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Abstract
The force experienced by a rotating body that lies in the G field of another rotating body
depends both on the G field and on its own mass and angular velocity of rotation that
affects the magnitude and direction of the exerted force. The force is in general not
central and not symmetric. The cases of the non rotating observer and the far away
observer are examined for rotation with and without slippage. It is shown that the force
may be repulsive or attractive, accelerating or decelerating depending on the angular
velocities of the rotations and distance.

1   Introduction

This paper is a continuation of [2] and [3]. In [2] the path of signals emanating from the
origin of rotating frames was studied. In [3] based on the findings of [2] the field (called
G ) created by a rotating body A that emanates signals was determined for different
observers. In this paper we go one step further to examine the force felt by a rotating
body B in a G  field created by body A. Body B will in general feel a non central force
and will be obliged to move accordingly. The magnitude of the force felt by B depends
on the magnitude of the field but also on the ability of body B to receive signals, which
is proportional to its mass. However, if body B itself rotates, the force due to the field
G that is experienced by the rotating body B is affected both in magnitude and direction
by the mass and rotation angular velocity, and radius of the receiving body because
signals approaching the receiving rotating body B are affected by its rotation. This leads
us among other things to attractive and repulsive forces. The interaction between two
rotating bodies is studied and the strength and direction of forces determined for the
cases of the non-rotating and the far away observer and for the sub-cases of rotation
with and without slippage. (By slippage we mean exponentially decreasing angular
velocity of rotation of the signals with respect to distance.)
This paper is organized as follows: In section 2 we review previous results. In section 3
we find the force between two rotating bodies for rotation with and without slippage and
for different observers. In section 4 we visualize the signals’ path to understand how
repulsive and attractive forces are formed. In section 5 we show how we can generalize
to bodies with non parallel axes of rotation. In section 6 we conclude.

2 Review of previous theory

Below is a summary of the results found in [2] and [3], on which this paper stands. We
present the transformation of cylindrical coordinates for rotating frames and for
different kind of observers and the corresponding G  field that a rotating body at the
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origin of the rotating frame (which rotates about its z axis), emitting signals, creates. We
have examined the following cases:

A. Rotation without slippage (the angular velocity w  of rotation of signals is
constant with respect to the distance from the rotating body). Precession of the
rotating body is assumed having a very small amplitude and is thus neglected.

A.I    Observer Oϒ  at the origin but not rotating with the body. (The

transformation holds for cz
w

′ ).

sin ( , )c I tθ ω ωϒ < (1)
vtϒΠ < Π ∗ (2)

z zϒ < (3)
t tϒ < (4)

2 2 2 2 2 2( , )
c t c

I tc w c w
θ

ο ο ο
θ ωθ θ

ϒ < <
ϒ ∗ ∗

(5)

v vϒ < (6)
ω ωϒ < (7)

where , , , , ,z t vθ οΠ  are the radial distance in cylindrical coordinates, the angle of
rotation as fraction of a circle (for example degrees), the z direction that coincides with
the axis of rotation, time, the number pi, and the frequency of rotation respectively for
observer O  , who is located at the origin and rotates with the body. And where

, , , , ,z t vθ οϒ ϒ ϒ ϒ ϒ ϒΠ  are the same quantities for observer Oϒ , who is located at the origin
but not rotating with the body. The speed of light is c. The angle of inclination of the
signal is the same, ω , for both observers O  and Oϒ .
Further, where,

0

( , ) cos
t

I t dtω ι< 〉 (8)

2 2 2 2 2 2

2 2 2 2 2 2
1 coscos
1 sin

w t c w z
w t c w

ωι
ω θ

, ,
< <

∗ ∗
(9)

with
2 2

cos z
z

ω
θ

<
∗

,
2 2

sin
z

θ
ω

θ
<

∗
, sinctθ ω< , cosz ct ω< , ι  is the deflection

angle of the field signal from the radial direction and is positive if it is in the same
direction as the angular velocity w .
From the above we can find the transformation of the angular velocity w  using the
formula ( 2w vο<  and 2w vοϒ ϒ< ) and the angle of rotation π  measured in radians
(using 2π ο< Π and 2π οϒ ϒ ϒ< Π ) as,

w
w

ο
ο

ϒ ϒ
< (10)

( )wt οπ π
ο

ϒ
ϒ < ∗ (11)

The G field which in this case we denote as ϒG  is given by
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2 2 2 2 22 2 4
2

2 2 2 2 2

ˆ ˆ
( ) cos( , )

( , )( ) ( , )

G Gk m k mdV
z dV zz w U t cz

I t z cI t c w

θ θ ι θθ ω
ω θ ω θ

ϒ ϒ
ϒ ϒ ϒ< , < ,

ϒ∗ ∑ ⌡∗
∗ ∗ 

 ∗ ∗ 

G v v (12)

where dV
dV ϒ

 is the inverse of the Jacobian of the transformation J ϒ  and is given by

4 2 2
2

2 2 2

cos sin ( , ) sin coscos
( , ) ( , )

w U t cJ
I t cI t c w
ω ω ω θ ω ι

ω
ω ω θ

∑ ⌡
ϒ < ∗ ∗ 

∗ 
(13)

4

3
2 2 2 2 2 20 2

( , )
1 cos (1 sin )

t tU t dt
w t w t

ω
ω ω

<
, ∗

〉 (14)

And ˆ ϒv is the unit vector in the direction of the velocity of the signals of the field.
ˆ ( , , ) (sin cos ,sin sin ,cos )zv v vθ π ω ι ω ι ωϒ ϒ ϒ ϒ< <v (15)

When 0z <  the above become,

∴ 0 2 2
0

1 1( , ) ( , ) arcsinh arcsinh
2 1

t

z

dt wI t I t wt
w w cw t

ο θω
<

< < < <
∗

〉 (16)

∴ 0
arcsinh

z

c w
w c

θθ
<

ϒ < (17)

∴ 0
2 2 2( )arcsinh

z

c wJ wc w
c

θ
θθ

<
ϒ <

∗
(18)

And

∴
2 2 2 2 2 2

2 2 2

2 3 2 30

1

( ) arcsinh ( ) arcsinh ( )ˆ ˆ ˆ
G

G G
z

J

w wc w k m c wk m k m c wc c
c w cw c

θ θθ θ θ θ
θ θ θ θ<

ϒ

ϒ∗ ∗ϒ ϒ ϒ∗ϒ ϒ ϒ ϒ< , < , < ,G v v v
03333133332

(19)

A.II Observer Oϒϒ is the far away observer (outside the cylindrical volume

defined by c
w

θϒϒ ′ ) for which the transformation below holds.

2 2 2
cosc

c w
θ θ θ ι

θ
ϒϒ ϒϒ< <

∗
(20)

vtϒϒΠ < Π ∗ (21)
z zϒϒ < (22)
t tϒϒ < (23)

ο οϒϒ < (24)
v vϒϒ < (25)

wtπ πϒϒ < ∗ (26)
The angle ιϒϒ is the angle of deflection of the field signal from the radial direction.

2 2 2tan (1 sin )wt w tι ωϒϒ < ∗ (27)
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And the angle of inclination of the signal from the z axis is given by
2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

1 (1 sin ) ( )( )tan tan tan
(1 sin ) ( )
w t w t c w z c w

w t c w
ω θ θ

ω ω ω
ω θ

∗ ∗ ∗ ∗ ∗
ϒϒ < <

∗ ∗
 (28)

Where tan
z
θω <

The Jacobian of the transformation is given by
3

2 2 2 2

3

( )dV c w
dV c

θ∗
<

ϒϒ
(29)

The G field, which in this case we denote as ϒϒG , is given by

∋ ( ∋ (

3
2 2 2 32

2 2 3 2 2 2 2 2 2 2 2 2 2 2

( )ˆ ˆ ˆ
( ( ) )

G G Gk m k m c w k m cdV
dVz c z c c w z c w

θ
θ θ θ θ θ

ϒ ϒ ϒ∗ϒϒ ϒϒ ϒϒ ϒϒ< , < , < ,
ϒϒ∗ ∗ ϒϒ ϒϒ ϒϒ∗ , ,

G v v v

(30)
Where ˆ ϒϒv is the unit vector in the direction of the velocity of the signals of the field as
Oϒϒsees them,

ˆ ( , , ) (sin cos ,sin sin ,cos )zv v vθ π ω ι ω ι ωϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ< <v (31)

The field for observer Oϒϒ is confined within a cylinder defined by c
w

θϒϒ ′   As the field

reaches the cylindrical surface it rises and forms a barrier and observer Oϒϒ  lies outside
that cylinder. In contrast, Oϒ  (case A.I), who lies inside the above cylinder sees the field
as extending to infinity in the radial direction but is restricted in the z direction to within

cz
w

′ .

B.  Rotation with slippage. (The angular velocity of rotation of signals decreases
exponentially with respect to the distance from the rotating body). This case has
more meaning physically and we also avoid the unnatural boundaries that appear
at /z c w<  and at /c wθϒϒ <  in cases A.I and A.II above. The angular velocity

of the signals is given by ( ) ( sin cos )
0 0

z ctw w e w eκθ λ κ ω λ ω, ∗ , ∗< < and the frequency of
rotation is ( ) ( sin cos )

0 0
z ctv v e v eκθ λ κ ω λ ω, ∗ , ∗< <  where ,κ λ  are the slippage

parameters in the radial direction and the z direction respectively.
B.I Observer Oϒ  at the origin but not rotating.

sin ( , , , )c I tθ ω ω κ λϒ < (32)
( sin cos )

( sin cos ) 0
0

0

(1 )
( sin cos )

t ct
ct v ev e dt

c

κ ω λ ω
κ ω λ ω

κ ω λ ω

, ∗
, ∗ ,ϒΠ < Π ∗ < Π ∗

∗〉 (33)

z zϒ < (34)
t tϒ < (35)

ω ωϒ < (36)

2 2 2 2( )
0

z

c
c w e κθ λ

θ
ο ο

θ θ , ∗
ϒ <

ϒ ∗
(37)

where
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0

( , , , ) cos
t

I t dtω κ λ ι< 〉 (38)

where ι  is the angle of deflection of the signal from the radial direction
2 2 2 ( sin cos ) 2 2 2 2 2( )
0 0
2 2 2 ( sin cos ) 2 2 2 2 2( )
0 0

1 coscos
1 sin

ct z

ct z

w t e c w z e
w t e c w e

κ ω λ ω κθ λ

κ ω λ ω κθ λ

ω
ι

ω θ

, ∗ , ∗

, ∗ , ∗

, ,
< <

∗ ∗
(39)

w
w

ο
ο

ϒ ϒ
< (40)

and using (33) with (37) and the fact that 2π ο< Π , 2π οϒ ϒ ϒ< Π , we find the
transformation of the rotation angle in radians

( sin cos )
( sin cos ) 0

0
0

(1 )( )
( sin cos )

t ct
ct w ew e dt

c

κ ω λ ω
κ ω λ ωο οπ π π

ο ο κ ω λ ω

, ∗
, ∗ϒ ϒ ∑ ⌡,ϒ < ∗ < ∗ ∗ 

〉 (41)

The angle of inclination of the signal to the z axis is ω  ( tan
z
θω < ) and is the same for

both observers O, and Oϒ .

