n̂dΓdt = const (311)

(−Jb) is the self energy �ow go into the place b. The negative symbol on the
left of the above formula �−� is because this is a advanced wave. The wave
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started from point b is advanced wave, this is part wave is sent to a past time to
reach the big sphere. Unless our universe at the in�nite big sphere is connected
from future to the past, the energy send form point a can be received by the
point b. Otherwise the retarded �ow Ja sent from a will lose some energy in a
future time at in�nite big sphere Γ. The advanced �ow −Jb started from b will
receive some energy from a past time at the in�nite big sphere Γ. All these are
not possible. This violate the energy conservation law. The solution for this is
described in the following section.

9 The time-reversal waves (time-reversal waves)

9.1 The equation of the time-reversal wave

Advanced wave is obtained by a time-reversal transform R which is de�ned by

RΨ(r, t) = Ψr(r,−t) (312)

Assume the Schrödinger equation is,

i~
∂

∂t
Ψ(r, t) =

[
−~2

2µ
∇2 + V (r, t)

]
Ψ(r, t) (313)

In empty space there is,
V (r, t) = 0 (314)

i~
∂

∂t
Ψ(r, t) =

[
−~2

2µ
∇2

]
Ψ(r, t) (315)

The returned wave corresponding retarded wave are,

i~
∂

∂t
Ψr(r,−t) =

[
−~2

2µ
∇2

]
Ψr(r,−t) (316)

or

− i~ ∂

∂(−t)
Ψr(r,−t) =

[
−~2

2µ
∇2

]
Ψr(r,−t) (317)

Let −t = τ

− i~ ∂

∂(τ)
Ψr(r, τ) =

[
−~2

2µ
∇2

]
Ψr(r, τ) (318)

We also know that Ψ∗(r, τ) also satisfy

− i~ ∂

∂(τ)
Ψ∗(r, τ) =

[
−~2

2µ
∇2

]
Ψ∗(r, τ) (319)

Compare the above formula we have the �owing results,
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Ψr(r, τ) = Ψ∗(r, τ) (320)

The time-reversal wave is just the conjugate wave. The time-reversal wave can
be obtained from the original wave by change the sign before the items of ∂

∂t .
For a system satis�es Schrödinger equation, the time-reversal wave and the

advanced wave is very confuse, the author believe they are two di�erent waves.
The advanced wave is from past to current (The wave is sent form current to the
past, but the energy is transferred from past to the current). The time-reversal
wave of the corresponding retarded wave is from the future move to the current.
The energy �ow is also from future move to the current.

In the electromagnetic �eld situation, the conjugate transform C and the
time-reversal transform R are two di�erent transforms. For the Schrödinger
equation, this two transforms become exactly same. This is because Schrödinger
equation is only a simplify version of the law of nature. I believe the correct
way, the advanced wave and the retarded wave should be satisfy same equa-
tions, the time-reversal waves of a restarted wave or the advanced wave should
satisfy a di�erent equation comparing the retarded wave or advanced wave. The
Maxwell equations satisfy this. Hence, I believe that a system with some ex-
tended Maxwell equations should be correct way to describe a particle. I knew
there are a few publications on that direction, I will �nd a time in the future to
work on that.

9.2 The �ow of the time-reversal waves

According the discussion in the end of last section, we assume there are time-
reversal waves for Ja and −Jb(−Jb is the energy �ow of the advanced wave).
The time-reversal wave for Ja is a wave from in�nite big sphere at future time
to the point a. The time-reversal wave for −Jb is a wave start from in�nite big
sphere at a past time to the point b.

Hence, for a quantum travel from a to b there 4 di�erent waves, and 6 �ows:
(1) retarded wave started from point a, which is referred as Ja
(2) advanced wave started from point b, which is referred as −Jb
(3) time-reversal wave for (1), which is referred as −Jar
(4) time-reversal wave for (2), which is referred as −Jbr
The time-reversal wave for (1) satisfy

− i~ ∂
∂t

Ψar(r, t) =
ˆ[

−~2

2µ
∇2

]
Ψar(r, t) (321)

It has the same equation with conjugate wave. The advanced wave is send
from point a, in the t = now to the time t = past. The returned wave Ψar is
from start from big sphere at time t = future to the point a at time t = now.

