The distribution of primes, II

Ihsan Raja Muda Nasution

January 7, 2019

Abstract

In this paper, we find the axiomatic regularity of prime numbers.

MSC: 11A41

Keywords: prime numbers, distribution of primes

1 Introduction

In 1859, Riemann [Rie59] computed the distribution of primes. Our motivation is to axiomatize the structure of primes.

2 Results

These below are some patterns of number.

Let t_n denote the *n*th triangular number. Then

$$t_n = \binom{n+1}{2} \qquad n \ge 1,$$

where $\binom{n}{k}$ is the binomial coefficients.

Let F_n be the *n*th Fibonacci number. Then

$$F_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}},$$

where n is an integer.

Let B_n be the *n*th Bernoulli number. Then

$$B_n = (-1)^{n+1} n \zeta(1-n),$$

where $\zeta(1-n)$ is the Riemann zeta-function.

Postulate 2.1 (Peano Postulates). Given the number 0, the set \mathbf{N} , and the function σ . Then:

- 1. $0 \in \mathbf{N}$.
- 2. $\sigma: \mathbf{N} \to \mathbf{N}$ is a function from \mathbf{N} to \mathbf{N} .
- 3. $0 \notin \text{range}(\sigma)$.
- 4. The function σ is one-to-one.
- 5. If $I \subset \mathbf{N}$ such that $0 \in I$ and $\sigma(n) \in I$ whenever $n \in I$, then $I = \mathbf{N}$.

We define $1 = \sigma(0), 2 = \sigma(1), 3 = \sigma(2)$, etc. We have the following postulate.

Postulate 2.2. Given a prime number p, $\tau(n)$ denotes the number of positive divisors of n, $\sigma(n)$ denotes the sum of positive divisors of n, and $\Delta(n)$ denotes the number of positive divisors of n besides 1 and n. Then:

- 1. $2 \le p$.
- 2. $4 \nmid p$.
- 3. $2^{\tau(p)} = 4$.
- 4. $3 \le \sigma(p)$.
- 5. $\Delta(p) = 0$.

References

[Rie59] B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. *Monatsber. Akad. Berlin*, pages 671–680, 1859.