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Abstract: A single-valued neutrosophic set (SVNS) is a special case of a neutrosophic set which is
characterized by a truth, indeterminacy, and falsity membership function, each of which lies in the
standard interval of [0, 1]. This paper presents a modified Technique for Order Preference by Similarity
to an Ideal Solution (TOPSIS) with maximizing deviation method based on the single-valued
neutrosophic set (SVNS) model. An integrated weight measure approach that takes into consideration
both the objective and subjective weights of the attributes is used. The maximizing deviation
method is used to compute the objective weight of the attributes, and the non-linear weighted
comprehensive method is used to determine the combined weights for each attributes. The use
of the maximizing deviation method allows our proposed method to handle situations in which
information pertaining to the weight coefficients of the attributes are completely unknown or only
partially known. The proposed method is then applied to a multi-attribute decision-making (MADM)
problem. Lastly, a comprehensive comparative studies is presented, in which the performance of our
proposed algorithm is compared and contrasted with other recent approaches involving SVNSs
in literature.

Keywords: 2ingle-valued neutrosophic set; Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS); integrated weight; maximizing deviation; multi-attribute decision-making
(MADM)

1. Introduction

The study of fuzzy set theory proposed by Zadeh [1] was an important milestone in the study
of uncertainty and vagueness. The widespread success of this theory has led to the introduction
of many extensions of fuzzy sets such as the intuitionistic fuzzy set (IFS) [2], interval-valued fuzzy set
(IV-FS) [3], vague set [4], and hesitant fuzzy set [5]. The most widely used among these models is the
IFS model which has also spawned other extensions such as the interval-valued intuitionistic fuzzy
set [6] and bipolar intuitionistic fuzzy set [7]. Smarandache [8] then introduced an improvement to
IFS theory called neutrosophic set theory which loosely refers to neutral knowledge. The study of the
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neutrality aspect of knowledge is the main distinguishing criteria between the theory of fuzzy sets,
IFSs, and neutrosophic sets. The classical neutrosophic set (NS) is characterized by three membership
functions which describe the degree of truth (T), the degree of indeterminacy (I), and the degree
of falsity (F), whereby all of these functions assume values in the non-standard interval of ]0−,
1+[. The truth and falsity membership functions in a NS are analogous to the membership and
non-membership functions in an IFS, and expresses the degree of belongingness and non-belongingness
of the elements, whereas the indeterminacy membership function expresses the degree of neutrality in
the information. This additional indeterminacy membership function gives NSs the ability to handle
the neutrality aspects of the information, which fuzzy sets and its extensions are unable to handle.
Another distinguishing factor between NSs and other fuzzy-based models is the fact that all the three
membership functions in a NS are entirely independent of one another, unlike the membership and
non-membership functions in an IFS or other fuzzy-based models in which values of the membership
and non-membership functions are dependent on one another. This gives NSs the ability to handle
uncertain, imprecise, inconsistent, and indeterminate information, particularly in situations whereby
the factors affecting these aspects of the information are independent of one another. This also makes
the NS more versatile compared to IFSs and other fuzzy- or IF-based models in literature.

Smarandache [8] and Wang et al. [9] pointed out that the non-standard interval of ]0−, 1+[ in which
the NS is defined in, makes it impractical to be used in real-life problems. Furthermore, values in this
non-standard interval are less intuitive and the significance of values in this interval can be difficult
to be interpreted. This led to the conceptualization of the single-valued neutrosophic set (SVNS).
The SVNS is a straightforward extension of NS which is defined in the standard unit interval of [0, 1].
As values in [0, 1] are compatible with the range of acceptable values in conventional fuzzy set theory
and IFS theory, it is better able to capture the intuitiveness of the process of assigning membership
values. This makes the SVNS model easier to be applied in modelling real-life problems as the results
obtained are a lot easier to be interpreted compared to values in the interval ]0−, 1+[.

The SVNS model has garnered a lot of attention since its introduction in [9], and has been actively
applied in various multi-attribute decision-making (MADM) problems using a myriad of different
approaches. Wang et al. [9] introduced some set theoretic operators for SVNSs, and studied some
additional properties of the SVNS model. Ye [10,11] introduced a decision-making algorithm based on
the correlation coefficients for SVNSs, and applied this algorithm in solving some MADM problems.
Ye [12,13] introduced a clustering method and also some decision-making methods that are based on
the similarity measures of SVNSs, whereas Huang [14] introduced a new decision-making method for
SVNSs and applied this method in clustering analysis and MADM problems. Peng and Liu [15] on the
other hand proposed three decision-making methods based on a new similarity measure, the EDAS
method and level soft sets for neutrosophic soft sets, and applied this new measure to MADM
problems set in a neutrosophic environment. The relations between SVNSs and its properties were first
studied by Yang et al. [16], whereas the graph theory of SVNSs and bipolar SVNSs were introduced by
Broumi et al. in [17–19] and [20–22], respectively. The aggregation operators of simplified neutrosophic
sets (SNSs) were studied by Tian et al. [23] and Wu et al. [24]. Tian et al. [23] introduced a generalized
prioritized aggregation operator for SNSs and applied this operator in a MADM problem set in an
uncertain linguistic environment, whereas Wu et al. [24] introduced a cross-entropy measure and
a prioritized aggregation operator for SNSs and applied these in a MADM problem. Sahin and
Kucuk [25] proposed a subsethood measure for SVNSs and applied these to MADM problems.

The fuzzy Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method
for SVNSs were studied by Ye [26] and Biswas et al. [27]. Ye [26] introduced the TOPSIS method for
group decision-making (MAGDM) that is based on single-valued neutrosophic linguistic numbers,
to deal with linguistic decision-making. This TOPSIS method uses subjective weighting method
whereby attribute weights are randomly assigned by the users. Maximizing deviation method or any
other objective weighting methods are not used. Biswas et al. [27] proposed a TOPSIS method for
group decision-making (MAGDM) based on the SVNS model. This TOPSIS method is based on the
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original fuzzy TOPSIS method and does not use the maximizing deviation method to calculate the
objective weights for each attribute. The subjective weight of each attribute is determined by using
the single-valued neutrosophic weighted averaging aggregation operator to calculate the aggregated
weights of the attributes using the subjective weights that are assigned by each decision maker.

The process of assigning weights to the attributes is an important phase of decision making.
Most research in this area usually use either objective or subjective weights. However, considering the
fact that different values for the weights of the attributes has a significant influence on the ranking
of the alternatives, it is imperative that both the objective and subjective weights of the attributes
are taken into account in the decision-making process. In view of this, we consider the attributes’
subjective weights which are assigned by the decision makers, and the objective weights which are
computed using the maximizing deviation method. These weights are then combined using the
non-linear weighted comprehensive method to obtain the integrated weight of the attributes.

The advantages and drawbacks of the methods that were introduced in the works described above
served as the main motivation for the work proposed in this paper, as we seek to introduce an effective
SVNS-based decision-making method that is free of all the problems that are inherent in the other
existing methods in literature. In addition to these advantages and drawbacks, the works described
above have the added disadvantage of not being able to function (i.e., provide reasonable solutions)
under all circumstances. In view of this, the objective of this paper is to introduce a novel TOPSIS
with maximizing deviation method for SVNSs that is able to provide effective solutions under any
circumstances. Our proposed TOPSIS method is designed to handle MADM problems, and uses the
maximizing deviation method to calculate the objective weights of attributes, utilizing an integrated
weight measure that takes into consideration both the subjective and objective weights of the attributes.
The robustness of our TOPSIS method is verified through a comprehensive series of tests which proves
that our proposed method is the only method that shows compliance to all the tests, and is able to
provide effective solutions under all different types of situations, thus out-performing all of the other
considered methods.

