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A thought about the Riemann hypothesis. 

               Abstract. In these papers we will try to face the Riemann hypothesis, basing on the study of the      

               functional equation of the Riemann zeta function.                                                                                                

0  Introduction and known properties. [1] 
 

The Riemann zeta function is defined by the Dirichlet series: 

0.1  (s)= ∑  
𝟏

 𝒏𝒔
∞
𝒏=𝟏  

for every complex number s with real part Re(s) greater than 1. 

 

However, this function can be analytically continued to a holomorphic function on the whole 

complex s-plane, except for a simple pole at s=1, which satisfies the following functional equation: 

1  (s) =𝟐𝒔𝝅𝒔−𝟏𝒔𝒊𝒏 (
𝝅 𝒔

𝟐
) 𝜞(𝟏 − 𝒔)(𝟏 − 𝒔) , where s is a complex number and Γ is the 

gamma function. 

 

The zeta function has some zeros, called the trivial zeros, and others, known as the  non-trivial 

zeros, which lie in the critical strip 0<Re(s)<1, symmetrically about the real line.  

Thus for every non-trivial zero z = 𝜎 + 𝑖𝑡: 

0.2 ∃! 𝒛𝒏 | 𝒛𝒏 = 𝝈 − 𝒊𝒕 
The Riemann hypothesis is about the non-trivial zeros and it asserts that: 

“Every non-trivial zero s has Re(s)=1/2”. 

 

In addition, for the zeta function (0.1) there is the following identity, which is the Euler product 

formula: 

0.3 ∑  
𝟏

 𝒏𝒔
∞
𝒏=𝟏 = ∏

𝟏

𝟏−𝒑−𝒔𝒑 𝒑𝒓𝒊𝒎𝒆  , 

 where s is a complex number with real part Re(s) greater than 1 and p is a prime number. 

Proof p(0) [Euler]: 

We consider the zeta function (0.1) 

(s)= ∑  
1

 𝑛𝑠
∞
𝑛=1 = 1 +

1

2𝑠 +
1

3𝑠 +
1

4𝑠 + ⋯ 

We multiply it by the factor 
1

2𝑠 

1

2𝑠 (s)=
1

2𝑠 +
1

4𝑠 +
1

6𝑠 +
1

8𝑠 + ⋯ 

Subtracting the second equation from the first we get: 

(1 −
1

2𝑠)(s) = 1 +
1

3s +
1

5s +
1

7s + ⋯ 

Doing this, we have removed all elements that have a factor of 2. 

Repeating the same procedure for the next terms: 

 (1 −
1

7𝑠)(1 −
1

5𝑠) (1 −
1

3𝑠) (1 −
1

2𝑠) (s) = 1 
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In this way, we are progressively removing all the multiples of every term after 1, which is a prime 

number since it is not a multiple of any lesser number. Therefore, the numbers of the product are 

all primes. 

Repeating infinitely for 
1

𝑝𝑠 , where p is a prime, we obtain: 

… (1 −
1

11𝑠) (1 −
1

7𝑠)(1 −
1

5𝑠) (1 −
1

3𝑠) (1 −
1

2𝑠) (s) = 1 

Dividing both sides by everything but (s),we get: 

(s) = 
1

(1−
1

2𝑠)
 

1

(1−
1

3𝑠)
 

1

(1−
1

5𝑠)
 

1

 (1−
1

7𝑠)
 

1

(1−
1

11𝑠)
… , 

which is equivalent to:                                                                                                                                

(s) = ∏
1

1−𝑝−𝑠𝑝 𝑝𝑟𝑖𝑚𝑒  (0.3) 

From the Euler product formula (0.3) we deduce an important consequence: 

(0.4) “the zeta function has no zeros in the half-plane Re(s)>1”. 

 

1 Study of the functional equation 

 
In order to study the functional equation, we factor it. 

1.1 factor: 𝟐𝒔 

The factor 2𝑠 is an exponential function of the form y=𝑎𝑠, with a=2 and s ∈ ℂ. Since the base of the 

exponent is different from 0, there is no value of s such that cancels the factor 2𝑠 and therefore the 

functional equation (1). Thus:                                                                                                             

1.11  ∄ s ∈ 𝑪| 𝟐𝑺 = 𝟎 → (𝟏) = 𝟎 

1.2 factor: 𝝅𝒔−𝟏                                                                                                                                                                                                                                                 

Doing a similar reasoning to that used for the factor (1.1), we can assert that there is no  value of s 

such that cancels the factor 𝜋𝑠−1 and therefore the functional equation (1). Thus

1.21  ∄ 𝒔 ∈ 𝑪| 𝝅𝑺−𝟏 = 𝟎 → (𝟏) = 𝟎 

1.3 factor: sin(
𝝅 𝒔

𝟐
)   

Since the factor 








2
sin

s
 is a goniometric function of the form y=sin(x), it cancels the functional 

equation (1) when the argument of the sin equals to k , with kℤ. 