Also assume that
0

1 ce
wλ

′ , the condition needed for cosι  to be real for all ω .

The G field which in this case we denote as ϒG  is given by

2 2 2 2
1ˆ ˆ

( ) ( )
G Gk m k mdV

z dV z Jθ θ
ϒ ϒ

ϒ ϒ ϒ< , < ,
ϒ ϒ∗ ∗

G v v (42)

where dV
dV ϒ

 is the inverse of the Jacobian J ϒ  of the transformation

2 2
2 2 2 2( )

0

cos ( , )cos coscos
( , , , ) ( , , , ) z

U t cJ
cI t I t c w e κθ λ

ω ωθ ι ω
ω

ω κ λ ω κ λ θ , ∗

∑ ⌡ϒ < ∗ , 
∗ 

(43)

and
2 2 2 ( sin cos ) 2
0

2 2 2 2 ( sin cos ) 2
00

1 cos( , )
cos 1 sin

t ct

ct

w t eU t dt
w t e

κ ω λ ω

κ ω λ ω

ω
ω

ω ω

, ∗

, ∗

∑ ⌡,∝
<   ∝ ∗ 

〉 (44)

And
ˆ ( , , ) (sin cos ,sin sin ,cos )zv v vθ π ω ι ω ι ωϒ ϒ ϒ ϒ< <v (45)

B.II  Observer Oϒϒ(the far away not rotating observer)

2 2 2 2( )
0

z

c
c w e κθ λ

θ θ
θ , ∗

ϒϒ <
∗

(46)

( sin cos )
( sin cos ) 0 0

0
0

(1 ) (1 )
( sin cos )

t ct ct
ct v e v ev e dt

c c

κ ω λ ω α
κ ω λ ω

κ ω λ ω α

, ∗ ,
, ∗ , ,ϒϒΠ < Π ∗ < Π ∗ < Π ∗

∗〉  (47)

Where sin cosα κ ω λ ω< ∗
z zϒϒ < (48)
t tϒϒ < (49)

ο οϒϒ < (50)
0 0w wϒϒ < (51)
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( sin cos ) 0
0

0

(1 )t ct
ct w ew e dt

c

α
κ ω λ ωπ π π

α

,
, ∗ ,ϒϒ < ∗ < ∗〉 (52)

Where ιϒϒ  is the angle of deflection of the field signal from the radial direction and is
given by

2 2

2 22 2 2 2

2 23 2 2

2

1(1 sin )tan
( )1 ( sin cos ) sin 1

w
w zwt w t c

w zc t w c
c

θ
θωι

θ κθ λκ ω λ ω ω

∗∗∗ϒϒ < <
∗∗ ∗ ∗

 (53)

Where ( sin cos )
0 0

ct ctw w e w eκ ω λ ω α, ∗ ,< < ,
The inclination of the path of the signal with  respect to the z axis is given by

2 2 2 2 2 2 3 2 2 23 2 2 2

32 2 2 2 2 22 2 2
2 2 2 2

(1 sin ) (1 sin )(1 sin )tan tan 1 tan
(1 sin )1 sin (1 sin )

w t w t c t wwt c t w
w t w tw t w t

ω α ωα ωω ω ω
ωω ω

∗ ∗ ∗∗ϒϒ < ∗ <
∗∗ ∗

(54)
Where tan / zω θ<  . Equation (54) can also be written as

2 2 2 2
2 2 2 2 2

2 2 2

32
2 2

2

(1 ) (1 ( ) )
tan tan

(1 )

zw w z w
c c c

w
c

θ θ θκθ λ
ω ω

θ

∗ ∗ ∗ ∗ ∗
ϒϒ <

∗
(55)

The G field, which in this case we denote as ϒϒG , is given by
3

2 2 2 2( ) 2
0

2 2 2 2 2 2 3 2( )
0

( )ˆ ˆ
( ) ( ) ( )

z
G G

z

k m k m c w edV
z dV z c c w e

κθ λ

κθ λ

θ
θ θ κ θ

, ∗

, ∗

ϒ ϒ ∗ϒϒ ϒϒ ϒϒ< , < ,
ϒϒ∗ ∗ ∗

G v v (56)

where dV
dV ϒϒ

 is the inverse of the Jacobian of the transformation

with ˆ ( , , ) (sin cos ,sin sin ,cos )zv v vθ π ω ι ω ι ωϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ< <v
The field for Oϒϒ  forms a “barrier” like the no slippage case when 0w  is very big. By
barrier we mean a maximum of the magnitude of the G field along with a sideway turn
of the signals emitted by the rotating body. In this case the radial distances may be
shrunk to sub-atomic (microcosmos) levels.

3 Force between two rotating bodies with parallel axes of
rotation

We have already seen how a rotating point body A creates a G  field around it. What is
the force felt by another point body B that is also rotating and vice versa? In what
direction does the force point? Is it symmetrical for A and B? These are the questions to
be dealt here.
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For  rotation without slippage, we will examine both the ϒF force and ϒϒF force . For
rotation with slippage we will only consider the ϒϒF  force and only briefly comment on

ϒF  .
Let’s focus on Case A.I above and then we will turn to cases A.II, B.I and B.II.
First, we need  to clarify some matters about observers. Up till now the nearby but not
rotating observer Oϒ was placed at the origin, where the rotating point mass is located.
What if another observer 2Oϒ  stationary with respect to Oϒ is placed at some distance
from the origin but not far away like observer Oϒϒ  ? Length measurements denoted by,
s  below, or angles like π , will not be affected because he is stationary with respect to
Oϒ  . However, 2Oϒ  is subject to the gravity field of body A, while Oϒ  , being at the
center of the rotating body A, is not. This will affect the clock of 2Oϒ  , which will run
slower. (see for example Møller [1]). If we denote by NGtϒ the time of the No Gravity
(NG) observer ( Oϒ  ) and by 2tϒ  the time of 2Oϒ  then the rate of clock will be altered by

the factor 2

NG

dt
dt

ϒ
ϒ

. Other quantities of interest such as angular velocity, w , velocity, τ ,

will be altered as follows (the subscript 2 refers to observer 2Oϒ ):

2 2
2

2 2

NG

NG

dtd dw
dt dt dt
π π ϒϒ ϒ

ϒ < <
ϒ ϒ ϒ

 but 2 NGπ πϒ ϒ<  because angles are spatial measurements, thus

2
2 2

NG NG NG
NG

NG

d dt dtw w
dt dt dt
π ϒ ϒ ϒ

ϒ ϒ< <
ϒ ϒ ϒ

Similarly, for velocity, 2
2

2 2 2

NG NG NG
NG

NG

ds dt dtds
dt dt dt dt

τ τ
ϒ ϒ ϒϒ

ϒ ϒ< < <
ϒ ϒ ϒ ϒ

. This also holds when cτ < the

speed of light. Thus, the ratio w
c

, or
c
τ remain invariant between the two observers.

Consequently the angle of deflection ι  given by (9), will remain invariant since it only
depends on /w c

Further , 2
2

2 2 2

sin cos sin cosNG NG
NG

dt dd c c
dt dt dt

θθ
ω ι ω ι

ϒ ϒϒ
ϒ ϒ< < <

ϒ ϒ ϒ
. It follows that 2θϒ  and NGθϒ

differ by a constant. But at 2 0tϒ < they are equal to each other. Therefore, 2 NGθ θϒ ϒ<  and
thus θϒ  is invariant as expected since it is a spatial measurement.

On account of (5) ο ϒ  is also invariant between observers 2Oϒ  and Oϒ  because θϒ  and w
c

are invariant
However, ( , )I tω  is not invariant and therefore, for case A.I, the magnitude of the field
G will differ but not its direction, which remains invariant.
Repeating the above exercise we see that the findings above hold for case B.I, where we
have the nearby observers but rotation with slippage. Therefore, in the following we
will not require that observer Oϒ is necessarily located at the origin of the axis at A.
Following the same reasoning for cases A.II and B.II, for the far away observerOϒϒ  , we
find that all the above quantities plus the magnitude of the G field remains invariant,
whether the observer is under gravity or not.
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3.1 The ϒF  force for rotation without slippage (observer Oϒ , case A.I)

First we need some notation. Body A has rotating mass Amϒ  as seen by observer Oϒ  ( Amϒ

is calculated in [3] from the stationary mass Am ), angular velocity of rotation Aw  and
body B has Bmϒ  (calculated the same way as Amϒ ) and Bw  respectively. Also let the
distance between the bodies A, B as observed by observer Oϒ (who stands within the G
fields created by A and B) be ( , )AB A Bw wθϒ  to remind us that it is a function of Aw  and

Bw , and let for the moment the planes of rotation of the two bodies be the same so that
their distance in the z direction is zero ( 0ABz < ) for simplicity. Later we relax this
restriction. Let also A and B be within each other’s reach of the respective G field.
Suppose for the moment that 0Bw < . Then the signals traveling from A will reach B
with an angle of deflection with respect to the line joining the two bodies as seen by Oϒ ,

equal to Aι . Recall that from (9) ∴ 0 2 2 2
cos

(0,0)
A z

A AB

c
c w

ι
θ<

<
ϒ∗

or

∴ 0

(0,0)tan A AB
A z

w
c

θι
<

ϒ
< , where (0,0)ABθϒ is the length of the path of the signal that

travels from A to B, which is the same as the straight line from A to B, when there is no
rotation i.e. when 0A Bw w< < .
The force ABϒF  that the non rotating body B will feel as seen by observer Oϒ and which is
due to the field created by A, will be defined as the product of the ABϒG  field ( the field
due to A as it is felt by B) with the mass of body B. This is justified by the idea that the
number of signals of the field that body B intercepts, will be proportional to its observed
mass, Bmϒ . This can be written as