The remainder of this paper is organized as follows. In Section 2, we recapitulate some
of the fundamental concepts related to neutrosophic sets and SVNSs. In Section 3, we define an
SVNS-based TOPSIS and maximizing deviation methods and an accompanying decision-making
algorithm. The proposed decision-making method is applied to a supplier selection problem in
Section 4. In Section 5, a comprehensive comparative analysis of the results obtained via our proposed
method and other recent approaches is presented. The similarities and differences in the performance
of the existing algorithms and our algorithm is discussed, and it is proved that our algorithm is
effective and provides reliable results in every type of situation. Concluding remarks are given in
Section 6, followed by the acknowledgements and list of references.

2. Preliminaries

In this section, we recapitulate some important concepts pertaining to the theory of neutrosophic
sets and SVNSs. We refer the readers to [8,9] for further details pertaining to these models.

The neutrosophic set model [8] is a relatively new tool for representing and measuring uncertainty
and vagueness of information. It is fast becoming a preferred general framework for the analysis
of uncertainty in data sets due to its capability in the handling big data sets, as well as its ability
in representing all the different types of uncertainties that exists in data, in an effective and concise
manner via a triple membership structure. This triple membership structure captures not only the
degree of belongingness and non-belongingness of the objects in a data set, but also the degree of
neutrality and indeterminacy that exists in the data set, thereby making it superior to ordinary fuzzy
sets [1] and its extensions such as IFSs [2], vague sets [4], and interval-valued fuzzy sets [3]. The formal
definition of a neutrosophic set is as given below.

Let U be a universe of discourse, with a class of elements in U denoted by x.
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Definition 1. [8] A neutrosophic set A is an object having the form A = {x, TA(x), IA(x), FA(x) : x ∈ U},
where the functions T, I, F : U →]−0, 1+[ denote the truth, indeterminacy, and falsity membership functions,
respectively, of the element x ∈ U with respect to A. The membership functions must satisfy the condition
−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2. [8] A neutrosophic set A is contained in another neutrosophic set B, if TA(x) ≤ TB(x), IA(x) ≥
IB(x), and FA(x) ≥ FB(x), for all x ∈ U. This relationship is denoted as A ⊆ B.

Wang et al. [9] then introduced a special case of the NS model called the single-valued
neutrosophic set (SVNS) model, which is as defined below. This SVNS model is better suited to
applied in real-life problems compared to NSs due to the structure of its membership functions which
are defined in the standard unit interval of [0, 1].

Definition 3. [9] A SVNS A is a neutrosophic set that is characterized by a truth-membership
function TA(x), an indeterminacy-membership function IA(x), and a falsity-membership function FA(x),
where TA(x), IA(x), FA(x) ∈ [0, 1]. This set A can thus be written as

A = {〈 x, TA(x), IA(x), FA(x)〉 : x ∈ U} . (1)

The sum of TA(x), IA(x) and FA(x) must fulfill the condition 0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.
For a SVNS A in U, the triplet (TA(x), IA(x), FA(x)) is called a single-valued neutrosophic number
(SVNN). For the sake of convenience, we simply let x = (Tx, Ix, Fx) to represent a SVNN as an element
in the SVNS A.

Next, we present some important results pertaining to the concepts and operations of SVNSs.
The subset, equality, complement, union, and intersection of SVNSs, and some additional operations
between SVNSs were all defined by Wang et al. [9], and these are presented in Definitions 4 and
5, respectively.

Definition 4. [9] Let A and B be two SVNSs over a universe U.

(i) A is contained in B, if TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x), for all x ∈ U.
This relationship is denoted as A ⊆ B.

(ii) A and B are said to be equal if A ⊆ B and B ⊆ A.
(iii) Ac = (x, (FA(x), 1− IA(x), TA(x))), for all x ∈ U.
(iv) A ∪ B = (x, (max(TA, TB), min(IA, IB), min(FA, FB))), for all x ∈ U.
(v) A ∩ B = (x, (min(TA, TB), max(IA, IB), max(FA, FB))), for all x ∈ U.

Definition 5. [9] Let x = (Tx, Ix, Fx) and y =
(
Ty, Iy, Fy

)
be two SVNNs. The operations for SVNNs can

be defined as follows:

(i) x
⊕

y =
(
Tx + Ty − Tx ∗ Ty, Ix ∗ Iy, Fx ∗ Fy

)
(ii) x

⊗
y =

(
Tx ∗ Ty, Ix + Iy − Ix ∗ Iy, Fx + Fy − Fx ∗ Fy

)
(iii) λx =

(
1− (1− Tx)

λ, (Ix)
λ, (Fx)

λ
)

, where λ > 0

(iv) xλ =
(
(Tx)

λ, 1− (1− Ix)
λ, 1− (1− Fx)

λ
)

, where λ > 0.

Majumdar and Samanta [28] introduced the information measures of distance, similarity,
and entropy for SVNSs. Here we only present the definition of the distance measures between
SVNSs as it is the only component that is relevant to this paper.

Definition 6. [28] Let A and B be two SVNSs over a finite universe U = {x1, x2, . . . , xn}. Then the various
distance measures between A and B are defined as follows:
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(i) The Hamming distance between A and B are defined as:

dH(A, B) =
n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|} (2)

(ii) The normalized Hamming distance between A and B are defined as:

dN
H(A, B) =

1
3n

n

∑
i=1
{|TA(xi)− TB(xi)|+ |IA(xi)− IB(xi)|+ |FA(xi)− FB(xi)|} (3)

(ii) The Euclidean distance between A and B are defined as:

dE(A, B) =

√
n

∑
i=1

{
(TA(xi)− TB(xi))

2 + (IA(xi)− IB(xi))
2 + (FA(xi)− FB(xi))

2
}

(4)

(iv) The normalized Euclidean distance between A and B are defined as:

dN
E (A, B) =

√
1

3n

n

∑
i=1

{
(TA(xi)− TB(xi))

2 + (IA(xi)− IB(xi))
2 + (FA(xi)− FB(xi))

2
}

(5)

3. A TOPSIS Method for Single-Valued Neutrosophic Sets

In this section, we present the description of the problem that is being studied followed by our
proposed TOPSIS method for SVNSs. The accompanying decision-making algorithm which is based
on the proposed TOPSIS method is presented. This algorithm uses the maximizing deviation method
to systematically determine the objective weight coefficients for the attributes.

3.1. Description of Problem

Let U = {u1, u2, . . . , um} denote a finite set of m alternatives, A = {e1, e2, . . . , en} be a set of n
parameters, with the weight parameter wj of each ej completely unknown or only partially known,

wj ∈ [0, 1], and
n
∑

j=1
wj = 1.

Let A be an SVNS in which xij =
(
Tij, Iij, Fij

)
represents the SVNN that represents the information

pertaining to the ith alternative xi that satisfies the corresponding jth parameter ej. The tabular
representation of A is as given in Table 1.

Table 1. Tabular representation of the Single Valued Neutrosophic Set (SVNS) A.

U e1 e2 . . . en

x1 (T11, I11, F11) (T12, I12, F12) . . . (T1n, I1n, F1n)
x2 (T21, I21, F21) (T22, I22, F22) . . . (T2n, I2n, F2n)
...