The time-reversal wave for (2) satisfy

− i~ ∂
∂t

Ψbr(r, t) =
ˆ[

−~2

2µ
∇2

]
Ψbr(r, t) (322)
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It has the same equation with the complex conjugate wave. The retarded wave
from now to the future. Ψbr(r, t) is from big sphere at time t = past to the
point b at time t = now. The two time-reversal �ow can be de�ned as following,

Jar =
~

2µi
(∇ΨarΨ

∗
ar −Ψar∇Ψ∗ar)

=
~

2µi
(∇Ψ∗aΨa −Ψ∗a∇Ψa)

= − ~
2µi

(Ψ∗a∇Ψa −∇Ψ∗aΨa)

= −Ja (323)

Hence we have,
Ja + Jar = 0 (324)

Similarly we also have,
(−Jb) + (−Jbr) = 0 (325)

We assume that the wave Ψbr and Ψar can interfere. If it can interfere the
mutual energy �ow Jab will be canceled by Jabr which is the time-reversal
mutual energy �ow. The time-reversal mutual energy �ow is responsible for to
return the half photon from the absorber to the emitter (or from the sink to
the source). The above two formula tells us the Ja is o�set by Jar and Jb is
canceled by Jbr hence the self-energy �ows have no contribution to the energy
�ow from point a to the point b.

The energy �ow with the mutual energy �ow and the time-reversal wave is
shown in the Figure 25. In the �gure we have only shown only 3 �ows which
are Ja,Jar, Jb,Jbr, Jab. Actually there are 6 �ows: Ja,Jar, Jb,Jbr, Jab, Jabr.

We have to assume that Ψar do not interfere with Ψa and Ψb and Ψbr, Ψbr

do not interfere with Ψa and Ψb and Ψar. The time-reversal wave (Ψar, Ψbr)
are di�erent �elds with (Ψa, Ψb), they satisfy di�erent equations.

Schrödinger equation is not a good example to show the author's theory with
4 waves and 6 energy �ows, because in Schrödinger equation, actually cannot
put the retarded wave and advanced wave to a same equation. In the above
derivation we know the problem, this problem can solved in the following section
where the Dirac equation or Maxwell equations is applied.

The retarded wave and the advanced wave should satisfy same equation. The
two time-reversal waves should satisfy same equation. Maxwell equations are
like this. Schrödinger equation should also but it is not. Anyway, Schrödinger
equation is simpli�ed model. Hence I guess that perhaps the electron satisfy
some kind of extension of the Maxwell equation. I know there are a few authors
have that kind of theory. I will research it in the future.
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Figure 25: The mutual energy �ow between the two point a and b. Assume
there is a partition board. This wave looks like a quasi-plane wave. In the
point of a, there is a time-reversal wave, the direction of energy �ow of this
time-reversal wave is point to the point a. In the point b there is a time-reversal
wave, the direction of energy �ow is starts from the point b. The time-reversal
waves are show with green. The retarded wave and the advanced wave is shown
as blue. The mutual energy �ow is shown as blue. The time-reversal mutual
energy �ow is not shown.
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Figure 26: The 4 waves of the particle. The retarded wave; the advanced wave;
the time-reversal wave for the retarded wave; the time-reversal wave for the
advanced wave. left �gure: the direction of waves. Right �gure: the direction
of the self-energy �ow.

9.3 The energy �ow and the 4 waves

We can see a particle has 4 waves. The 4 wave produce 4 self-energy �ow. The
retarded wave and the advanced wave can produce the mutual energy �ows.
The two time-reversal waves can produce time-reversal mutual energy �ow. The
Figure 26 shows the directions of 4 waves and the directions of the energy �ows.

The 4 waves can also be shown in the time-space coordinates, see Figure
26. From this �gure we can see that the retarded wave moves from current
to the future. The advanced wave moves from the current to the past. The
corresponding time-reversal waves have opposite directions. However the energy
�ow of the advanced wave moves from past to the current. The time-reversal
wave for the advanced wave has the opposite direction compare the advanced
wave.