AB AB Bmϒ ϒ ϒ<F G (57)

Now we will let body B rotate (along with the space around it) so that 0Bw ÷ . To
visualize the situation look at Figure 1. The case of no rotation is shown in Figure 1 (a).
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Figure 1 (a) Neither body rotates . The straight line distance which coincides with the path of
the signal is AB and its length is (0,0)ABθ  (b) Only A rotates. The curved line ACB indicates
the path of a signal from A towards B through C as seen by  observer Oϒ  . The length of the
path ACB is again (0,0)ABθ but the straight line for observer Oϒ is shorter: ( ,0)AB Aw ABθϒ <
(c) A and B rotate in the same direction (d) A and B rotate in opposite directions. The dashed
line from ACB in cases (c) and (d) shows the path of the signal from A to B (whose length  is

( , )AB A Bw wθϒ
A

C B
Aι

Bπ ϒ

c) 0Bw ÷ , 0Aw ÷ ,
0A Bw w =

( , )AB A Bw wθϒ
A

C B
Aι Bπ ϒ

d) 0Bw ÷ , 0Aw ÷ ,
0A Bw w ;

D
F

EE

F

D
Aw

Aw

BwBw

(0,0)ABθ B

b) 0Aw ÷ , 0Bw <

( ,0)AB Awθϒ
A

C
B

Aι

a) 0Bw < , 0Aw <

A

Aw
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again (0,0)ABθ  ) as seen by observer Oϒ . The straight line from A to B for that observer is
( , )AB A Bw w ABθϒ <

Look at Figure 1(b), where disc A is rotating and disc B is stationary. According to an
observer BO  at B, the path of the signal follows the curved path ACB . Suppose now
that body B and the frame, where it stands at the origin, starts rotating with angular
velocity Bw , and let BO  rotate with B, while a second observer BOϒ on top of BO  does
not rotate with B. Observer BO  will continue to see the signal follow the same curved
path ACB  . But BOϒ  will see the path of the signal change as the result of the addition of
the two rotations of space (of A and B). It will be more curved if B rotates in the same
direction as A, and less curved if it rotates in the opposite direction. For the more curved
case see the dashed path ACB from A to B in Figure 1(c). For the less curved case,
when it rotates in the opposite direction of Aw  see the dashed path ACB from A to B in

Figure 1(d). In fact, BO ϒ , will see the angle of deflection Aι  (= DBEΘ ) at point B

increase by B B ABw tπ ϒ ϒ< , where (0,0)AB
ABt

c
θϒ

< . Note that BOϒ  does not necessarily have

to be located at B. He is a type Oϒ observer as we explained above.
 So the final deflection will be A Bι π ϒ∗  . But in fact Bπ ϒ is measured at B, which is zero
distance from B, and therefore, there is no effect from the rotation of B. Thus B Bπ πϒ <
and B Bw wϒ < . (See Figure 1 (c) BEBF π ϒ<Θ  and A B DBFι πϒ∗ < Θ , where Aι  is given

by (0,0)tan A AB
A

w
c

θι
ϒ

< ). In the following we may use Bπ  instead of Bπ ϒ  since they are

equal. If B is rotating in the opposite direction, the final deflection angle A Bι π ϒ∗  will be
the result of subtraction (since Bπ ϒ is negative) and will look as in Figure 1(d) where

A DBEι < Θ , B EBFπ ϒ < Θ  and A B FBDι π ϒ∗ < Θ . Recall that observer Oϒ  lies within the
extend of both G fields, that of A and that of B, which for the outside far away observer

Oϒϒ  extend up to the cylinder of radius
A

c
w

 around the axis of rotation of body A and the

cylinder of radius
B

c
w

 around the axis of rotation of body B.

The straight line distance between A and B according to observer Oϒ  is ( , )AB A Bw wθϒ .
In order to relate ( , )AB A Bw wθϒ  to (0,0)ABθϒ we must imagine that BO  has a straight
transparent rod of length ( ,0)AB Awθϒ whose one end he holds and it points in the radial
direction from B, through which a signal is send, whenever its free end passes from A.
Then Oϒ  will see a curve from A to B being traveled by the signal and the radius being
contracted to ( , )AB A Bw wθϒ according to (1) at 0z < . So in effect we apply (1) at 0z <
twice:

( ,0) ( , )sinhB AB A B AB A Bw w w w w
c c

θ θϒ ϒ
< (58)
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(0,0) ( ,0)sinhA AB A AB Aw w w
c c

θ θϒ ϒ
< (59)

From which we arrive at
,( )

(0,0) sinh sinh B AB A BA
AB

A B

w w wwc
w w c

θ
θ

ϒ 
ϒ <  

 
(60)

We may remark here that when 2 2x, ′ ′  then sinh x x≡  and therefore, when
( , )2 2B AB A Bw w w
c

θ
, ′ ′  and ( , )2 2A AB A Bw w w

c
θ

, ′ ′  then (0,0) ( , )AB AB A Bw wθ θϒ ϒ: .

Observe that the subscript AB indicates the direction of the signal from body A to body
B. ( , )AB A Bw wθϒ is not symmetric in the direction of the signal. It is also not symmetric in

,A Bw w . But it is symmetric if both A,B and ,A Bw w are interchanged. This means that
since observer Oϒ  will see the same distance, ( ( , ) ( , )AB A B BA A Bw w w wθ θϒ ϒ< ) the
corresponding distances that the light signals travel will be different ie.,

(0,0) (0,0)AB BAθ θϒ ϒ÷ . This, in turn, means that a signal traveling from A to B will travel
a different distance ( (0,0)ABθϒ ) than the signal traveling from B to A ( (0,0)BAθϒ ) as
observer Oϒ  sees them.
By symmetrical arguments the signals that arrive to A from B will have an angle of

deflection equal to B Aι π ϒ∗  where A A BAw tπ ϒ ϒ< , (0,0)tan B BA
B

w
c

θι
ϒ

< , and (0,0)BA
BAt

c
θϒ

<

By the same arguments as for observers at B, A Aπ πϒ < , B Bw wϒ <  and hence we will not
use the prime. The magnitude of the force is again given by (57) but the direction is
changed. Thus, for 0Bw < ,

BA BA Amϒ ϒ ϒ<F G (61)

where BAϒG is given by (19), while the direction is given by the deflection from the
straight line ( , )BA B Aw wθϒ by the total deflection B Aι π∗ .

We are ready now to relax the condition that 0ABz <

For observer Oϒ  the field created by A is limited by
A

cz
w

;

When The force ABϒF  perceived by body B that is due to the ABϒG field created by body A
is given by (61) and ABϒG is given by (12) and combining them,

2 2 4 2 2 2
,2

2 2 2 2 2

ˆ
(0,0) ( , , ) (0,0)cos (0,0)

( , , )( (0,0) ) ( , , ) (0,0)

G A B
AB AB

AB AB A A AB AB AB A AB AB
AB

A AB AB AB AB A AB AB A AB

k m m

z w U w t z cz
I w t z cI w t c w

θ ω θ ι θ
ω θ ω θ

ϒ ϒ
ϒ ϒ< ,

∑ ⌡ϒ ϒ ϒ ∗
 ∗ ∗
 ϒ ∗ ϒ∗ 

F v

(62)

Where we have denoted ( , )AB ABI tω  as ( , , )A AB ABI w tω  and similarly for ( , , )A AB ABU w tω
to remind us that it also depends on Aw . Also in (62) for economy of space we denoted
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(0,0)AB ABω ω<  and (0,0)AB ABt t< . The magnitude of the field ABϒG  given by (12)
remains unaffected by the rotation of B, because it gives the magnitude of the field at
point B, where the rotation of B has no effect. It only affects the number of signals per
unit volume at positive distance from B (not at zero distance from B). This is why (12)
still holds. Only the direction ˆ ABϒv of the signals of the field as they fall on body B
changes because the angle of deflection changes as we will explain below. The curved
distance (0,0)ABθϒ  is the projection on the plane of rotation or horizontal plane (i.e. the
plane that is perpendicular to the axes of rotation of the bodies A, B) of the path that the
field signal follows to go from A to B, which is curved and possibly winding around A
and around B. The total distance that the signals travel from A to B is 2 2(0,0)AB ABzθϒ ∗ ,
while (0,0)ABω is the angle of inclination, which the signals from A make with the z axis

( (0,0)tan (0,0) AB
AB

ABz
θ

ω
ϒ

< ).

Also the angle of deflection of the signals arriving at B will increase from Aι  to

A Bι π∗ , where from (9) we know that
2 2 2

(0,0)tan
sin (0,0)

A AB
A

AB A AB

w
c w z

θ
ι

ω

ϒ
<

,
 , while

(0,0)B B AB B B ABw t w tπ πϒ ϒ< < < (63)
and

2 2(0,0)
(0,0)

cos (0,0)
AB AB AB

AB
AB

z zt
c c

θ
ω

ϒ ∗
< < (64)

The direction of the signals of the field is represented by the unit vector ˆ ABϒv , which
(when projected on the horizontal plane) gives the total angle of deflection A Bι π∗  of
the signals from the projection of the straight line between A and B on the horizontal
plane. Specifically,

ˆ (sin (0,0)cos( ),sin (0,0)sin( ),cos (0,0))AB AB A B AB A B ABω ι π ω ι π ωϒ < ∗ ∗v (65)
for the cylindrical components ( , , )zθ π .
Further, to determine (0,0)ABθϒ from the observed ( , )AB A Bw wθϒ , we apply the same
reasoning as for the two dimensional case ( 0ABz < ) that we used above and apply the
transformation (1) twice,

( ,0) sin (0,0) ( , (0,0), (0,0))AB A AB A AB ABw c I w tθ ω ωϒ < (66)
( , ) sin ( ,0) ( , ( ,0), (0,0))AB A B AB A B AB A ABw w c w I w w tθ ω ωϒ < (67)

(0,0)tan (0,0) AB
AB

ABz
θ

ω
ϒ

< (68)

( ,0)tan ( ,0) AB A
AB A

AB

ww
z

θ
ω

ϒ
< (69)

2 2(0,0)
(0,0) AB AB

AB

z
t

c
θϒ ∗

< (70)
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Substituting,(70) and (69) in (67) we have an equation relating ( , )AB A Bw wθϒ  to
( ,0)AB Awθϒ . While substituting (70) and (68) in (66) we have an equation relating
( ,0)AB Awθϒ  to (0,0)ABθϒ .Thus from ( , )AB A Bw wθϒ we may find ( ,0)AB Awθϒ  and then
(0,0)ABθϒ .