In this case we have that: 




k
s
=

2
 

 ks 2=  

1.31 𝒔 = 𝟐𝒌, with 𝒌 ∈ ℤ 
             Because the zeta function (0.1) has no zeros for (0.4), the formula (1.31) becomes: 

1.32 s = -2n, with n ∈ ℕ − {𝟎} 

Thus, when s = -2n, with n ∈ ℕ − {0}, the functional equation (1) equals 0. Therefore: 

1.33 𝜻(−𝟐𝒏) = 𝟎, with n ∈ ℕ − {𝟎} 
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The trivial zeros of the zeta function derive from the formula (1.33). 

 

1.4 factor: 𝚪(𝟏 − 𝒔) [2] 

 Since the gamma function has the property to be non- zero everywhere, there is no value of s such 

that cancels the factor  Γ(1 − 𝑠) and therefore the functional equation (1). Thus: 

1.41  ∄ s ∈ 𝑪| 𝚪(𝟏 − 𝒔) = 𝟎 → (𝟏) = 𝟎  

1.5 factor: 𝜻(𝟏 − 𝒔) 

[In the next paragraph we will concentrate upon the factor (1.5)]. 

2 Study of the factor 𝜻(𝟏 − 𝒔) 
In order to study this factor, we will think about the following question: 

“What happen when 𝜁(1 − 𝑠)=0, canceling the functional equation (1)?” 

We formulate two hypothesis: 

Hypothesis A: ”If 𝜻(𝟏 − 𝒔)=0, then 𝜻(𝟏 − 𝒔) ≠  𝜻(𝒔)". 

Hypothesis B: “If 𝜻(𝟏 − 𝒔)=0, then 𝜻(𝟏 − 𝒔) =  𝜻(𝒔)". 
From the functional equation we demonstrate that the hypothesis A is false, while the hypothesis B 

is true. 

Proof  p(1): 

Considered the functional equation (1), if 𝜁(1 − 𝑠)=0, for the zero-product property, the functional 

equation equals 0. From this, we work out the following relation: 

2.1 𝜻(𝟏 − 𝒔)=0  → 𝜻(𝒔) =0                                                                                                                                                                                                                                                                                                                 
In fact: 

If 𝜁(1 − 𝑠)=0  

𝜁(𝑠) = 2sπs−1sin (
π s

2
) Γ(1 − s)(1 − s) 

𝜁(𝑠) = 2sπs−1sin (
π s

2
) Γ(1 − s) 0 

𝜁(𝑠) =0 

Therefore, 𝜁(1 − 𝑠)=0  → 𝜁(𝑠) =0 (2.1) 

From the relation (2.1), the hypothesis (A) is false, whilst the hypothesis (B) is true: 

(A) 𝜁(1 − 𝑠)=0  → 𝜁(𝑠) =0 → 𝜁(1 − 𝑠) ≠ 𝜁(𝑠) → (𝑓𝑎𝑙𝑠𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑜𝑓 𝒑(𝟏)). 

(B) 𝜁(1 − 𝑠)=0  → 𝜁(𝑠) =0 → 𝜁(1 − 𝑠) = 𝜁(𝑠) → (𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 𝑝𝑟𝑜𝑜𝑓 𝒑(𝟏)). 

From the veracity of the hypothesis (B) we deduce a key condition satisfied when 𝜁(1 − 𝑠)=0 that is:                 

number2.2  𝜻(𝒔) =  𝜻(𝟏 − 𝒔) 

From the condition (2.2) we deduce an important consequence: 

“The trivial zeros of the zeta function don’t derive from the factor 𝜁(1 − 𝑠)”. 

Proof  p(2): 

Let s = -2n, with n ∈ ℕ − {0}, we substitute it in the functional equation (1): 

𝜁(−2𝑛) = 2−2𝑛𝜋−2𝑛−1 sin (
𝜋(−2𝑛)

2
) Γ(1 − (−2𝑛))𝜁(1 − (−2𝑛)) 
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              𝜁(−2𝑛) =  2−2𝑛𝜋−2𝑛−1 sin(−𝑛𝜋) Γ(1 + 2𝑛)𝜁(1 + 2𝑛) 

 Done the substitution and the related calculations, )(s  and )1( s− have become respectively 

)2( n− and )21( n+ . 

For the formula (1.33) )2( n− = 0, while + )21( n 0, because the zeta function of the form (0.1) 

has no zeros. 

 Therefore )21()2( nn +−  and thus ).1()( ss −   

Consequently the condition (2.2) is not satisfied and so the trivial zeros don’t derive from the factor 

(1.5), but only from (1.3). 

3 Study of the condition 𝜻(𝒔) = 𝜻(𝟏 − 𝒔) in the critical strip 
We consider the functional equation (1).  From what we have said in the previous paragraphs, we 

deduce that the non-trivial zeros of the zeta function don’t derive from the factors (1.1), (1.2), (1.4), 

because they don’t cancel the functional equation, and even from the factor (1.3), from which the 

sole trivial zeros derive. Thus they only derive from the factor (1.5) and satisfy the condition (2.2). 