Advanced wave and retarded wave can be superposed, they are same physical
quantity. Two time-reversal waves can be superposed, they are same physical
quantity. The retarded wave/advanced wave cannot superposed with their time-
reversal wave, otherwise they cancel completely with each other. Even they
cannot superimposed, the energy �ows can be canceled. That means the energy
�ow of the retarded wave is canceled with the energy �ow of the time-reversal
wave corresponding to the retarded wave. The energy �ow of the advanced wave
is canceled withe the energy �ow of the time-reversal wave corresponding to the
advanced wave.

The results of the superposition of the retarded wave and the advanced
wave is the mutual energy �ow. The results of the superposition of the two
time-reversal waves is the time-reversal mutual energy �ow. The time-reversal
mutual energy �ow can cancel the mutual energy �ow. That will happen in case
of race. For example, the waves of two absorber synchronized with one emitter.
The energy each absorber obtains only a part of a photon, in this case the time-
reversal mutual energy �ow bring this part of energy back to the emitter. In
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case the absorber has received a whole photon (or particle), the absorber will
arrest this photon do not allow it to go to other place.

Since the retarded wave and the advanced wave need to be superposed,
they should be satisfy same physical law. Hence they should has the same
equation. The two time-reversal wave should satisfy the same physical law,
they should satisfy the same equation. In the case of Schrödinger equation,
the retarded wave and advanced wave do not satisfy same equation. If we use
Klein�Gordon equation to replace the Schrödinger equation, the retarded wave
and the advanced wave have the same equations, but the time-reversal wave of
Klein�Gordon equation also same with Klein�Gordon equation (because inside

the the Klein�Gordon equation there is ∂2

∂t2 ). There is also something wrong,
because if time-reversal wave has same equation with the original wave, they are
same physical quantity and hence, they can superposed. If they can superposed,
they will cancel each other. This is not what we want. We need the time-reversal
wave only cancel the energy �ow of the original wave, but does not cancel the
original wave itself.

We know Maxwell equations satisfy the above requirements. Hence, the
particle should satisfy also some kind of the extension of the Maxwell equations.
I new there are a few publication that talk about using the extended Maxwell
equations to describe the other particle instead of photon. I will study that in
the future.

10 In case of Dirac equation

10.1 Dirac equation

We have know that the Dirac equation can be written as,

1

c

∂ψµ
∂t

+αµν ·
∂ψv
∂x

+
imc

~
βµνψv = 0 (326)

µ, ν = 1, 2, 3, 4... (327)

Where α = [αx, αy, αz], The components of αx is αxµν .β is a no dimension unit
constant. i =

√
−1 . m is the mass of the quantum. And we know for α there

are,

α† ≡ [α∗]T = α (328)

β† ≡ [β∗]T = β (329)

α2
x = α2

y = α2
z = β2 = I (330)

Considering Eq.(326 and 330), we have

βσµ
c

∂ψµ
∂t

+ βσµαµν ·
∂ψv
∂x

+
imc

~
ψσ = 0 (331)

or
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γ0
σv

c

∂ψv
∂t

+ γ1
σv ·

∂ψv
∂x

+ γ2
σv ·

∂ψv
∂y

+ γ3
σv ·

∂ψv
∂z

+
imc

~
ψσ = 0 (332)

Hence, the Dirac equation also can be written as,

γµσv
∂

∂xµ
ψv +

imc

~
ψσ = 0 (333)

µ, ν = 1, 2, 3, 4... (334)

10.2 Mutual energy �ow corresponding to Dirac equation

Take complex conjugate to the Eq.(326) , we have,

1

c

∂ψ∗µ
∂t

+ [αµν ·
∂ψv
∂x

]∗ − imc

~
[βµνψv]

∗ = 0 (335)

or

1

c

∂ψ∗µ
∂t

+ [
∂ψv
∂x

]∗ ·α∗Tνµ −
imc

~
ψv
∗[βνµ]∗T = 0 (336)

Considering Eq.(329 and 330) we have,

1

c

∂ψ∗µ
∂t

+ [
∂ψv
∂x

]∗ ·ανµ −
imc

~
ψv
∗βνµ = 0 (337)

or

1

c

∂ψ†

∂t
+ [

∂ψ

∂x
]†α− imc

~
[ψ]†β = 0 (338)

Assume φ is also a wave function similar to ψ. We useφ right multiply to the
above formula we get:

1

c

∂ψ†

∂t
φ+ [

∂ψ

∂x
]†αφ− imc

~
[ψ]†βφ = 0 (339)

In the similar way we can obtains,

1

c

∂φ†

∂t
ψ + [

∂φ

∂x
]†αψ − imc

~
[φ]†βψ = 0 (340)

or

1

c
ψ†
∂φ

∂t
+ ψ†α[

∂φ

∂x
] +

imc

~
ψ†β[φ] = 0 (341)

Add the two formula together we have,

1

c
(
∂ψ†

∂t
φ+ ψ†

∂φ

∂t
) + ([

∂ψ

∂x
]†αφ+ ψ†α[

∂φ

∂x
]) = 0 (342)

or
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1

c

∂

∂t
(ψ†φ) +

∂

∂x
(ψ†αφ) = 0 (343)

Write
ρ = ψ†φ (344)

J = cψ†αφ (345)

we have,
∂ρ

∂t
+

∂

∂x
· J = 0 (346)

or

∂ρ

∂t
+∇ · J = 0 (347)

We have know that the retarded wave and advanced wave corresponding to
Dirac equation all satisfy the same equation. Assume φ is the retarded wave
send from point a, and ψ is the advanced wave send from point b. J will
be the mutual energy �ow of the wave function ψ and φ. similar to the last
section the mutual energy �ow cannot go to outside of the in�nite big sphere.
Hence, the mutual energy �ow theorem should be also established for J which
is corresponding to the mutual energy �ow of the Dirac equation.

10.3 Inner product

The inner product for the Dirac equation can be de�ned as

(ψ, φ) =

"

Γ

cψ†αφ · n̂dΓ (348)

Here,φ is retarded wave. ψ† is the advanced wave. The above inner product is
build with a retarded wave and the advanced wave.

10.4 The self energy �ow of the Dirac equation

Similarly we can have the self energy �ow for the advanced wave sends from b,

ρψ = ψ†ψ (349)

Jψ = cψ†αψ (350)

and for the retarded wave sends from a,

ρφ = φ†φ (351)

Jφ = cφ†αφ (352)
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10.5 For the time-reversal wave of Dirac waves

Considering the time-reversal operator Eq.(312) we have the time-reversal wave
equation,

− 1

c

∂ψrµ
∂t

+αµν ·
∂ψrv
∂x

+ jmcβµνψ
r
v = 0 (353)

µ, ν = 1, 2, 3, 4... (354)

We obtained the time-reversal wave by change the sign before the items of ∂
∂t .

superscript r in ψr means the time-reversal wave. We also can assume this
time-reversal wave do not interfere with the original retarded and the advanced
Dirac waves. This two time-reversal waves corresponding to the retarded wave
and the advanced wave also do not interfere. We have

ρrψ = ψr†ψr (355)

Jrψ = −cψr†αψr (356)

In the above, there is minus sign which is because the minus sign in Eq.(305).
Considering ψr† = ψ, ψr = ψ†, we have,

Jrψ = −cψαψ† = −cψ†αψ = −Jψ (357)

The above formula tell us that the time-reversal energy �ow Jrψ just is the
negative of the normal energy �ow Jψ. And the time-reversal �ow of the self
energy �ow should o�set the original self energy �ows,

Jψ + Jrψ = 0 (358)

Similarly we have,
Jψ† + Jrψ† = 0 (359)

where Jψ† is the energy �ow corresponding to the advanced wave of ψ†. Jrψ† is
the time-reversal wave of the corresponding to the advanced energy �ow.

Similarly we can have the time-reversal wave for the retarded wave, and,
hence,

ρrφ = φr†φr (360)

Jrψ = cφr†αφr (361)

Jφ + Jrφ = 0 (362)

Hence, in the empty space, the quantum from point a move to point b is down
by the mutual energy �ow J = cψ†αφ. In the point a there is the retarded
wave φ, In the place of b there is the advanced wave ψ†. The retarded wave
has the self energy �ow Jφ which is canceled by the corresponding time-reversal
self-energy �ow Jrφ. In the place b. There is the advanced wave ψ† which
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also has the corresponding self-energy �ow Jψ† , which is also canceled by the
corresponding time-reversal energy �ow Jrψ† .