Finally, from (1), (5) and (10)

2 2 2

( , )
( ,0) ( ,0) )

B AB A B

B AB A B AB A

w w w c
w w c w w

θ
θ θ

ϒ ϒ
<

ϒ ϒ∗
(71)

From which Bwϒ  may be determined and then Bπ ϒ found using (63). But in our case the
latter is not needed since we measure Bπ ϒ at zero distance from B and hence as we said

B Bπ πϒ <  and B Bw wϒ < .
We may observe that the force in (62) is asymmetric in A and B both in direction and
magnitude.
A generalization: when Body B is not a point mass: In the discussion above we said that
the magnitude of ABϒG is unaffected by the rotation of B at distance 0 from B. This
assumes that we have a point mass. In reality B will have a radius Br  and there will be
rotation and contraction of space at distance Br  thus the magnitude of ABϒG  and hence

ABϒF  will be affected by the rotation of B. Figure 2 and some notation will help.

Figure 2  Two bodies A and B rotating along their z axis having radiuses Ar   and Br
respectively. The graph shows the situation when there is no rotation.

Body A has static radius Ar  and rotates with angular velocity Aw  around its z axis. Body
B with parallel z axis rotates with Bw   and has static radius Br  . When there is no
rotation the surface to surface radial distance between them is ABsθ and the center to

Ar ABsθ

Br

ABz

cosBr ψ

C

ABsz

B

A ζ

z axis
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center radial distance is cosAB ABs A Br rθ θ ψ< ∗ ∗  . Note that the correct notation is
(0,0)ABθ and (0,0)ABsθ   but for economy we write ABθ  and ABsθ .  The z distance from

center to center is ABz  . We are interested in the magnitude of the force due to A that
acts on B at point C. We know that 2 2 2( )ABs A ABsAC r zθ< ∗ ∗  ,

sin
cos

ABs A
ABs AB AB B

ABs A B

rz z z r
r r

θ
ψ

θ ψ
∗

< < ,
∗ ∗

 , sin ABz
AB

ψ <

The magnitude of the Newtonian force that acts on B due to A is then multiplied by the
inverse of the two Jacobians one for the transformation due to the rotation of A and one
for the rotation of B calculated at point C and, therefore, the general form will be

* *
* *

2 2 * *
cos

sin ( ) sin

ˆ
A B

ABs A B

ABs AB B AB ABs B

A B
w w w wAB G AB

r rAB AB
z z z r z z z r

m m dV dVk
z dV dVθ θ θ ψ

ψ ψ

θ < <
< ∗ <

< < , <, , <

   < ,    ∗    
F v (72)

Where * indicates the transformation according to the cases A.I, A.II, B.I, B.II exposed

above. * *

1
A

ABs A

ABs

w w
rA

z z

dV
J dV θ θ

<
< ∗

<

 <   
is the inverse of the Jacobian *

AJ  of the transformation that is

due to the rotation of A with Aw w<  and is evaluated with origin at A and at distance

from that origin ABs A

ABs

r
z z

θ θ< ∗
<

 , and * *
cos

( )

1
B

B

AB ABs

w w
rB

z z z

dV
J dV θ ψ

<
<

<, ,

 <   
is the inverse of the Jacobian *

BJ  of

the transformation due to the rotation of B and is evaluated with origin at B with Bw w<

and at distance from that origin cos
( )

B

AB ABs

r
z z z

θ ψ<
<, ,

 , while the direction of the unit vector *ˆ ABv  is

given by the total deflection and the inclination angle *ω  . Thus (72) can also take the
form

* *
* *

2 2 * *

1 1 ˆA B
AB G AB

AB AB A B

m mk
z J Jθ

< ,
∗

F v (73)

To apply (73) to the present case A.I of this section we need to evaluate (13) which is

the Jacobian of the transformation or dV
dV ϒ

 for the two distances as required and replace

the two Jacobians in (72). The math for this case is rather cumbersome. However, when
0ABz <  the force simplifies to

2

0 0

ˆ
A B

AB B B

A B
w w w wAB G AB

r rAB
z z

m m dV dVk
dV dVθ θ θθ < <

< , <
< <

ϒ ϒ    ϒ ϒ< ,    ϒ ϒ   
F v (74)

Where from (18)
2 2 2

0

( ) arcsinh

z

wc wdV c
dV c w

θθ

θ<

∗  < ϒ 
(75)
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3.2  The ϒϒF  force for rotation without slippage (far away observer Oϒϒcase,
A.II)

Observer Oϒϒ  lies outside both ϒϒG  cylinders of the bodies A, B. That is, he is beyond

the cylinder of radius
A

c
w

 with axis of rotation that of body A and cylinder with radius

B

c
w

 with axis of rotation that of body B. But bodies A and B lie within each other’s G-

cylinder. The angle of deflection that is due only to the rotation of A is by (27) given by
2 2 2 2 2

2

(0,0) (0,0) sin (0,0)tan (1 )

A AB

A AB AB A AB AB
A

w t

w z w
c c

θ θ ωι
ϒϒ ∗ ϒϒ

ϒϒ < ∗
033313332

 . This angle of deflection

will be increased because of the rotation of B by B B AB Bw tπ πϒϒ < <  where
2 2(0,0)AB AB

AB

z
t

c
θϒϒ ∗

<  and the total deflection will be A Bι πϒϒ ϒϒ∗ . Observe that B Bπ πϒϒ <

and that we may, therefore, omit the double prime for πϒϒ below. The angle of
inclination of the signal velocity vector from the z axis  for observer O is

(0,0)tan (0,0) tan (0,0) AB
AB AB

ABz
θ

ω ω
ϒϒ

ϒϒ< <  .

The radial distance ABθϒϒ  is given by (20) and applying it twice we have,

2 2 2
( , ) ( ,0)

( ,0)
AB A B AB A

B AB A

cw w w
c w w

θ θ
θ

ϒϒ ϒϒ<
ϒϒ∗

(76)

2 2 2
( ,0) (0,0)

(0,0)
AB A AB

A AB

cw
c w

θ θ
θ

ϒϒ ϒϒ<
ϒϒ∗

(77)

Substitute (77) in (76) to find

2 2 2 2

(0,0)( , )
( ) (0,0)

AB
AB A B

A B AB

cw w
c w w

θ
θ

θ

ϒϒ
ϒϒ <

ϒϒ∗ ∗
(78)

which is symmetric in A, B. From the observed radial distance between A, B, which is
represented by ( , )AB A Bw wθϒϒ  one can use (78) to find the radial component (the
projection on the horizontal plane) of the length of the path of the signal from A to B
which is given by (0,0)ABθϒϒ . In fact we may solve to find,

2 2 2 2

( , )(0,0)
( ) ( , )

AB A B
AB

A B AB A B

c w w
c w w w w

θ
θ

θ

ϒϒ
ϒϒ <

ϒϒ, ∗
(79)

This value may be used to determine ABt  , (0,0)ABω ϒϒ and tan Aιϒϒ which is given by (27)
2 2 2tan (1 sin (0,0))A A AB A AB ABw t w tι ωϒϒ ϒϒ< ∗ (80)

While from (28)
2 2 2 2 2

3
2 2 2 2

1 (1 sin (0,0))
tan ( ,0) tan (0,0)

(1 sin (0,0))

A AB A AB AB
AB A AB

A AB AB

w t w t
w

w t

ω
ω ω

ω

ϒϒ∗ ∗
ϒϒ ϒϒ<

ϒϒ∗
(81)

Using (73) the force exerted on B is given by,
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∋ ( ∋ (
3 3

2 2 2 2 2 22 2

2 2 3 3
(0,0) cos cos

(0,0) cos cos
(0,0) (0,0)

ˆ
( (0,0) )

AB B B

AB B B
AB AB

AB AB

A BG A B
AB AB

AB AB r r
r rz z z z

c w c wk m m
z c cθ θ ψ θ ψ

θ ψ ψ
θ θ

θ θ

θ ϒϒ< , <
ϒϒ ,

< <,
ϒϒ ϒϒ

   
∗ ∗ϒ ϒ    ϒϒ ϒϒ< ,    ϒϒ ∗       

F v (82)

Or

∋ ( ∋ (
3 3

2 2 2 2 2 2 22 2
(0,0)

2 2 3 3

( cos ) cos
ˆ

( (0,0) )
A AB B B BG A B

AB AB
AB AB

c w r c w rk m m
z c c

θ ψ ψ

θ

ϒϒ∗ , ∗ϒ ϒ
ϒϒ ϒϒ< ,

ϒϒ ∗
F v   (83)

This can also be expressed in terms of ( , )AB A Bw wθϒϒ  using (79). It is interesting to

observe in (82) that
∋ (

1
2 2 2 2

A

c

c w
θ θ

θ
ϒϒ <

∗
 or that

2 2

2

1

1 w
c

θ θ
θ

ϒϒ<
ϒϒ

,

 using the usual

notation of special relativity for observer Oϒϒ  ,
∋ (

1
2 2 2 2

2 2

2

1

1

c w
cw

c

θ
φ

θ

∗
< <

ϒϒ
,

 and thus

θθ
φ

ϒϒ <  . It follows that we may write (83) as

3 3
2 2 ˆ

( (0,0) )
G A B

AB A B AB
AB AB

k m m
z

φ φ
θ

ϒ ϒ
ϒϒ ϒϒ< ,

ϒϒ ∗
F v (84)

Where Aφ  and Bφ  are equal toφ  evaluated with origin A and B respectively as we did
above in (82).
The unit vector of the direction of the signals of the field is given by