...
...

. . .
...

xm. (Tm1, Im1, Fm1) (Tm2, Im2, Fm2) . . . (Tmn, Imn, Fmn)

3.2. The Maximizing Deviation Method for Computing Incomplete or Completely Unknown Attribute Weights

The maximizing deviation method was proposed by Wang [29] with the aim of applying it in
MADM problems in which the weights of the attributes are completely unknown or only partially
known. This method uses the law of input arguments i.e., it takes into account the magnitude of
the membership functions of each alternative for each attribute, and uses this information to obtain
exact and reliable evaluation results pertaining to the weight coefficients for each attribute. As such,
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this method is able to compute the weight coefficients of the attributes without any subjectivity, in a
fair and objective manner.

The maximizing deviation method used in this paper is a modification of the original version
introduced in Wang [29] that has been made compatible with the structure of the SVNS model.
The definitions of the important concepts involved in this method are as given below.

Definition 7. For the parameter ej ∈ A, the deviation of the alternative xi to all the other alternatives is
defined as:

Dij
(
wj
)
=

m

∑
k=1

wj d
(

xij, xkj

)
, (6)

where xij, xkj are the elements of the SVNS A, i = 1, 2, . . . , m, j = 1, 2, . . . , n and d
(

xij, xkj

)
denotes the

distance between elements xij and xkj.

The other deviation values include the deviation value of all alternatives to other alternatives,
and the total deviation value of all parameters to all alternatives, both of which are as defined below:

(i) The deviation value of all alternatives to other alternatives for the parameter ej ∈ A, denoted by
Dj
(
wj
)
, is defined as:

Dj
(
wj
)
=

m

∑
i=1

Dij
(
wj
)
=

m

∑
i=1

m

∑
k=1

wj d
(

xij, xkj

)
, (7)

where j = 1, 2, . . . , n.
(ii) The total deviation value of all parameters to all alternatives, denoted by D

(
wj
)
, is defined as:

(
wj
)
=

n

∑
j=1

Dj
(
wj
)
=

n

∑
j=1

m

∑
i=1

m

∑
k=1

wj d
(

xij, xkj

)
, (8)

where wj represents the weight of the parameter ej ∈ A.

(iii) The individual objective weight of each parameter ej ∈ A, denoted by θj, is defined as:

θj =
∑m

i=1 ∑m
k=1 d

(
xij, xkj

)
∑n

j=1 ∑m
i=1 ∑m

k=1 d
(

xij, xkj

) (9)

It should be noted that any valid distance measure between SVNSs can be used in Equations (6)–(9).
However, to improve the effective resolution of the decision-making process, in this paper, we use the
normalized Euclidean distance measure given in Equation (5) in the computation of Equations (6)–(9).

3.3. TOPSIS Method for MADM Problems with Incomplete Weight Information

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) was originally
introduced by Hwang and Yoon [30], and has since been extended to fuzzy sets, IFSs, and other
fuzzy-based models. The TOPSIS method works by ranking the alternatives based on their distance
from the positive ideal solution and the negative ideal solution. The basic guiding principle is that
the most preferred alternative should have the shortest distance from the positive ideal solution and
the farthest distance from the negative ideal solution (Hwang and Yoon [30], Chen and Tzeng [31]).
In this section, we present a decision-making algorithm for solving MADM problems in single-valued
neutrosophic environments, with incomplete or completely unknown weight information.
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3.3.1. The Proposed TOPSIS Method for SVNSs

After obtaining information pertaining to the weight values for each parameter based on the
maximizing deviation method, we develop a modified TOPSIS method for the SVNS model. To achieve
our goal, we introduce several definitions that are the important components of our proposed
TOPSIS method.

Let the relative neutrosophic positive ideal solution (RNPIS) and relative neutrosophic negative
ideal solution (RNNIS) be denoted by b+ and b−, respectively, where these solutions are as
defined below:

b+ =

{(
max

i
Tij, min

i
Iij, min

i
Fij

)∣∣∣∣ j = 1, 2, . . . , n
}

, (10)

and

b− =

{(
min

i
Tij, max

i
Iij, max

i
Fij

)∣∣∣∣ j = 1, 2, . . . , n
}

(11)

The difference between each object and the RNPIS, denoted by D+
i , and the difference between

each object and the RNNIS, denoted by D−i , can then be calculated using the normalized Euclidean
distance given in Equation (5) and by the formula given in Equations (12) and (13).

D+
i =

n

∑
j=1

wj dNE

(
bij, b+j

)
, i = 1, 2, . . . , m (12)

and

D−i =
n

∑
j=1

wj dNE

(
bij, b−j

)
, i = 1, 2, . . . , m (13)

Here, wj denotes the integrated weight for each of the attributes.
The optimal alternative can then be found using the measure of the relative closeness coefficient

of each alternative, denoted by Ci, which is as defined below:

Ci =
D−i

max
j

D−j
−

D+
i

min
j

D+
j

, i, j = 1, 2, . . . , m (14)

From the structure of the closeness coefficient in Equation (14), it is obvious that the larger
the difference between an alternative and the fuzzy negative ideal object, the larger the value of
the closeness coefficient of the said alternative. Therefore, by the principal of maximum similarity
between an alternative and the fuzzy positive ideal object, the objective of the algorithm is to determine
the alternative with the maximum closeness coefficient. This alternative would then be chosen as
the optimal alternative.

3.3.2. Attribute Weight Determination Method: An Integrated WEIGHT MEASure

In any decision-making process, there are two main types of weight coefficients, namely the
subjective and objective weights that need to be taken into consideration. Subjective weight refers to
the values assigned to each attribute by the decision makers based on their individual preferences
and experience, and is very much dependent on the risk attitude of the decision makers. Objective
weight refers to the weights of the attributes that are computed mathematically using any appropriate
computation method. Objective weighting methods uses the law of input arguments (i.e., the input
values of the data) as it determines the attribute weights based on the magnitude of the membership
functions that are assigned to each alternative for each attribute.

Therefore, using only subjective weighting in the decision-making process would be inaccurate as
it only reflects the opinions of the decision makers while ignoring the importance of each attribute that
are reflected by the input values. Using only objective weighting would also be inaccurate as it only
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reflects the relative importance of the attributes based on the law of input arguments, but fails to take
into consideration the preferences and risk attitude of the decision makers.

To overcome this drawback and improve the accuracy and reliability of the decision-making
process, we use an integrated weight measure which combines the subjective and objective weights
of the attributes. This factor makes our decision-making algorithm more accurate compared to most
of the other existing methods in literature that only take into consideration either the objective or
subjective weights.

Based on the formula and weighting method given above, we develop a practical and effective
decision-making algorithm based on the TOPSIS approach for the SVNS model with incomplete weight
information. The proposed Algorithm 1 is as given below.

Algorithm 1. (based on a modified TOPSIS approach).

Step 1. Input the SVNS A which represents the information pertaining to the problem.
Step 2. Input the subjective weight hj for each of the attributes ej ∈ A as given by the decision makers.
Step 3. Compute the objective weight θj for each of the attributes ej ∈ A, using Equation (9).
Step 4. The integrated weight coefficient wj for each of the attributes ej ∈ A, is computed using Equation
as follow:

wj =
hj θj

∑n
j=1 hj θj

Step 5. The values of RNPIS b+ and RNNIS b− are computed using Equations (10) and (11).
Step 6. The difference between each alternative and the RNPIS, D+ and the RNNIS D− are computed using
Equations (12) and (13), respectively.
Step 7. The relative closeness coefficient Ci for each alternative is calculated using Equation (14).
Step 8. Choose the optimal alternative based on the principal of maximum closeness coefficient.