Dirac equation has the same problem with Schrödinger equation, the advance
wave and time-reversal wave of the retarded wave satisfy the same equation.
This is not correct. The advance wave and the retarded wave should satisfy same
equation. This is because we need to apply the superposition principle to the
retarded wave and the advanced wave, and they are belong to the same physical
amount. If they have di�erent forms, it is di�cult to make the superposition. I
know there are a few publication to describe particle use some kind of extended
Maxwell equation. I will research this in the future.

10.6 Summary

The author found that for a quantum for example an electron, it travel from
point a to point b in the empty space, there are 4 di�erent waves instead one
Schrödinger/Dirac wave. The 4 waves are retarded wave sends from a go to the
big sphere surface Γ. The advanced wave sends from b and go to the big sphere
surface Γ, the time-reversal waves for the retarded wave and the time-reversal
wave for the advanced wave. Between point a and point b there is mutual energy
�ow Jab which is transfer the energy or amount of charge from point a to point
b. This �ow is from point to point and do not di�used. This �ow is very thin
in the two ends and hence, it looks like a particle. This �ow is very thick in the
middle between the points a and b, and hence it looks a wave. In the middle
if there are double slits, the mutual energy �ow will go through the two slits in
the same time. This explained the duality of the quantum or particle.

The self-energy �ow for Ja and Jb do not transfer and energy or amount of
charge. We can think they are o�set by the time-reversal �ow Jar and Jbr. It
is important to say that, the above �ows Jab, Ja, Jb, Jar,Jbr are all physics
�ow with energy or amount of the charge and they are not the probability �ows.

We know the electromagnetic �eld has sources which is electric current. We
assume there are also some sources we do not know for the wave Ψa(r, t) and
Ψb(r, t) which is stayed at the point a and point b. The source at point a can
randomly sends the retarded wave. The source at b randomly send advanced
wave. Point b is the target, actually on the place close to b there are thousands
points similar to point b for example: b1, b2, ... bn... they all randomly sends
the advanced waves. Point b is also can be referred as the sink.

The probability come from the sources of the retarded wave starts at point
a and the sources of the advanced wave started at point b, they are synchro-
nized concurrently, the mutual energy �ow Jab is produced. The retarded wave
Ψa(r, t) is a random events, the advanced wave Ψb(r, t) is also a random events,
the two random events just meet together is also a random events. This leads
to the position of the particle has been received with a probability. We do not
know exactly which advanced wave started at points b1, b2, ... bn... will �nally
synchronized with the retarded wave Ψa(r, t).

This can be referred as the interpretation using the mutual energy and self-
energy principle for the quantum mechanics. This interpretation is enhancive
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the transactional interpretation of John Cramer[5, 6].
If the retarded wave �ow Ψa(r, t) cannot meet an advanced wave which is

synchronized to the retarded wave Ψa(r, t). This retarded wave �ow Ja just
returned through the corresponding time-reversal wave Jar. If it meet the
advanced wave Ψb(r, t) which is synchronized with the retarded wave Ψa(r, t),
the mutual energy �ow Jab is produced. After the Jab, there is the time-reversal
�ow Jar. Hence no matter the mutual energy �ow is produced or not the self-
energy �ow Ja always returned through Jar. For the advanced wave, the similar
things also happens. No mater Jab is produced or not, there is Jbr to o�set Jb.
Hence the self-energy �ows do not transfer the energy and also do not lose the
energy at in�nite big sphere Γ. The energy is transferred by the mutual energy
�ow which is from point a to point the point b and do not diverge.

There is also time-reversal mutual energy �ow Jabr which is responsible to
return the half quantum or part quantum back to the source from the sink.
Hence, there will be no any half particle or partial particle to appear. This also
leads the probability of the particle appearing is proportional to the square of
the amplitude of the wave. Since after the energy is resent, some sink in a region
will win all the energy originally send to its neighbor.

Hence, the mutual energy theorem, mutual energy �ow theorem and mutual
energy principle and the self-energy principle, inner product on a surface are all
can be established for Dirac and Schrödinger Equations. And hence the path
integral also can be updated to energy pipe streamline integral similar to the
situation of electromagnetic �elds which satisfy Maxwell equations.