ˆ (sin ( , ) cos( ), sin ( , )sin( ),cos ( , ))AB AB A B A B AB A B A B AB A Bw w w w w wω ι π ω ι π ωϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ< ∗ ∗v  (85)
The unprimed quantities refer to observer O. As we explained in the previous section
the ratio /w c  , remains invariant under the presence of a gravitational field and the
same is true for the quantities wt, and ct. Thus, for the far away observer the angles Aιϒϒ ,

Bπ ϒϒ , ABωϒϒ and the distance ABθϒϒ , will not depend on whether he or the other stationary
observers at A or B or some other location, are under the influence of a gravity field and
in particular of the field created by the other the two rotating bodies.
Still we need to show how tan ( , )AB A Bw wω ϒϒ  is determined so that the unit vector in (85)
is well defined. Imagine a light signal starting from B is send through a transparent rod
that has an angle ( , )BA A Bw wω ϒϒ to the z axis and rotates with B having its one end fixed at
B. After describing a curved path, the signal arrives at A when both B and A are
rotating. We need to satisfy the following :
From (78)

2 2 2 2 2 2 2 2

(0,0) sin (0,0)( , )
( ) (0,0) 1 ( ) sin (0,0)

AB AB
AB A B

A B AB A B AB

c ctw w
c w w w w t

θ ω
θ

θ ω

ϒϒ ϒϒ
ϒϒ < <

ϒϒ ϒϒ∗ ∗ ∗ ∗
 (86)

Where ( , ) ( , )AB A B BA A Bw w w wθ θϒϒ ϒϒ<  , (0,0) (0,0)AB BAθ θϒϒ ϒϒ<  ,
2 2(0,0)AB AB

AB BA

z
t t

c
θϒϒ ∗

< <
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Letting ,C BAτ  be the speed of the signal on the curved path from B to A we must have
the speed in the z direction be unaffected by rotations :

, cos ( , ) cos (0,0)C BA BA A B BAw w cτ ω ωϒϒ ϒϒ< (87)

Where
2 2

cos (0,0) cos (0,0)
(0,0)

BA AB

AB

z
z

ω ω
θ

ϒϒ ϒϒ< <
ϒϒ ∗

The tangential speed of the signal must equal ( , )B BA A Bw w wθϒϒ :

, sin ( , ) sin ( , )C BA BA A B BA B BA A Bw w w w wτ ω ι θϒϒ ϒϒ ϒϒ< (88)
The radial speed of the signal must equal to the rate of increase of the radial distance:

,
( , ) sin ( , ) cosBA A B

C BA BA A B BA
d w w w w

dt
θ τ ω ι

ϒϒ
ϒϒ ϒϒ< (89)

Where BAιϒϒ is the angle of deflection of the signal from the radial from B to A projected
on the plain at 0z < .
Solving the above we start with (86) and we find

3
2 2 2 2 2

( , ) sin (0,0)

(1 ( ) sin (0,0))

BA A B BA

A B BA BA

d w w c
dt w w t

θ ω

ω

ϒϒ
<

∗ ∗
(90)

Using this and dividing (88) by (89) and applying (86), we find
2 2 2 2( , )tan (1 ( ) sin (0,0))( , )

B BA A B
BA B BA A B BA BA

BA A B

w w w w t w w td w w
dt

θ
ι ω

θ
ϒϒ

ϒϒ ϒϒ< < ∗ ∗ϒϒ (91)

Dividing (88) by (87) we find
( , )tan ( , )

cos (0,0)sin
B BA A B

BA A B
BA BA

w w ww w
c

θ
ω

ω ι
ϒϒ

ϒϒ <
ϒϒ ϒϒ

(92)

And using (86) and (91) we obtain,
2

2 2 2 2

sin (0,0)tan ( , ) 1 cot
cos (0,0) 1 ( ) sin (0,0)

B BA BA
BA A B BA

BA A B BA BA

w tw w
c w w t

ω
ω ι

ω ω

ϒϒ
ϒϒ ϒϒ< ∗

ϒϒ ϒϒ∗ ∗
 (93)

 Or
2 2 2 2 2 2

3
2 2 2 2 2

1 (1 ( ) sin (0,0))
tan ( , ) tan (0,0)

(1 ( ) sin (0,0))

B BA A B BA BA
BA A B BA

A B BA BA

w t w w t
w w

w w t

ω
ω ω

ω

ϒϒ∗ ∗ ∗
ϒϒ ϒϒ<

ϒϒ∗ ∗
(94)

Finally from (87)
2 2 2 2 2 2

2
, 2 2 2 2 3

cos (0,0) (1 (1 ( ) sin (0,0)) )cos (0,0) 1 tan (0,0)
cos ( , ) (1 ( ) sin (0,0))

BA B BA A B BA BA
C BA BA BA

BA A B A B BA BA

c w t w w tc
w w w w t

ω ω
τ ω ω

ω ω
ϒϒ ϒϒ∗ ∗ ∗ϒϒ ϒϒ< < ∗

ϒϒ ϒϒ∗ ∗
(95)

From (94) we can find for a signal that travels the opposite way, from A to B:
2 2 2 2 2 2

3
2 2 2 2 2

1 (1 ( ) sin (0,0))
tan ( , ) tan (0,0)

(1 ( ) sin (0,0))

A AB A B AB AB
AB A B AB

A B AB AB

w t w w t
w w

w w t

ω
ω ω

ω

ϒϒ∗ ∗ ∗
ϒϒ ϒϒ<

ϒϒ∗ ∗
 (96)

by changing the subscript BA to AB since (0,0) (0,0)AB BAω ωϒϒ ϒϒ< , AB BAt t< . Thus,
( , )AB A Bw wω ϒϒ  is found and the unit vector in (85) is determined as required.

3.3  The ϒF force for rotation with slippage (observer Oϒ , case B.I)
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In this case we should follow the same steps as for case A.I and after we determine,

(0,0)ABθϒ , we calculate 0
0

0

(1 )
AB

AB AB AB

t
ct ctB

B B
AB

ww e dt e
c

α απ
α

, ,< < ,〉 , where

2 2(0,0)AB AB
AB

z
t

c
θ ∗

<  , sin (0,0) cos (0,0)AB AB ABα κ ω λ ω< ∗

However, calculations are more difficult because of the exponential in the angular
velocity.

3.4 The ϒϒF  force for rotation with slippage (observer Oϒϒ , case B.II)

From (46), and setting 0
AB ABct

A Aw w e α,< , 0
AB ABct

B Bw w e α,< , where

sin (0,0) cos (0,0)AB AB ABα κ ω λ ωϒϒ ϒϒ< ∗  and
2 2(0,0)AB AB

AB AB

z
t t

c
θϒϒ ∗

ϒϒ < <   we have,

2( (0,0) )2 2 2
0

( ,0) (0,0)
(0,0) AB AB

AB A AB z
A AB

cw
c w e κθ λ

θ θ
θ ϒϒ, ∗

ϒϒ ϒϒ<
ϒϒ∗

(97)

2( (0,0) )2 2 2
0

( , ) ( ,0)
( ,0) AB AB

AB A B AB A z
B AB A

cw w w
c w w e κθ λ

θ θ
θ ϒϒ, ∗

ϒϒ ϒϒ<
ϒϒ∗

(98)

From which (0,0)ABθϒϒ  is determined. Observe that ( , ) ( , )AB A B BA A Bw w w wθ θϒϒ ϒϒ< . Using
(72), the force is given by,

2 2 ˆ
( (0,0) )

G A B
AB AB

A BAB

k m m dV dV
z dV dVθ

ϒ ϒ    ϒϒ ϒϒ< ,    ϒϒ ϒϒ ϒϒ∗    
F v (99)

where
3

2( ( (0,0) cos ) ( sin ))2 2 2 2
0

2( ( (0,0) cos ) ( sin ))2 2 3
0

( ( (0,0) sin ) )
( ( (0,0) cos )) )

AB A B AB B

AB A B AB B

r r z r
A AB B

r r z r
A A AB B

c w r edV
dV c c w r e

κ θ ψ λ ψ

κ θ ψ λ ψ

θ ψ
κ θ ψ

ϒϒ, , , ∗ ,

ϒϒ, , , ∗ ,

ϒϒ∗ ,  < ϒϒ ϒϒ∗ , 
  (100)

3
2 2 2 2

0
3

( )B B

B

c w rdV
dV c

∗  < ϒϒ 
(101)

Where sin ABz
AB

ψ <  and (101) is given by the no slippage case since on the surface of

body B the angular velocity is 0Bw  .,and where the unit vector is given by,
ˆ (sin ( , ) cos( ), sin ( , )sin( ),cos ( , ))AB AB A B A B AB A B A B AB A Bw w w w w wω ι π ω ι π ωϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ ϒϒ< ∗ ∗v (102)

Notice that when 0κ λ< <  we return to the relations of Case A.II as expected.

Using simpler notation
2 2(0,0)AB AB

AB AB

z
t t

c
θϒϒ ∗

ϒϒ < <    and

(0,0)tan (0,0) tan (0,0) tan AB
AB AB AB

ABz
θ

ω ω ω
ϒϒ

ϒϒ < < <   we find tan Aιϒϒ from (53).
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2 2

2 22 2 2 2

2 23 2 2

2

(0,0)1(0,0)(1 sin )tan
(0,0) ( (0,0) )1 sin 1

A AB

A AB ABA AB A AB
A

A AB AB ABAB AB A

w
w zw t w t c

w zc t w c
c

θ
θω

ι
θ κθ λα ω

ϒϒ
∗ϒϒ ∗∗ϒϒ < <

ϒϒ ϒϒ ∗∗ ∗

(103)

Then we calculate 0
0 0

0 0

(1 )
AB AB

AB AB AB AB

t t
ct ct ctB

B B B B
AB

ww e dt w e dt e
c

α α απ π
α

ϒϒ
, , ,ϒϒ < < < < ,〉 〉

From (54)
2 2 2 2 3 2 2 2

3
2 2 2 2

(1 sin (0,0)) (1 sin (0,0))
tan ( ,0) tan (0,0)

(1 sin (0,0))

A AB AB AB AB A AB
AB A AB

A AB AB

w t c t w
w

w t

ω α ω
ω ω

ω

∗ ∗ ∗
ϒϒ <

∗
(104)

To determine tan ( , )AB A Bw wω ϒϒ , which is needed to determine the unit vector in  (99) we
follow a similar approach to that for the case A.II above,
The only difference  is in the calculation of the derivative of the radial distance,