4. Application of the Topsis Method in a Made Problem

The implementation process and utility of our proposed decision-making algorithm is illustrated
via an example related to a supplier selection problem.

4.1. Illustrative Example

In today’s extremely competitive business environment, firms must be able to produce good
quality products at reasonable prices in order to be successful. Since the quality of the products is
directly dependent on the effectiveness and performance of its suppliers, the importance of supplier
selection has become increasingly recognized. In recent years, this problem has been handled using
various mathematical tools. Some of the recent research in this area can be found in [32–38].

Example 1. A manufacturing company is looking to select a supplier for one of the products manufactured by
the company. The company has shortlisted ten suppliers from an initial list of suppliers. These ten suppliers
form the set of alternatives U that are under consideration,

U = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}.

The procurement manager and his team of buyers evaluate the suppliers based on a set of
evaluation attributes E which is defined as:

E = {e1 = service quality, e2 = pricing and cos t structure, e3 = financial stability,
e4 = environmental regulation compliance, e5 = reliability,

e6 = relevant experience}.

The firm then evaluates each of the alternatives xi (i = 1, 2, . . . , 10), with respect to the attributes
ej (j = 1, 2, . . . , 6). The evaluation done by the procurement team is expressed in the form of SVNNs
in a SVNS A.
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Now suppose that the company would like to select one of the five shortlisted suppliers to be
their supplier. We apply the proposed Algorithm 1 outlined in Section 3.3 to this problem with the aim
of selecting a supplier that best satisfies the specific needs and requirements of the company. The steps
involved in the implementation process of this algorithm are outlined below (Algorithm 2).

Algorithm 2. (based on the modified TOPSIS approach).

Step 1. The SVNS A constructed for this problem is given in tabular form in Table 2
Step 2. The subjective weight hj for each attribute ej ∈ A as given by the procurement team (the decision
makers) are h = {h1 = 0.15, h2 = 0.15, h3 = 0.22, h4 = 0.25, h5 = 0.14, h6 = 0.09}.
Step 3. The objective weight θj for each attribute ej ∈ A is computed using Equation (9) are as given below:
θ = {θ1 = 0.139072, θ2 = 0.170256, θ3 = 0.198570, θ4 = 0.169934 , θ5 = 0.142685,

θ6 = 0.179484}.
Step 4. The integrated weight wj for each attribute ej ∈ A is computed using Equation (15). The integrated
weight coefficent obtained for each attribute is:
w = {w1 = 0.123658, w2 = 0.151386, w3 = 0.258957, w4 = 0.251833, w5 = 0.118412,

w6 = 0.0957547}.
Step 5. Use Equations (10) and (11) to compute the values of b+ and b− from the neutrosophic numbers given
in Table 2. The values are as given below:
b+ =

{
b+1 = [0.7, 0.2, 0.1], b+2 = [0.9, 0, 0.1], b+3 = [0.8, 0, 0], b+4 = [0.9, 0.3, 0],

b+5 = [0.7, 0.2, 0.2], b+6 = [0.8, 0.2 0.1
}

and
b− =

{
b−1 = [0.5, 0.8, 0.5], b−2 = [0.6, 0.8, 0.5], b−3 = [0.1, 0.7, 0.5], b−4 = [0.3, 0.8, 0.7],

b−5 = [0.5, 0.8, 0.7], b−6 = [0.5, 0.8, 0.9]
}

.
Step 6. Use Equations (12) and (13) to compute the difference between each alternative and the RNPIS and the
RNNIS, respectively. The values of D+ and D− are as given below:
D+ =

{
D+

1 = 0.262072, D+
2 = 0.306496, D+

3 = 0.340921, D+
4 = 0.276215, D+

5 = 0.292443,
D+

6 = 0.345226, D+
7 = 0.303001, D+

8 = 0.346428, D+
9 = 0.271012, D+

10 = 0.339093
}

.
and
D− =

{
D−1 = 0.374468, D−2 = 0.307641, D−3 = 0.294889, D−4 = 0.355857, D−5 = 0.323740

D−6 = 0.348903, D−7 = 0.360103, D−8 = 0.338725, D−9 = 0.379516, D−10 = 0.349703
}

.
Step 7. Using Equation (14), the closeness coefficient Ci for each alternative is:
C1 = −0.0133, C2 = −0.3589, C3 = −0.5239, C4 = −0.1163, C5 = −0.2629,
C6 = −0.3980, C7 = −0.2073, C8 = −0.4294, C9 = −0.0341, C10 = −0.3725.
Step 8. The ranking of the alternatives obtained from the closeness coefficient is as given below:

x1 > x9 > x4 > x7 > x5 > x2 > x10 > x6 > x8 > x3.

Therefore the optimal decision is to select supplier x1.

Table 2. Tabular representation of SVNS A.

U e1 e2 e3

x1 (0.7, 0.5, 0.1) (0.7, 0.5, 0.3) (0.8, 0.6, 0.2)
x2 (0.6, 0.5, 0.2) (0.7, 0.5, 0.1) (0.6, 0.3, 0.5)
x3 (0.6, 0.2, 0.3) (0.6, 0.6, 0.4) (0.7, 0.7, 0.2)
x4 (0.5, 0.5, 0.4) (0.6, 0.4, 0.4) (0.7, 0.7, 0.3)
x5 (0.7, 0.5, 0.5) (0.8, 0.3, 0.1) (0.7, 0.6, 0.2)

U e1 e2 e3

x6 (0.5, 0.5, 0.5) (0.7, 0.8, 0.1) (0.7, 0.3, 0.5)
x7 (0.6, 0.8, 0.1) (0.7, 0.2, 0.1) (0.6, 0.3, 0.4)
x8 (0.7, 0.8, 0.3) (0.6, 0.6, 0.5) (0.8, 0, 0.5)
x9 (0.6, 0.7, 0.1) (0.7, 0, 0.1) (0.6, 0.7, 0)
x10 (0.5, 0.7, 0.4) (0.9, 0, 0.3) (1, 0, 0)
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Table 2. Cont.

U e4 e5 e6

x1 (0.9, 0.4, 0.2) (0.6, 0.4, 0.7) (0.6, 0.5, 0.4)
x2 (0.6, 0.4, 0.3) (0.7, 0.5, 0.4) (0.7, 0.8, 0.9)
x3 (0.5, 0.5, 0.3) (0.6, 0.8, 0.6) (0.7, 0.2, 0.5)
x4 (0.9, 0.4, 0.2) (0.7, 0.3, 0.5) (0.6, 0.4, 0.4)
x5 (0.7, 0.5, 0.2) (0.7, 0.5, 0.6) (0.6, 0.7, 0.8)

U e4 e5 e6

x6 (0.4, 0.8, 0) (0.7, 0.4, 0.2) (0.5, 0.6, 0.3)
x7 (0.3, 0.5, 0.1) (0.6, 0.3, 0.6) (0.5, 0.2, 0.6)
x8 (0.7, 0.3, 0.6) (0.6, 0.8, 0.5) (0.6, 0.2, 0.4)
x9 (0.7, 0.4, 0.3) (0.6, 0.6, 0.7) (0.7, 0.3, 0.2)
x10 (0.5, 0.6, 0.7) (0.5, 0.2, 0.7) (0.8, 0.4, 0.1)

4.2. Adaptation of the Algorithm to Non-Integrated Weight Measure

In this section, we present an adaptation of our algorithm introduced in Section 4.1 to cases
where only the objective weights or subjective weights of the attributes are taken into consideration.
The results obtained via these two new variants are then compared to the results obtained via the
original algorithm in Section 4.1. Further, we also compare the results obtained via these two new
variants of the algorithm to the results obtained via the other methods in literature that are compared
in Section 5.