11 Conclusion

This article achieve the following conclusion:

1. The stream line integral is de�ned on 2D surface instead of a

in�nite 3D volumes The path integral is de�ned on an in�nite 3D volume
integral, In the stream line integral we have replace the 3D volume as a 2D
surface. The surface is saved 1D which is simpler than the volume integral. The
reason Dirac and Feyman de�ned the path integral on 3D volume is that they
has only the formula, ∑∣∣∣q〉〈q∣∣∣≡ 1 (363)

But this author has proved a new formula from the mutual energy �ow theorem
which is ∑∣∣∣qΓ

〉
F

〈
qΓ

∣∣∣
Γ
≡ 1 (364)

Here F and Γ are at di�erent 2D surface. Hence, I can de�ne the streamline
integral on the surface. In the new formula the bra and kit do not at the same

surface. It should be notice that the formula
∑∣∣∣q〉〈q∣∣∣≡ 1 actually doesn't

work. Even the integral region are all 3D volume, but the center of the region
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for the di�erent q is di�erent and hence the de�nition and the derivation of path
integral is problematic.

2. The path integral can be simpli�ed on the streamline integral The
streamline integral do not need a in�nite more integrals. No one can prove an
in�nite more integrals can converge to something! For the streamline integral
there is only one surface integral. But this simpli�cation is because the mutual
energy �ow theorem. Only if the energy have the form of energy �ow, we can
de�ne the energy pipe and streamline.

3. The reason amplitude of �eld doesn't change The reason the ampli-
tude of �eld doesn't change and hence we can have,〈

σe1

∣∣∣exp(−iHT )
∣∣∣σe1〉 (365)

is because
(1) in the wave guide, even we started from the mutual energy principle, the

Poynting theorem still work for the cylinder wave guide.
(2) In the energy pipe or streamline we can de�ne energy �ow or the inner

product which doesn't change, hence we can de�ne an e�ective wave �eld ξe.
Even in the 3D space the amplitude of wave is changed but the amplitude of
the e�ective wave ξe doesn't change!

This guarantees we can add all amplitudes of the e�ective �eld to get the
same energy contribution on the sink point.

4. The streamline integral is not only simpli�ed the de�nition of path

integral We know that the de�nition of the energy pipe streamline integral is
much simpler than the path integral. Hence, from this de�nition the numerical
calculation can be much easy. But we should notice that the streamline integral
is not only simpli�ed the concept of path integral. The concept of path integral
itself is wrong. In general it is not possible to build a arbitrary path in which we
can de�ne a physical amount with its amplitude is a constant. If that physical
amount is energy. The path integral can obtained correct result is because there
is a corrected version of path integral, i.e., streamline integral.

5. The mutual energy principle and self-energy principle The funda-
mental base of the mutual energy �ow theorem is the self-energy principle and
the mutual energy principle. According to these principles, there are 4 waves
for any particles: The retarded wave, the advanced wave and the 2 time-reversal
waves. Each wave has a self-energy �ow. Hence, there are 4 self-energy �ows.
There are two mutual energy �ows. Hence for a particle there is 6 energy �ows.
All self-energy �ows canceled. The mutual energy �ow is responsible to send the
energy. The time-reversal mutual energy is responsible to bring the half particle
back to the source from the sink. This should be true also for any particles, for
example electron. The time-reversal mutual energy �ow can also described the
anti-particle.
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6. It is energy and energy �ow and not the probability In this article,
we have changed the streamline or path integral based on energy and energy
�ow instead of the probability. Hence, the streamline integral is corresponding
to a real energy transferred from I to F . It is not the probability transferred
from I to F .

7. The streamline integral is a well better formalism than Schrödinger

equation or Dirac equation Streamline integral is based on the mutual
energy principle and self-energy principle and energy �ow theorem which is
well better than the formalism with Schrödinger equation or Dirac equation or
Maxwell equations. In many aspects, the path integral agree with the mutual
energy theorem. If the mutual energy theorem is a theorem better than Maxwell
equations, Schrödinger equation or Dirac equation, the path integral will have
also the same advantage. The streamline integral will even better because it is
further simpli�ed by using the mutual energy principle and mutual energy �ow
theorem.
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