3 2 2 2

3
2 2 2 2 2

( , ) sin (0,0)(1 ( )sin (0,0))

(1 ( ) sin (0,0))

BA A B BA BA BA A B BA

A B BA BA

d w w c c t w w
dt w w t

θ ω α ω

ω

ϒϒ ∗ ∗
<

∗ ∗
(105)

Where we observe that AB BAα α< , AB BAt t< ,
sin (0,0) sin (0,0) sin (0,0) sin (0,0)BA AB AB BAω ω ω ωϒϒ ϒϒ< < < .
After some calculation as in A.II we find for a signal traveling from B to A, while both A
and B are rotating,

2 2 2 2

3 2 2 2

( , ) (1 ( ) sin (0,0))tan ( , ) 1 ( )sin (0,0)
B BA A B B BA A B BA BA

BA
BA A B BA BA A B BA

w w w w t w w t
d w w c t w w

dt

θ ω
ι

θ α ω
ϒϒ ϒϒ∗ ∗ϒϒ < <ϒϒ ϒϒ∗ ∗

(106)

3 2 2 2 2

2 2 2 2 2 2 22 2 2 2

(1 ( )sin (0,0))tan ( , ) tan (0,0) 1
(1 ( ) sin (0,0))1 ( ) sin (0,0)

B BA BA BA A B BA
BA A B BA

B BA A B BA BAA B BA BA

w t c t w ww w
w t w w tw w t

α ω
ω ω

ωω

ϒϒ∗ ∗ϒϒ ϒϒ< ∗
ϒϒ∗ ∗ϒϒ∗ ∗

(107)
Also written as

2 2 2 2 2 2 2 3 2 2 2 2

3
2 2 2 2 2

(1 ( ) sin (0,0)) (1 ( )sin (0,0))
tan ( , ) tan (0,0)

(1 ( ) sin (0,0))

B BA A B BA BA BA BA A B BA
BA A B BA

A B BA BA

w t w w t c t w w
w w

w w t

ω α ω
ω ω

ω

ϒϒ ϒϒ∗ ∗ ∗ ∗ ∗
ϒϒ ϒϒ<

ϒϒ∗ ∗
(108)

,
cos (0,0)

cos ( , )
BA

C BA
BA A B

c
w w

ω
τ

ω
ϒϒ

<
ϒϒ

(109)

It follows that for a signal traveling from A to B when both A and B are rotating the
angle of inclination to the z axis is,

2 2 2 2 2 2 2 3 2 2 2 2

3
2 2 2 2 2

(1 ( ) sin (0,0)) (1 ( )sin (0,0))
tan ( , ) tan (0,0)

(1 ( ) sin (0,0))

A AB A B AB AB AB AB A B AB
AB A B AB

A B AB AB

w t w w t c t w w
w w

w w t

ω α ω
ω ω

ω

ϒϒ ϒϒ∗ ∗ ∗ ∗ ∗
ϒϒ ϒϒ<

ϒϒ∗ ∗
(110)
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And we substitute in (102) to determine the direction of ˆ ABϒϒv , which points opposite to
the direction of the force.

4 Visualization of the signals’ path for observers Oϒ and Oϒϒand
the attractive-repulsive effect

In Figure 1 (d) and 1 (c) the curved path from A to B shows how the signal travels from
A to B for the case of rotations in the same direction and in the opposite direction. Let
us expand on that in Figure 3.

Figure 3 Assuming that bodies A,B are both within the reach of each other’s G field, the
signals’ path from body A to body B is shown by the curved (or possibly winding) path with
length (0,0)ABθϒ  . The straight line distance observed by observer Oϒ , is ( , )AB A Bw wθϒ or

( , )AB A Bw wθϒϒ for observer Oϒϒ . By convention  angles are positive counterclockwise and rotation
is positive counterclockwise.  (a) When they are rotating in the same direction the angle of
deflection Aι  increases to ATot A Bι ι πϒ< ∗  or ( ATot A Bι ι πϒϒ< ∗ ). (b) When they are rotating in
the opposite direction the angle of deflection Aι  decreases to ATot A Bι ι πϒ< ∗   or

ATot A Bι ι πϒϒ< ∗   (since Bπ ϒ < 0). Recall that B B Bπ π πϒ ϒϒ< < . According to the direction ATotι
points it may also be attractive or repulsive and accelerating or decelerating.

(a) 0A Bw w =

(0,0)ABθϒ

A B

ATotι( , )AB A BAB w wθϒ<

Aw
Bw

(0,0)ABθϒ

Aw

A B

Bw

ATotι

( , )AB A BAB w wθϒ<

(b) 0A Bw w ;
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Assume that angles are positive in the counterclockwise direction and so are the angular
velocities. The angle of deflection Aι is measured starting from the extension of line AB.
When 0Aw ″  , the signals of a G field produced by a rotating body A will fall on a non

rotating body B with angle of deflection
2A
οι ′ . If body B is rotating, the angle of

deflection will change to ATot A Bι ι π< ∗ (and will increase or decrease according to the
sign of Bπ  ). If  ( 0 90ATotι′ ′ ν  ) the resulting G field and force exerted on B will be
attractive and decelerating. If 90 180ATotι′ ′ν ν it will be repulsive and decelerating. For
180 270ATotι′ ′ν ν it will be repulsive and accelerating and for 270 360ATotι′ ′ν ν it will
be attractive and accelerating. In all cases above acceleration is with respect to
counterclockwise orbital motion. If the orbital motion is clockwise then deceleration in
the counterclockwise direction is equivalent to acceleration in the clockwise direction. If

Bw  is big enough it will result in winding of signals around body B and thus there will
be ranges of Bw  where the G field will have the above properties . In Figure 3(a) we see
the case when both bodies rotate in the same direction and in Figure 3(b) when they
rotate in opposite directions. The above discussion holds for both cases.

Figure 4 presents in blue the plot of the total angle of deflection for rotation with
slippage, ATot A Bι ι πϒϒ ϒϒ ∗?  in radians versus (0,0)ABθ θϒϒ< for various cases

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 4 The graph of  the total angle of deflection ATot A Bι ι πϒϒ ϒϒ< ∗  (blue) vs θ . Also the
graph of Aιϒϒ  in orange and Bπ  in green. (a), (b), (c), (d), (e) are macrocosmos cases while (f),

(g), (h) are microcosmos examples. In particular, (a) 10
0 2.16*10Aw ,≡ rad/s ,

10
0 1.64*10Bw ,≡ rad/s , 151.68*10κ ,≡ m-1, 141.27*10z ≡ m, , the total angle of deflection

remains positive for all θ but does not exceed / 2ο . (b) 9
0 9.26*10Aw ,≡ rad/s,

7
0 9.4*10Bw ,≡ rad/s , 163.89*10κ ,≡ m-1, 0z ≡ m. The total deflection angle spans values

from 0 to 8 in radians. Therefore, it is attractive-repulsive and accelerating-decelerating for the
ranges explained above.  (c) 10

0 6.82*10Aw ,≡ rad/s, 10
0 3.12*10Bw ,≡ , rad/s ,

165.27*10κ ,≡ m-1, 0z ≡ m. Body B rotates with negative sign. The total angle of deflection
takes both positive and negative values depending on the distance but remains within
( / 2, / 2)ο ο, and hence it is always attractive. (d)  This is the same as (c) only

143.01*10z < m. (e) 9
0 8.52*10Aw ,≡ rad/s, 7

0 2.84*10Bw ,≡ , rad/s , 163*10κ ,≡ m-1,

0z ≡ m. The total angle of  deflection spans (0, / 2)ο,  and ( / 2, 3)ο, , .  (f) 15
0 5.7*10Aw ≡

rad/s, 15
0 1*10Bw ≡ , rad/s , 101*10κ ,≡ m-1, 0z ≡ m. The total angle of deflection spans

(0, / 2)ο  where it is attractive, (g) 23
0 3*10Aw ≡ rad/s, 19

0 3*10Bw ≡ , rad/s , 41*10κ ,≡ m-1,

0z ≡ m. The total  angle of deflection  spans (-2,8) as the distance varies from 0 to 1010, . The
space where the total angle of deflection takes values is segmented to (2, / 2)ο where it is
repulsive, ( / 2, / 2)ο ο, , ( / 2, 3 / 2)ο ο, , , ( 3 / 2, 5 / 2)ο ο, , , ( 5 / 2,8)ο, being attractive –
repulsive, accelerating-decelerating as we explained above. (h) 23

0 8.4*10Aw ≡ rad/s,
24

0 3*10Bw ≡ , rad/s , 95*10κ ,≡ m-1, 0z ≡ m. For distances from 0 to 1510,  m the total angle
of deflection is virtually equal to the angle of deflection that is due to the rotation of body A
only and varies from 0 to / 2ο .

2 10 15 4 10 15 6 1015 8 10 15 1 10 16

3.0

2.5

2.0

1.5

1.0

0.5

1. 10 7 2. 10 7 3. 10 7 4. 10 7 5. 10 7

0.5

1.0

1.5

2. 10 11 4. 10 11 6. 10 11 8. 10 11 1. 10 10

10

8

6

4

2

2

2. 10 16 4. 10 16 6. 10 16 8. 10 16 1. 10 15

0.5

1.0

1.5



23

5  Interaction of two spinning bodies with axes not parallel

Until now we have assumed that the axes of rotation of the two bodies were parallel.
This was done for simplicity and in order to understand the problem better by
approaching it stepwise. Now we will look at the general situation, when the axes of
rotation of the two bodies are not parallel. Figure 4 (a) and (b) shows the setup.