To adapt our proposed algorithm in Section 3 for these special cases, we hereby represent
the objective-only and subjective-only adaptations of the algorithm. This is done by taking only
the objective (subjective) weight is to be used, then simply take wj = θj (wj = hj). The two adaptations
of the algorithm are once again applied to the dataset for SVNS A given in Table 2.

4.2.1. Objective-Only Adaptation of Our Algorithm

All the steps remain the same as the original algorithm; however, only the objective weights of the
attributes are used, i.e., we take wj = θj.

The results of applying this variant of the algorithm produces the ranking given below:

x9 > x1 > x4 > x10 > x7 > x6 > x5 > x8 > x3 > x2.

Therefore, if only the objective weight is to be considered, then the optimal decision is to select
supplier x9.

4.2.2. Subjective-Only Adaptation of Our Algorithm

All the steps remain the same as the original algorithm; however, only the subjective weights
of the attributes are used, i.e., we take wj = hj.

The results of applying this variant of the algorithm produces the ranking given below:

x1 > x9 > x4 > x7 > x5 > x2 > x6 > x10 > x8 > x3

Therefore, if only the objective weight is to be considered, then the optimal decision is to select
supplier x1.

From the results obtained above, it can be observed that the ranking of the alternatives are clearly
affected by the decision of the decision maker to use only the objective weights, only the subjective
weights of the attributes, or an integrated weight measure that takes into consideration both the
objective and subjective weights of the attributes.
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5. Comparatives Studies

In this section, we present a brief comparative analysis of some of the recent works in this area
and our proposed method. These recent approaches are applied to our Example 1, and the limitations
that exist in these methods are elaborated, and the advantages of our proposed method are discussed
and analyzed. The results obtained are summarized in Table 3.

5.1. Comparison of Results Obtained Through Different Methods

Table 3. The results obtained using different methods for Example 1.

Method The Final Ranking The Best Alternative

Ye [39]
(i) WAAO *

(ii) WGAO **

x1 > x4 > x9 > x5 > x7 > x2 > x10 > x8 > x3 > x6
x10 > x9 > x8 > x1 > x5 > x7 > x4 > x2 > x6 > x3

x1
x10

Ye [10]
(i) Weighted correlation coefficient

(ii) Weighted cosine similarity measure

x1 > x4 > x5 > x9 > x2 > x8 > x7 > x3 > x6 > x10
x1 > x9 > x4 > x5 > x2 > x10 > x8 > x3 > x7 > x6

x1
x1

Ye [11] x1 > x9 > x4 > x7 > x5 > x2 > x8 > x6 > x3 > x10 x1

Huang [14] x1 > x9 > x4 > x5 > x2 > x7 > x8 > x6 > x3 > x10 x1

Peng et al. [40]
(i) GSNNWA ***

(ii) GSNNWG ****

x9 > x10 > x8 > x6 > x1 > x7 > x4 > x5 > x2 > x3
x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10

x9
x1

Peng & Liu [15]
(i) EDAS

(ii) Similarity measure

x1 > x4 > x6 > x9 > x10 > x3 > x2 > x7 > x5 > x8
x10 > x8 > x7 > x4 > x1 > x2 > x5 > x9 > x3 > x6

x1
x10

Maji [41] x5 > x1 > x9 > x6 > x2 > x4 > x3 > x8 > x7 > x10 x5

Karaaslan [42] x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10 x1

Ye [43] x1 > x9 > x4 > x5 > x7 > x2 > x8 > x3 > x6 > x10 x1

Biswas et al. [44] x10 > x9 > x7 > x1 > x4 > x6 > x5 > x8 > x2 > x3 x10

Ye [45] x9 > x7 > x1 > x4 > x2 > x10 > x5 > x8 > x3 > x6 x9

Adaptation of our algorithm (objective
weights only) x9 > x1 > x4 > x10 > x7 > x6 > x5 > x8 > x3 > x2 x9

Adaptation of our algorithm (subjective
weights only) x1 > x9 > x4 > x7 > x5 > x2 > x6 > x10 > x8 > x3 x1

Our proposed method (using integrated
weight measure) x1 > x9 > x4 > x7 > x5 > x2 > x10 > x6 > x8 > x3 x1

* WAAO = weighted arithmetic average operator; ** WGAO = weighted geometric average operator; *** GSNNWA =
generalized simplified neutrosophic number weighted averaging operator; **** GSNNWG = generalized simplified
neutrosophic number weighted geometric operator.

5.2. Discussion of Results

From the results obtained in Table 3, it can be observed that different rankings and optimal
alternatives were obtained from the different methods that were compared. This difference is due to a
number of reasons. These are summarized briefly below:

(i) The method proposed in this paper uses an integrated weight measure which considers both the
subjective and objective weights of the attributes, as opposed to some of the methods that only
consider the subjective weights or objective weights.

(ii) Different operators emphasizes different aspects of the information which ultimately leads
to different rankings. For example, in [40], the GSNNWA operator used is based on an
arithmetic average which emphasizes the characteristics of the group (i.e., the whole information),
whereas the GSNNWG operator is based on a geometric operator which emphasizes the
characteristics of each individual alternative and attribute. As our method places more importance
on the characteristics of the individual alternatives and attributes, instead of the entire information



Symmetry 2018, 10, 236 12 of 17

as a whole, our method produces the same ranking as the GSNNWG operator but different results
from the GSNNWA operator.

5.3. Analysis of the Performance and Reliability of Different Methods

The performance of these methods and the reliability of the results obtained via these methods
are further investigated in this section.

Analysis

In all of the 11 papers that were compared in this section, the different authors used different
types of measurements and parameters to determine the performance of their respective algorithms.
However, all of these inputs always contain a tensor with at least three degrees. This tensor can refer to
different types of neutrosophic sets depending on the context discussed in the respective papers, e.g.,
simplified neutrosophic sets, single-valued neutrosophic sets, neutrosophic sets, or INSs. For the sake
of simplicity, we shall denote them simply as S.

Furthermore, all of these methods consider a weighted approach i.e., the weight of each attribute
is taken into account in the decision-making process. The decision-making algorithms proposed
in [10,11,14,39,40,43,45] use the subjective weighting method, the algorithms proposed in [42,44] use
the objective weighting method, whereas only the decision-making methods proposed in [15] use
an integrated weighting method which considers both the subjective and objective weights of the
attributes. The method proposed by Maji [41] did not take the attribute weights into consideration in
the decision-making process.

In this section, we first apply the inputs of those papers into our own algorithm. We then compare
the results obtained via our proposed algorithm with their results, with the aim of justifying the
effectiveness of our algorithm. The different methods and their algorithms are analyzed below:

(i) The algorithms in [10,11,39] all use the data given below as inputs

S =


[0.4, 0.2, 0.3], [0.4, 0.2, 0.3], [0.2, 0.2, 05]
[0.6, 0.1, 0.2], [0.6, 0.1, 0.2], [0.5, 0.2, 0.2]
[0.3, 0.2, 0.3], [0.5, 0.2, 0.3], [0.5, 0.3, 0.2]
[0.7, 0.0, 0.1], [0.6, 0.1, 0.2], [0.4, 0.3, 0.2]


The subjective weights wj of the attributes are given by w1 = 0.35, w2 = 0.25, w3 = 0.40. All the
five algorithms from papers [10,11,39] yields either one of the following rankings:

A4 > A2 > A3 > A1 or A2 > A4 > A3 > A1

Our algorithm yields the ranking A4 > A2 > A3 > A1 which is consistent with the results
obtained through the methods given above.