Now, we suppose that 𝑧0 is a non-trivial zero with real part 𝜎 ≠
1

2
 and imaginary part 𝑖𝑡: 

𝑧0= 𝜎 + 𝑖𝑡 

We substitute 𝑧0 in the condition (2.2): 

𝜁(𝑧0) = 𝜁(1 − 𝑧0) 

From this, we obtain a second non-trivial zero 𝑧1, which is equal to 1-𝑧0: 

𝑧1 = 1 − 𝑧0 = (1 − 𝜎) − 𝑖𝑡 

We represent 𝑧0 and 𝑧1 in the complex plane: 

 

Picture 1 
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From the property (0.2) of the non-trivial zero we obtain 𝑧2 and 𝑧3: 

𝑧2 =  𝜎 − 𝑖𝑡 

𝑧3 =  (1 − 𝜎) + 𝑖𝑡 

We represent all the non-trivial zeros in the complex plane: 

 

Picture 2 

 
 

 

 

Since 𝑧0, 𝑧1, 𝑧2 and 𝑧3 are non-trivial zeros, we deduce that 𝜁(𝑧0) =  𝜁(𝑧1) = 𝜁(𝑧2) = 𝜁(𝑧3). 

Therefore every couple of non-trivial zeros satisfies the following relation: 

3.1 𝜻(𝒛𝒋) = 𝜻(𝒛𝒌) 

So, for the non-trivial zeros both relations (2.2) and (3.1) are satisfied and combining them together 

we obtain this final relation, which must be satisfied by all the couples of non-trivial zeros: 

3.2 {
𝜻(𝒛𝒌) = 𝜻(𝒔)       

𝜻(𝒛𝒋) = 𝜻(𝟏 − 𝒔)
 

We have shown that if 𝑧0 is a non-trivial zero with real part 𝜎 ≠
1

2
, there will be another three non-

trivial zeros (𝑧1, 𝑧2, 𝑧3) such that we will have the situation represented in the picture 2. 

Now, we consider all the possible couples of non-trivial zeros: 

{(𝑧0; 𝑧1), (𝑧0; 𝑧2), (𝑧0; 𝑧3), (𝑧1; 𝑧2), (𝑧1; 𝑧3), (𝑧2; 𝑧3)} 

From the relation (3.2) we deduce that only the couples (𝑧0; 𝑧1) and (𝑧2; 𝑧3) satisfy the relation. In 

fact, since in the relation (3.2) one zero is equal to 𝜁(𝑠) and the other is equal to 𝜁(1 − 𝑠), these 

zeros must be symmetric about the point P(
1

2
; 0). 
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Therefore the disposition of the non-trivial zeros, shown in the picture 2, is an absurd because the 

couples (𝑧0; 𝑧2), (𝑧0; 𝑧3), (𝑧1; 𝑧2) and (𝑧1; 𝑧3) don’t satisfy the relation (3.2); in fact they aren’t 

symmetric about the point P(
1

2
; 0), but about the real line, for (𝑧0; 𝑧2) and (𝑧1; 𝑧3),  and about the 

critical line x=
1

2
 for (𝑧0; 𝑧3) and (𝑧1; 𝑧2). 

The only case, for which the relation (3.2) and the property (0.2) of the non-trivial zeros are both 

true, is when 𝑧0 and 𝑧1 coincide respectively with 𝑧3 and 𝑧2. 

Thus we have: 

𝑧0 = 𝑧3  

𝜎 + 𝑖𝑡 = (1 − 𝜎) + 𝑖𝑡 

 𝜎 = 1 −  𝜎 

2 𝜎 = 1 

𝜎 =
1

2
 

              We represent the situation in the complex plane: 

 

Picture 3 

                                                                                   

 

From the result, represented in the picture 3, we substitute a complex number of the form 
1

2
+ 𝜎  in  

the condition (2.2) and we get: 

3.3  𝜻 (
𝟏

𝟐
+ 𝒊𝒕) = 𝜻 (

𝟏

𝟐
− 𝒊𝒕)  

This relation is true only if the complex number 
1

2
+ 𝜎 is a zero that is when 𝜁 (

1

2
+ 𝑖𝑡) = 0. 

Therefore the formula (3.3) is true if: 

3.4  𝜻 (
𝟏

𝟐
± 𝒊𝒕) = 𝟎 
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The formula (3.4) confirms the relation (3.2) and the  property (0.2) of the non-trivial zeros, stated 

in the introduction.  

All the zeros, known as the non-trivial zeros of the zeta function, derive from this formula. 

 

In conclusion, in the paragraph 3 we have shown that all the non-trivial zeros of the zeta function 

must be of the form  
1

2
+ 𝜎 so that the relation (3.2) and the property (0.2),both satisfied by all the 

non-trivial zeros,  are true and this confirms the veracity of the Riemann hypothesis. 
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