We imagine a body A rotating around axis 1Z . The plane perpendicular to 1Z  at A is
called the plane of rotation and is denoted as PL1. Similarly a body B rotates around an
axis 2Z  and the plane of rotation is PL2. PL1and PL2 intersect at XX’ with angleε . A
signal from A to B travels a curved path. The tangent to this curve at B is extended
tangentially to some point F. The straight line from A to B is extended to E. Let a plane
PL1’ parallel to PL1 pass through point B (PL1’ is not shown in Figure 4(a)). The
projection of E on PL1’ is 1E  (not shown) and the projection on PL2 is 2E .The
projection of F on PL1’ is 1F  (not shown) and on PL2 is 2F . Angle 1 1 1E BF ι<Θ  and
angle 2 2 2F BE ι<Θ . Also angle 1 1FZ BF ωϒ <Θ (not shown, where 1Z ϒ is a line parallel to
axis 1Z  passing through B) and 2 2FZ BF ω<Θ . Further, we observe that starting from A
with cylindrical coordinates, point B is at height 1z  and radial distance 1θ , while
starting from B, point A is at height 2z  and radial distance 2θ . The plane that contains

2Z  and passes through A, contains also E (since A, B lie on this plane and E lies on the
extension of AB). This plane crosses XX’ at Q.  AL is drawn perpendicular to XX’. The
angle 1LAQ u<Θ  is the azimuth angle of B with respect to the cylindrical coordinate
system that has origin at A and axis 1Z . The azimuth angle is measured looking down
from 1Z  counterclockwise starting from AL (the perpendicular from A to XX’). The
angle 1 190EAQL uφ< < ↓ ,Θ

Now our strategy is as follows. We let body B not rotate for the moment and we
transform 1, 1, 1, 1 1,F z uι ω θ ,to 2, 2, 2, 2 2,F z uι ω θ . After that we will let B rotate and see how

2 2, 2, 2 2, ,F z uι ω θ  are changed by the rotation.
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Figure 4(a) Body Α rotates with axis of rotation 1Z  and plane of rotation PL1. Body Β has
axis of rotation 2Z and plane of rotation PL2. The signal that travels from Α to Β is shown by
the curve that passes through Α and Β. Taking the tangent at B we extend it to F. AB is the
straight line from A to B which is extended to E. Angle 2 2FZ BF ω<Θ . The projections of E , F
on PL2 are 2E , 2F , respectively. Angle 2 2 2E BF ι<Θ , the angle of deflection on PL2. Angle

1LAQ u<Θ  is the azimuth angle of 2Z  with respect to cylindrical coordinate system 1Z with
origin at A. The angle between PL1 and PL2 is ε .

PL1

PL2

1Z 2Z

A

B

C

X’

L

E

F

2E

2F

2Fω

2ι

1u
1Eφ

εX

Q
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Figure 4(b) This a schematic side view of a section of Figure 4(a). The tangent to the signal path
at B and the straight line from ABE form an angle in space with vertex at Β. The projection of
this angle ( EBFΘ ) on PL1 forms the angle 1ι while the projection on PL2 forms the angle 2ι
. Also the tangent to the curve (Α,Β) at Β forms an angle 1Fω with 1Z ϒ  ( 1Z BFϒΘ ), while the
same forms an angle 2Fω with PL2  ( 2Z BFΘ ). Further, starting from Α with cylindrical
coordinates ,Β is at height 1z and radial distance 1θ and azimuth angle 1u . While starting from
Β with cylindrical coordinates the point Α is at a height 2z and radial distance 2θ and azimuth
angle 2u . PL1’ is a plane parallel to PL1 that passes through B .

We will use two Lemmas from Geometria proven in Appendix A to show how
2 2, 2, 2, F zι ω θ  are related to 1 1 1 1, , ,F zι ω θ . Draw plane PL1’parallel to PL1 passing

through body B. The planes PL2 and PL1’ refer us to Lemma 1 of Appendix A. We
know that 1 1EE BX φ<Θ  and we call 2 2EE BX φ<Θ  , 1 1FF BX φ<Θ  and 2 2FF BX φ<Θ .
We also know that

1 1 1E Fφ φ ι, < (111)

2 2 2E Fφ φ ι, < (112)

1 12E uοφ < , (113)

And from Lemma 1, noting that 1 12
xοω < ,  and 2 22

xοω < ,

1
2 1

1

cottan (sin cos ) tan
sin

E
E E

E

ω
φ ε ε φ

φ
< ∗ (114)

A

B

PL1

PL2

1Z 2Z

1, 1Fω ι
2, 2Fω ι

2θ

1θ

1z 2z

Α’PL1’
F

E

ε

1Z ϒ
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1
2 1

1

cottan (sin cos ) tan
sin

F
F F

F

ω
φ ε ε φ

φ
< ∗ (115)

1
1

1

tan E z
θ

ω < (116)

1 1
2 1 1 1 12 2 2 2

1 1 1 1

cos cos cos sin sin sin cos sin cosE E E E
z u

z z
θ

ω ε ω ω φ ε ε ε
θ θ

< , < ,
∗ ∗

(117)

2 1 1 1 1 1 1 1cos cos cos sin sin sin cos cos sin cos( )sinF F F F F F uω ε ω ω φ ε ε ω ω ι ε< , < , ∗ (118)

Using (114) , (113), (116) we find 2tan Eφ
We use (115) and (111) to find 2tan Fφ . From these we may find 2ι since 2 2 2E Fφ φ ι, <
Now we use Lemma 2 of Appendix A to find

2 1 1 1cos cos sinz z uε θ ε< , , (119)
2 2 2 2 2 2
2 1 1 1 1 1 1(1 cos sin ) sin 2 sin cos cosu z z uθ θ ε ε θ ε ε< , ∗ , (120)

1
2 1

2

sin sinu uθ
θ

< , (121)

Finally, we allow body B to rotate around 2Z  and use : For rotation without slippage,
use either (66) to (70) to determine 2θϒ , or (76) to (79), to determine 2θϒϒ  from 2θ .
Similarly, for rotation without slippage  use (97) and (98) to determine 2θϒϒ . For
example, to determine 2θϒϒ  for rotation without slippage,

2. 2. 2 2 2
2.

( , ) ( ,0)
( ,0)

AB A B AB A

B AB A

cw w w
c w w

θ θ
θ

ϒϒ ϒϒ<
ϒϒ∗

(122)

1. 1. 2 2 2
1.

( ,0) (0,0)
(0,0)

AB A AB

A AB

cw
c w

θ θ
θ

ϒϒ ϒϒ<
ϒϒ∗

(123)

And the procedure is: Start from 1. (0,0)ABθϒϒ  use (123) to find 1. ( ,0)AB Awθϒϒ . Then use
(119), (120), (121) to change coordinates and determine 2. ( ,0)AB Awθϒϒ  and then use (122)
to finally get 2. ( , )AB A Bw wθϒϒ . Similarly, for 2. ( , )AB A Bw wθϒ , 2. ( , )AB A Bz w wϒ , 2. ( , )AB A Bz w wϒϒ

Also, the angle of deflection 2.ABι , will be increased by B B ABw tπ ϒ ϒ< and B B ABw tπ ϒϒ < ,

respectively where
2 2

1. 1.(0,0) (0,0)AB AB
AB

z
t

c
θϒ ∗

< .

6 Conclusion

The force acting on a body rotating that is due to the field created by another rotating
body is in general not central and not symmetric. Its magnitude and direction depends
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not only on the G field created by the other rotating body but also on its own mass, and
rotation . The Force is calculated for the cases of close and far away observers and for
the case of angular velocity of signals constant or exponentially decreasing with respect
to distance. Finally, we use geometry to show how we may calculate the force, when the
axes of rotation of the two interacting bodies are not parallel.
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Appendix A

Lemmas from Geometria

Lemma 1
Let two planes PL1 and PL2 intersect along a line XX’ and the angle of intersection be
ε . Draw a line from a point A on XX’ to any point C. Let the projection of AC on PL1
be AB. and the projection of AC on PL2 be AD. Call angles 1CAB x<Θ , 2CAD x<Θ .
Draw a plane through C vertical to XX’. Let it cross XX’ at E. Call angles 1EAB φ<Θ ,

2EAD φ<Θ , 1CEB Ι<Θ , 2CED Ι<Θ  . Then
(1)

1 1 2 2cos cos cos cosx xφ φ< (A.124)
(2)

1 2
1 2

1 2

tan tantan , tan
sin sin

x x
Ι Ι

φ φ
< < (A.125)

(3)
2 1

2 1 1 1 2 2
1 2

sin sinsin cos sin ,sin cos sin
cos cos

x x x xΙ Ι
φ φ

Ι Ι
< < (A.126)

(4)
2

2 1
1

costan tan
cos

Ι
φ φ

Ι
< (A.127)

Proof:
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Figure  A-1

The plane perpendicular to XX’ that passes through C will pass through D, B (because
D,B are the projections of C on the two planes respectively). (see Figure A-1)

(1) To prove the first equation observe that triangle CAB is orthogonal at B, triangle
ABE is orthogonal at E and also triangle CDA is orthogonal at B, triangle DEA is
orthogonal at E. Hence,

1 1 2 2cos cos cos cosAE AC x AC xφ φ< <
From which the equation to be proved follows
 (2) To prove the second equation

1 1
1

1 1 1

sin tantan
cos sin sin

AC x xCB
BE AC x

Ι
φ φ

< < <

And
2 2

2
2 2 2

sin tantan
cos sin sin
AC x xCD

DE AC x
Ι

φ φ
< < <

(3) To prove the third equation

2 2
2

1

sin sinsin
cos

CE BECDx
AC AC AC

Ι Ι
Ι

< < <

But 1 1cos sinBE AC x φ< , hence,

1 1 2
2

1

cos sin sinsin
cos

xx φ Ι
Ι

<

The second equation of (3) follows by symmetrical arguments
(4) To prove the fourth equation

X

X’A

B

C

D

E
1x

1φ

2x2φ

PL1

PL2

1Ι

2Ι

ε

1Z
2Z
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2tan ED
AE

φ <

2cosED EC Ι<

1cosAE AB φ<

1sin EB
AB

φ <

1cosEB EC Ι<
From the above equations use the first four to solve for 2tan φ and find

2 2 1tan cos tanEC
EB

φ Ι φ<

And use the fifth to substitute for EC
EB

 and obtain,

2
2 1

1

costan tan
cos

Ι
φ φ

Ι
<

(QED)

Lemma 1 tells us how to find the projection angles of a line on Plane 2 when we know
the projection angles on Plane 1 and the angle between the planes.

Discussion
The angles 1Ι and 2Ι  are related to ε . In fact, the formulas in (3) and (4) of Lemma 1
can be further manipulated and expressed in terms of ε  . To do this we must look at the
two planes from X towards X’ and make some definitions about orientations.