(ii) The method proposed in [44] also uses the data given in S above as inputs but ignores the opinions
of the decision makers as it does not take into account the subjective weights of the attributes.
The algorithm from this paper yields the ranking of A4 > A2 > A3 > A1. To fit this data into our
algorithm, we randomly assigned the subjective weights of the attributes as wj =

1
3 for j = 1, 2, 3.

A ranking of A4 > A2 > A3 > A1 was nonetheless obtained from our algorithm.
(iii) The methods introduced in [14,43,45] all use the data given below as input values:

S =


[0.5, 0.1, 0.3], [0.5, 0.1, 0.4], [0.7, 0.1, 02], [0.3, 0.2, 0.1]
[0.4, 0.2, 0.3], [0.3, 0.2, 0.4], [0.9, 0.0, 0.1], [0.5, 0.3, 0.2]
[0.4, 0.3, 0.1], [0.5, 0.1, 0.3], [0.5, 0.0, 0.4], [0.6, 0.2, 0.2]
[0.6, 0.1, 0.2], [0.2, 0.2, 0.5], [0.4, 0.3, 0.2], [0.7, 0.2, 0.1]
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The subjective weights wj of the attributes are given by w1 = 0.30, w2 = 0.25, w3 = 0.25 and
w4 = 0.20.

In this case, all of the three algorithms produces a ranking of A1 > A3 > A2 > A4.
This result is however not very reliable as all of these methods only considered the subjective

weights of the attributes and ignored the objective weight which is a vital measurement of the
relative importance of an attribute ej relative to the other attributes in an objective manner i.e.,
without “prejudice”.

When we calculated the objective weights using our own algorithm we have the following
objective weights:

aj = [0.203909, 0.213627, 0.357796, 0.224667]

In fact, it is indeed <0.9, 0.0, 0.1> that mainly contributes to the largeness of the objective weight
of attribute e3 compared to the other values of ej. Hence, when we calculate the integrated weight,
the weight of attribute e3 is still the largest.

Since [0.9, 0.0, 0.1] is in the second row, our algorithm yields a ranking of A2 > A1 > A3 > A4

as a result.
We therefore conclude that our algorithm is more effective and the results obtained via our

algorithm is more reliable than the ones obtained in [14,43,45], as we consider both the objective and
subjective weights.

(iv) It can be observed that for the methods introduced in [10,11,39,44], we have 0.8 ≤ Tij + Iij + Fij ≤ 1
for all the entries. A similar trend can be observed in [14,43,45], where 0.6 ≤ Tij + Iij + Fij ≤ 1
for all the entries. Therefore, we are not certain about the results obtained through the decision
making algorithms in these papers when the value of Tij + Iij + Fij deviates very far from 1.

Another aspect to be considered is the weighting method that is used in the decision making
process. As mentioned above, most of the current decision making methods involving SVNSs use
subjective weighting, a few use objective weighting and only two methods introduced in [15] uses an
integrated weighting method to arrive at the final decision. In view of this, we proceeded to investigate
if all of the algorithms that were compared in this section are able to produce reliable results when
both the subjective and objective weights are taken into consideration. Specifically, we investigate
if these algorithms are able to perform effectively in situations where the subjective weights clearly
prioritize over the objective weights, and vice-versa. To achieve this, we tested all of the algorithms
with three sets of inputs as given below:

Test 1: A scenario containing a very small value of Tij + Iij + Fij.

S1 =


A1 = ([0.5, 0.5, 0.5], [0.9999, 0.0001, 0.000])

A2 = ([0.5, 0.5, 0.5], [0.9999, 0.0001, 0.0001])
A3 = ([0.5, 0.5, 0.5], [0.9999, 0.0000, 0.0001])
A4 = ([0.5, 0.5, 0.5], [0.0001, 0.0000, 0.000])


The subjective weight in this case is assigned as: aj = [0.5, 0.5].
By observation alone, it is possible to tell that an effective algorithm should produce A4 as the

least favoured alternative, and A2 should be second least-favoured alternative.
Test 2: A scenario where subjective weights prioritize over objective weight.

S2 =

{
A1 = ([0.80, 0.10, 0.10], [0.19, 0.50, 0.50])
A2 = ([0.20, 0.50, 0.50], [0.81, 0.10, 0.10])

}

The subjective weight in this case is assigned as: aj = [0.99, 0.01].
By observation alone, we can tell that an effective algorithm should produce a ranking of A1 > A2.
Test 3: This test is based on a real-life situation.
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Suppose a procurement committee is looking to select the best supplier to supply two raw
materials e1 and e2. In this context, the triplet [T, I, F] represents the following:

T : the track record of the suppliers that is approved by the committee
I : the track record of the suppliers that the committee feels is questionable
F : the track record of the suppliers that is rejected by the committee

Based on their experience, the committee is of the opinion that raw material e1 is slightly more
important than raw material e2, and assigned subjective weights of wsub

1 = 0.5001 and wsub
2 = 0.4999.

After an intensive search around the country, the committee shortlisted 20 candidates (A1 to
A20). After checking all of the candidates’ track records and analyzing their past performances, the
committee assigned the following values for each of the suppliers.

S3 =



A1 = ([0.90, 0.00, 0.10], [0.80, 0.00, 0.10]), A2 = ([0.80, 0.00, 0.10], [0.90, 0.00, 0.10])
A3 = ([0.50, 0.50, 0.50], [0.00, 0.90, 0.90]), A4 = ([0.50, 0.50, 0.50], [0.10, 0.90, 0.80])
A5 = ([0.50, 0.50, 0.50], [0.20, 0.90, 0.70]), A6 = ([0.50, 0.50, 0.50], [0.30, 0.90, 0.60])
A7 = ([0.50, 0.50, 0.50], [0.40, 0.90, 0.50]), A8 = ([0.50, 0.50, 0.50], [0.50, 0.90, 0.40])
A9 = ([0.50, 0.50, 0.50], [0.60, 0.90, 0.30]), A10 = ([0.50, 0.50, 0.50], [0.70, 0.30, 0.90])

A11 = ([0.50, 0.50, 0.50], [0.70, 0.90, 0.30]), A12 = ([0.50, 0.50, 0.50], [0.00, 0.30, 0.30])
A13 = ([0.50, 0.50, 0.50], [0.70, 0.90, 0.90]), A14 = ([0.50, 0.50, 0.50], [0.70, 0.30, 0.30])
A15 = ([0.50, 0.50, 0.50], [0.60, 0.40, 0.30]), A16 = ([0.50, 0.50, 0.50], [0.50, 0.50, 0.30])
A17 = ([0.50, 0.50, 0.50], [0.40, 0.60, 0.30]), A18 = ([0.50, 0.50, 0.50], [0.30, 0.70, 0.30])
A19 = ([0.50, 0.50, 0.50], [0.20, 0.80, 0.30]), A20 = ([0.50, 0.50, 0.50], [0.10, 0.90, 0.30])


The objective weights for this scenario was calculated based on our algorithm and the values are

wobj
1 = 0.1793 and wobj

2 = 0.8207.
Now it can be observed that suppliers A1 and A2 are the ones that received the best evaluation

scores from the committee. Supplier A1 received better evaluation scores from the committee compared
to supplier A2 for attribute e1. Attribute e1 was deemed to be more important than attribute e2 by
the committee, and hence had a higher subjective weight. However, the objective weight of attribute
e2 is much higher than e1. This resulted in supplier A2 ultimately being chosen as the best supplier.
This is an example of a scenario where the objective weights are prioritized over the subjective weights,
and has a greater influence on the decision-making process.

Therefore, in the scenario described above, an effective algorithm should select A2 as the optimal
supplier, followed by A1. All of the remaining choices have values of T < 0.8, I > 0.0 and F > 0.1.
As such, an effective algorithm should rank all of these remaining 18 choices behind A1.

We applied the three tests mentioned above and the data set for S3 given above to the
decision-making methods introduced in the 11 papers that were compared in the previous section.
The results obtained are given in Table 4.

Thus it can be concluded that our proposed algorithm is the most effective algorithm and the
one that yields the most reliable results in all the different types of scenario. Hence, our proposed
algorithm provides a robust framework that can be used to handle any type of situation and data, and
produce accurate and reliable results for any type of situation and data.

Finally, we look at the context of the scenario described in Example 1. The structure of our data
(given in Table 2) is more generalized, by theory, having 0 ≤ Tij + Iij + Fij ≤ 1 and 0 ≤ Tij + Iij + Fij ≤ 3,
and is similar to the structure of the data used in [15,40–42]. Hence, our choice of input data serves as
a more faithful indicator of how each algorithm works under all sorts of possible conditions.
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Table 4. Compliance to Tests 1, 2, and 3.

Paper Test 1
Compliance

Test 2
Compliance

Test 3
Compliance

Ye [39]
WAAO * Y Y N
WGAO * N Y N

Ye [10]
Weighted correlation coefficient Y Y N
Weighted cosine similarity measure N Y N

Ye [11] Y Y N
Huang [14] Y Y N

Peng et al. [40] GSNNWA ** Y Y N
GSNNWG ** Y Y N

Peng & Liu [15] EDAS Y Y N
Similarity measure N Y Y

Maji [41] N N N
Karaaslan [42] Y Y N
Ye [43] Y Y N
Biswas et al. [44] Y N Y
Ye [45] Y Y N
Adaptation of our proposed algorithm (objective weights only) Y N Y
Adaptation of our proposed algorithm (subjective weights only) Y Y N
Our proposed algorithm Y Y Y

Remarks: Y = Yes (which indicates compliance to Test); N = No (which indicates non-compliance to Test); * WAAO =
weighted arithmetic average operator; * WGAO = weighted geometric average operator; ** GSNNWA = generalized
simplified neutrosophic number weighted averaging operator; ** GSNNWG = generalized simplified neutrosophic
number weighted geometric operator.

6. Conclusions

The concluding remarks and the significant contributions that were made in this paper are
expounded below.

(i) A novel TOPSIS method for the SVNS model is introduced, with the maximizing deviation
method used to determine the objective weight of the attributes. Through thorough analysis,
we have proven that our algorithm is compliant with all of the three tests that were discussed in
Section 5.3. This clearly indicates that our proposed decision-making algorithm is not only an
effective algorithm but one that produces the most reliable and accurate results in all the different
types of situation and data inputs.

(ii) Unlike other methods in the existing literature which reduces the elements from single-valued
neutrosophic numbers (SVNNs) to fuzzy numbers, or interval neutrosophic numbers (INNs)
to neutrosophic numbers or fuzzy numbers, in our version of the TOPSIS method the input
data is in the form of SVNNs and this form is maintained throughout the decision-making
process. This prevents information loss and enables the original information to be retained,
thereby ensuring a higher level of accuracy for the results that are obtained.

(iii) The objective weighting method (e.g., the ones used in [10,11,14,39,40,43,45]) only takes into
consideration the values of the membership functions while ignoring the preferences of the
decision makers. Through the subjective weighting method (e.g., the ones used in [42,44]),
the attribute weights are given by the decision makers based on their individual preferences and
experiences. Very few approaches in the existing literature (e.g., [15]) consider both the objective
and subjective weighting methods. Our proposed method uses an integrated weighting model
that considers both the objective and subjective weights of the attributes, and this accurately
reflects the input values of the alternatives as well as the preferences and risk attitude of the
decision makers.

Author Contributions: Conceptualization, Methodology, Writing-Original Draft Preparation: G.S.; Investigation,
Validation, and Visualization: S.G.Q.; Writing-Review: S.B.; Editing: F.S.; Funding Acquisition: G.S. and S.G.Q.



Symmetry 2018, 10, 236 16 of 17

Funding: This research was funded by the Ministry of Education, Malaysia under grant no. FRGS/1/2017/STG06/
UCSI/03/1.

Acknowledgments: The authors would like to thank the Editor-in-Chief and the anonymous reviewers for their
valuable comments and suggestions.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
3. Gorzalczany, M.B. A method of inference in approximate reasoning based on interval-valued fuzzy sets.

Fuzzy Sets Syst. 1987, 21, 1–17. [CrossRef]
4. Gau, W.L.; Buehrer, D.J. Vague sets. IEEE Trans. Syst. Man Cybern. 1993, 23, 610–614. [CrossRef]
5. Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [CrossRef]
6. Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349.

[CrossRef]
7. Ezhilmaran, D.; Sankar, K. Morphism of bipolar intuitionistic fuzzy graphs. J. Discret. Math. Sci. Cryptogr.

2015, 18, 605–621. [CrossRef]
8. Smarandache, F. Neutrosophy. Neutrosophic Probability, Set, and Logic; ProQuest Information & Learning:

Ann Arbor, MI, USA, 1998; 105p. Available online: http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf
(accessed on 7 June 2018).

9. Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multisp. Multistruct.
2010, 4, 410–413.

10. Ye, J. Multicriteria decision-making method using the correlation coefficient under single-valued
neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [CrossRef]

11. Ye, J. Improved correlation coefficients of single valued neutrosophic sets and interval neutrosophic sets for
multiple attribute decision making. J. Intell. Fuzzy Syst. 2014, 27, 2453–2462.

12. Ye, J. Clustering methods using distance-based similarity measures of single-valued neutrosophic sets.
J. Intell. Fuzzy Syst. 2014, 23, 379–389. [CrossRef]

13. Ye, J. Multiple attribute group decision-making method with completely unknown weights based on
similarity measures under single valued neutrosophic environment. J. Intell. Fuzzy Syst. 2014, 27, 2927–2935.

14. Huang, H.L. New distance measure of single-valued neutrosophic sets and its application. Int. J. Gen. Syst.
2016, 31, 1021–1032. [CrossRef]

15. Peng, X.; Liu, C. Algorithms for neutrosophic soft decision making based on EDAS, new similarity measure
and level soft set. J. Intell. Fuzzy Syst. 2017, 32, 955–968. [CrossRef]

16. Yang, H.L.; Guo, Z.L.; She, Y.H.; Liao, X.W. On single valued neutrosophic relations. J. Intell. Fuzzy Syst.
2016, 30, 1045–1056. [CrossRef]

17. Broumi, S.; Smarandache, F.; Talea, M.; Bakali, A. Single valued neutrosophic graph: Degree, order and
size. In Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada,
24–29 July 2016; pp. 2444–2451.

18. Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F. Isolated single valued neutrosophic graphs.
Neutrosophic Sets Syst. 2016, 11, 74–78.

19. Broumi, S.; Talea, M.; Bakali, A.; Smarandache, F. Single valued neutrosophic graphs. J. New Theory 2016, 10,
86–101.

20. Broumi, S.; Smarandache, F.; Talea, M.; Bakali, A. An introduction to bipolar single valued neutrosophic
graph theory. Appl. Mech. Mater. 2016, 841, 184–191. [CrossRef]

21. Broumi, S.; Talea, M.; Bakali, A.; Smarandache, F. On bipolar single valued neutrosophic graphs. J. New Theory
2016, 11, 84–102.

22. Hassan, A.; Malik, M.A.; Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F. Special types of bipolar single
valued neutrosophic graphs. Ann. Fuzzy Math. Inform. 2017, 14, 55–73.

23. Tian, Z.P.; Wang, J.; Zhang, H.Y.; Wang, J.Q. Multi-criteria decision-making based on generalized prioritized
aggregation operators under simplified neutrosophic uncertain linguistic environment. Int. J. Mach.
Learn. Cybern. 2016. [CrossRef]

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/10.1016/0165-0114(87)90148-5
http://dx.doi.org/10.1109/21.229476
http://dx.doi.org/10.1002/int.20418
http://dx.doi.org/10.1016/0165-0114(89)90205-4
http://dx.doi.org/10.1080/09720529.2015.1013673
http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf
http://dx.doi.org/10.1080/03081079.2012.761609
http://dx.doi.org/10.1515/jisys-2013-0091
http://dx.doi.org/10.1002/int.21815
http://dx.doi.org/10.3233/JIFS-161548
http://dx.doi.org/10.3233/IFS-151827
http://dx.doi.org/10.4028/www.scientific.net/AMM.841.184
http://dx.doi.org/10.1007/s13042-016-0552-9


Symmetry 2018, 10, 236 17 of 17

24. Wu, X.H.; Wang, J.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified
neutrosophic sets and their application in multi-criteria decision-making problems. Int. J. Fuzzy Syst. 2016,
18, 1104–1116. [CrossRef]

25. Sahin, R.; Kucuk, A. Subsethood measure for single valued neutrosophic sets. J. Intell. Fuzzy Syst. 2015, 29,
525–530. [CrossRef]

26. Ye, J. An extended TOPSIS method for multiple attribute group decision making based on single valued
neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2015, 28, 247–255.

27. Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under
single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [CrossRef]

28. Majumdar, P.; Samanta, S.K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26,
1245–1252.

29. Wang, Y.M. Using the method of maximizing deviations to make decision for multiindices. Syst. Eng. Electron.
1997, 8, 21–26.

30. Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer-Verlag:
New York, NY, USA, 1981.

31. Chen, M.F.; Tzeng, G.H. Combining grey relation and TOPSIS concepts for selecting an expatriate host
country. Math. Comput. Model. 2004, 40, 1473–1490. [CrossRef]

32. Shaw, K.; Shankar, R.; Yadav, S.S.; Thakur, L.S. Supplier selection using fuzzy AHP and fuzzy multi-objective
linear programming for developing low carbon supply chain. Expert Syst. Appl. 2012, 39, 8182–8192.
[CrossRef]

33. Rouyendegh, B.D.; Saputro, T.E. Supplier selection using fuzzy TOPSIS and MCGP: A case study. Procedia Soc.
Behav. Sci. 2014, 116, 3957–3970. [CrossRef]

34. Dargi, A.; Anjomshoae, A.; Galankashi, M.R.; Memari, A.; Tap, M.B.M. Supplier selection: A fuzzy-ANP
approach. Procedia Comput. Sci. 2014, 31, 691–700. [CrossRef]

35. Kaur, P. Selection of vendor based on intuitionistic fuzzy analytical hierarchy process. Adv. Oper. Res. 2014,
2014. [CrossRef]

36. Kaur, P.; Rachana, K.N.L. An intuitionistic fuzzy optimization approach to vendor selection problem.
Perspect. Sci. 2016, 8, 348–350. [CrossRef]

37. Dweiri, F.; Kumar, S.; Khan, S.A.; Jain, V. Designing an integrated AHP based decision support system for
supplier selection in automotive industry. Expert Syst. Appl. 2016, 62, 273–283. [CrossRef]

38. Junior, F.R.L.; Osiro, L.; Carpinetti, L.C.R. A comparison between fuzzy AHP and fuzzy TOPSIS methods to
supplier selection. Appl. Soft Comput. 2014, 21, 194–209. [CrossRef]

39. Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets.
J. Intell. Fuzzy Syst. 2014, 26, 2459–2466.

40. Peng, J.J.; Wang, J.; Wang, J.; Zhang, H.; Chen, X.H. Simplified neutrosophic sets and their applications in
multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [CrossRef]

41. Maji, P.K. A neutrosophic soft set approach to a decision making problem. Ann. Fuzzy Math. Inform. 2012, 3,
313–319.

42. Karaaslan, F. Neutrosophic soft sets with applications in decision making. Int. J. Inf. Sci. Intell. Syst. 2015, 4,
1–20.

43. Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model.
2014, 38, 1170–1175. [CrossRef]

44. Biswas, P.; Pramanik, S.; Giri, B.C. Entropy based grey relational analysis method for multi-attribute decision
making under single valued neutrosophic assessments. Neutrosophic Sets Syst. 2014, 2, 102–110.

45. Ye, J. Improved cross entropy measures of single valued neutrosophic sets and interval neutrosophic sets
and their multicriteria decision making methods. Cybern. Inf. Technol. 2015, 15, 13–26. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s40815-016-0180-2
http://dx.doi.org/10.3233/IFS-141304
http://dx.doi.org/10.1007/s00521-015-1891-2
http://dx.doi.org/10.1016/j.mcm.2005.01.006
http://dx.doi.org/10.1016/j.eswa.2012.01.149
http://dx.doi.org/10.1016/j.sbspro.2014.01.874
http://dx.doi.org/10.1016/j.procs.2014.05.317
http://dx.doi.org/10.1155/2014/987690
http://dx.doi.org/10.1016/j.pisc.2016.04.071
http://dx.doi.org/10.1016/j.eswa.2016.06.030
http://dx.doi.org/10.1016/j.asoc.2014.03.014
http://dx.doi.org/10.1080/00207721.2014.994050
http://dx.doi.org/10.1016/j.apm.2013.07.020
http://dx.doi.org/10.1515/cait-2015-0051
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries 
	A TOPSIS Method for Single-Valued Neutrosophic Sets 
	Description of Problem 
	The Maximizing Deviation Method for Computing Incomplete or Completely Unknown Attribute Weights 
	TOPSIS Method for MADM Problems with Incomplete Weight Information 
	The Proposed TOPSIS Method for SVNSs 
	Attribute Weight Determination Method: An Integrated WEIGHT MEASure 


	Application of the Topsis Method in a Made Problem 
	Illustrative Example 
	Adaptation of the Algorithm to Non-Integrated Weight Measure 
	Objective-Only Adaptation of Our Algorithm 
	Subjective-Only Adaptation of Our Algorithm 


	Comparatives Studies 
	Comparison of Results Obtained Through Different Methods 
	Discussion of Results 
	Analysis of the Performance and Reliability of Different Methods 

	Conclusions 
	References