Figure A-2

R1

R3

R1’

R3’

R4’

R4

R2’

R2
PL2

PL1

1Z

2Z

ε

C

E
D

B

2Ι
1Ι
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Given a plane PL1 we draw a vertical pointing in the Z direction and call it 1Z  and the
same for PL2 and 2Z . Given a line of intersection of PL1 and PL2 we call it  XX’ and
define a direction towards X. In Figure C-2, XX’ is vertical to the paper surface and X
is on our side). The angle ε  of intersection of PL1 and PL2 is zero when 1Z  and 2Z are
parallel both pointing in the same direction and the half planes PL1 and PL2 coincide.
Angle ε  is measured counterclockwise as we look from X towards X’ starting from
PL1 and ending at PL2.(see Figure A-2).
We draw a plane 1X  through the intersection of PL1 and PL2 (XX’) that is vertical to
PL1 ( 1X  contains 1Z ). We also draw a plane 2X  through the intersection of PL1 and
PL2 (XX’) that is vertical to PL2 ( 2X  contains 2Z ). This way space is divided in eight
regions: R1, R1’, R2, R2’,R3, R3’, R4, R4’(see Figure C-2)

Observe that varying 1x  , 1φ  so that 12 2
xο ο

, ′ ′  and 10 2φ ο′ ′  spans the surface of a

sphere. In fact, 1x , 1φ  are the angles used in spherical coordinates. The same is true for

2x , 2φ , where 1 0x <  when AC lies on PL1 and it is positive in the positive side of 1Z ;
and 1φ  is measured counterclockwise looking down from 1Z , starting from AX towards
AB. Similarly, 2 0x <  when AC lies on PL2 and it is positive on the positive side of 2Z ,
while 2φ  is measured counterclockwise as we look down from 2Z on PL2 and starting
from AX towards AD.

Also, 1 0Ι <  when AC lies on PL1 where 12 2
ο οΙ, ′ ′  being positive on the positive

side of 1Z  , and 2 0Ι <  when AC lies on PL2 where 22 2
ο οΙ, ′ ′  being positive on the

positive side of 2Z
We summarize all this in the following table

Region 1Ι ,

1x
2Ι ,

2x
1φ 2φ 1 2Ι Ι,

R1 + - 10 φ ο′ ′ 20 φ ο′ ′ 1 2Ι Ι ε, <
R1’ - + 1 2ο φ ο′ ′ 2 2ο φ ο′ ′ 1 2Ι Ι ε, < ,
R2 + + 10 φ ο′ ′ 20 φ ο′ ′ 1 2Ι Ι ε, <
R2’ - - 1 2ο φ ο′ ′ 2 2ο φ ο′ ′ 1 2Ι Ι ε, < ,
R3 + + 1 2ο φ ο′ ′ 20 φ ο′ ′ 1 2Ι Ι ε∗ <
R3’ - - 10 φ ο′ ′ 2 2ο φ ο′ ′ 1 2Ι Ι ε∗ < ,
R4 + + 1 2ο φ ο′ ′ 2 2ο φ ο′ ′ 1 2Ι Ι ε, < ,
R4’ - - 10 φ ο′ ′ 20 φ ο′ ′ 1 2Ι Ι ε, <

Table A-1 The + sign in columns for ( 1Ι , 1x ) and ( 2Ι , 2x ) indicates that the quantities are
non-negative, while the –  sign that they are non-positive.
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 (a) When C lies in R1 equation (A.126) of Lemma 1 becomes
2

2 1 1
1

sinsin cos sin
cos

x x Ι
φ

Ι
,

, <   but  in R1 1 2Ι Ι ε, <  and hence,

1 1
2 1 1 1 1 1

1

cos sin sin cossin cos sin cos sin (cos tan sin )
cos

x x xε Ι ε Ι
φ φ ε Ι ε

Ι
,

< < ,

Using (A.125) of Lemma 1 which in R1 becomes 1
1

1

tantan
sin

x
Ι

φ
<  we obtain,

2 1 1 1sin cos sin cos sin sinx x xε φ ε< , (A.128)
And similarly,

1 2 2 2sin cos sin cos sin sinx x xε φ ε< ∗ (A.129)
Observe here that if we replace ε  by -ε  to indicate the reverse transformation then
(A.129) becomes symmetric to (A.128). Namely,

1 2 2 2sin cos sin cos sin sinx x xε φ ε< , (A.130)
Also (A.127) becomes

1
2 1

1

tantan (sin cos ) tan
sin

x
φ ε ε φ

φ
< ∗ (A.131)

And

2 2
1 2 2

2 2

tan tantan (cos sin ) tan (cos sin ) tan
sin sin

x x
φ ε ε φ ε ε φ

φ φ
,

< ∗ < ,  (A.132)

Again if we replace ε  by -ε  to indicate the reverse transformation we end up with a
relation symmetrical to (A.131)

If we repeat the calculations for the remaining regions R1’, R2, R2’, R3, R3’, R4, R4’,
we find that the same relations (A.128), (A.129), (A.130), (A.131), (A.132) continue to
hold in all regions.
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Lemma 2
Let two planes PL1 and PL2 intersect along line XX’ with an angle 0 90ε′ ′ ↓ . Let a
line 1Z , perpendicular to PL1, that crosses it at point A and a line 2Z perpendicular to
PL2 that crosses it at point B. Draw a line from B parallel to 1Z that crosses PL1 at G.
Draw the line AG and extend it until it crosses XX’ at F. Call the line segments AG= 1θ
and the line segment BG= 1z . Draw a line from A perpendicular to XX’ that crosses it at
L. Call the angle LAG u<Θ (it is measured counterclockwise looking from 1Z down on
PL1, starting from AL and ending on AG). Draw a line from A perpendicular to 2Z that
crosses it at I. Call BI= 2z  and AI= 2θ .
Then
(1)

2 1 1cos cos sinz z uε θ ε< , , (A.133)
(2)

2 2 2 2 2 2
2 1 1 1 1(1 cos sin ) sin 2 sin cos cosu z z uθ θ ε ε θ ε ε< , ∗ , (A.134)

Figure A-3

Proof (using Figure A-3)
Draw a line from B parallel to XX’. Let the plane that passes through 1Z  and is
perpendicular to XX’ cross the previously drawn line at E. Draw ED parallel to AL.
Draw a line from E perpendicular to PL1 that crosses it at P.
The plane defined by BGC is perpendicular to PL1 and PL2 because BC lies on 2Z
which is perpendicular on PL2  and BG was drawn perpendicular to PL1.  Therefore,

X
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F
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PL2

A

B

G

L

C

I

ε

E

D

H

K

M
u

N

1θ
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P
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the plane defined by BGC is perpendicular to XX’ and therefore it is parallel to the
plane defined by EDLA .   In fact EDAP is an orthogonal parallelogram   and AD=BG.
Draw a line through E parallel to 2Z . It will cross LA at some point H. Draw a line from
A perpendicular to the line defined by EH, and let it cross it at  K. Also draw a line from
D perpendicular to EH and let it cross it at M.
The plane defined by AKI is perpendicular to both 2Z and its parallel line EMHK.
Therefore, EBIK is an orthogonal parallelogram and therefore, BI=EK, or

2z EM MK< ∗
Observe that by construction BDAG is orthogonal parallelogram and therefore angle

LAG BDE u< <Θ Θ .
But 1 cos sinEM uθ ε<  because triangle BED is orthogonal and angle BDE u<Θ  and

also triangle DEM is orthogonal and angle
2

DEM ο ε< ,Θ . To show that angle

2
DEM ο ε< ,Θ  observe that angle EDM ε<Θ  because its sides are perpendicular to

lines ( 1Z , and EMHK) that are perpendicular to the two planes (PL1, PL2) that cross
with angleε .
Also MK is the projection of AD (which is equal to 1z ) on line EMHK which was
drawn parallel to 2Z .The angle between the two line EMHK and 1Z  is ε  because each
is perpendicular to the two plane PL1 and PL2 that cross at angle ε . Hence

1 cosMK z ε<

Gathering things together we obtain 2 1 1cos cos sinz z uε θ ε< ∗  . But 2z  lies in the
negative semi axis of 2Z and therefore we may write 2 1 1cos cos sinz z uε θ ε< , ,  which
proves (A.133)
To prove (A.134) observe that 2 2 2 2 2

1 1 2 2AB z zθ θ< ∗ < ∗  and solve for 2
2θ  using(A.133).

(QED)

Discussion 1
Note that 1θ , 1z  are the cylindrical coordinates of point B with respect to origin at A and
axis 1Z , while 2θ , 2z  are the cylindrical coordinates of A with respect to origin at B
and axis 2Z . The azimuth angle is u  for 1Z  and it is measured counterclockwise ( as we
look down from 1Z ) starting from the plane that contains 1Z  and is vertical to PL2. In a
similar fashion we define the azimuth angle for the cylindrical coordinate system 2Z as
v  measured counterclockwise (as we look down from 2Z ) starting from the plane that
contains 2Z  and is vertical to PL1, (see Figure A-3).
The plane that passes through 2Z  and is vertical to PL1 includes CG . Let its extension
cross XX’ at Q and draw QB. Draw LE and extend it to some point N so that triangle

BEN is parallel and equal to triangle AKI. Then 2 AI BNθ < <   and 3
2

NBE vο
< ,Θ

We can easily see now that
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1 sinBE GP uθ< <  and also 2 2
3cos( ) sin
2

BE v vοθ θ< , < ,  and therefore

1 2sin sinu vθ θ< , (A.135)
Further, we observe that LE LN EN< ,  where

2

tan
z

LN
ι

< , 2 2
3sin( ) cos
2

EN v vοθ θ< , < , , 1 sinz PE ι< . Substituting above we

obtain,
2

1 2 2 2sin cos sin cos cos sin
tan

z
z v z vε θ ε ε θ ε

ι
< , < ,   and since 2z  is non positive

1 2 2cos cos sinz z vε θ ε< , , (A.136)

Discussion 2
In the proof of Lemma 2 we assumed that 0 90ε′ ′ ↓ . If we define ε  to be measured
counterclockwise starting when the two half planes PL1, PL2 coincide and we look
from X towards X’, while the positive half axes 1Z , 2Z coincide when 0ε < , Then
Lemma 2 continues to hold for all 0 360ε′ ′ ↓ . This is the same convention that we
used for Lemma 1. Finally, Lemma 2 tells us how to change from one cylindrical
coordinate system with coordinates ( 1 1, ,z uθ ) to another with coordinates ( 2 2,, z vθ )


