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Abstract We use the Kerr-Newman metric based on the general relativity to discuss the 

superluminal phenomenon of light at the black hole whether it is observable 

astronomically at infinity or the weakly gravitational place like on Earth. The black 

hole have the rotation term a and the charge term RQ as well as the Schwarzschild radius 

RS. The geodesic of light in the spacetime structure is ds2=0 and the equation for three 

velocity components (dr/dt, rd𝜃/dt, rsin𝜃d𝜙/dt) is obtained in the spherical coordinate 

(r, θ,  𝜙) with the coordinate time t. Then three cases of the velocity of light (dr/dt, 0, 

0), (0, rd𝜃/dt, 0), and (0, 0, rsin𝜃d𝜙/dt) are discussed in this research. According to our 

discussions, only the case of (dr/dt, 0, 0) gives the possibility of the occurrence of the 

superluminal phenomenon for r between RS and (𝑅𝑄
2 + 𝑎2sin2𝜃/2)/𝑅𝑆 at sin𝜃 >0 

when RS~RQ. The results reveal that the maximum speed of light and the range of the 

superluminal phenomenon are much related to the rotational term a and the charged 

term RQ. It is at least reasonable at two poles and in the equatorial plane when light 

propagates along the radial direction. Generally speaking, the superluminal phenomena 

for light can possibly occur in these cases that the radial velocity dr/dt is dominant and 

the other two velocity components are comparably small. When the relative velocity 

between the observer coordinate frame and the black hole is not large, the superluminal 

phenomenon is possibly observable at infinity or in a weakly gravitational frame like 

on Earth. 

Keywords: Superluminal phenomenon, black hole, Kerr-Newman metric, phase diagram of Quantum 

Chromodynamics 

I. Introduction 

The so called superluminal phenomenon [1] is an observation from a reference frame 

that the speed of particle exceeds this maximum c. It is also called the Faster-than-light 

(FTL) phenomenon and some laboratory experiment [2] has been reported and some 

astronomical observations [1,3-6] about this phenomenon have been revealed from the 

relativistically massive sources near supermassive bodies such as the black hole. 

Traditionally, the speed of light is limited in the special relativity with a maximal value 

of c in free space. As we know, the free space is the flat spacetime structure and this 

maximal speed of light is a well certified phenomenon in the special relativity. In this 

theory, such as an electron in the synchrotron accelerator always needs a lot of energy 

to reach its speed very close to c but not exceeding c. It is the relativistic effect that 

exists the mass-energy equivalence principle and the equivalent mass of the electron 
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depends on its speed. Exceeding the speed of light seems not to be able to observe 

macroscopically on Earth. Nowadays, it continuously attracts some scientists to 

investigate this FTL phenomenon. When some report reveals this phenomenon, one 

always wants to explain it by the present theorem or try to break some concept such as 

the limitation of the speed of light to fit the phenomenon.  

Gravitational time delay is another attracted astronomically phenomenon that the 

speed of light would slow down when light passes through a giant star [7-11]. This 

reveals that the observation of the light speed is affected by the gravity and the 

measured speed of light is not constant for an observer in a reference frame. Because 

the special relativity is based on the Minkowski metric describing a flat spacetime 

structure, it is not suitable to explain some astronomical phenomena. Gravitational time 

delay is a well-known fact predicted by general relativity, and the place nearby the 

supermassive star with strong gravity is good for observation. This phenomenon 

motivates us to think about a question whether it is possible on earth to observe the 

speed of light exceeding c near the supermassive bodies such as the black hole. It is the 

astronomical phenomenon and some astronomical observations show possibilities to 

investigate this kind of superluminal phenomenon for massive particles [1,3-6]. 

In this research, we study this observable phenomenon for light based on the general 

relativity with the Kerr-Newman metric [12-14] where the constant speed of light exists 

in a local frame with the proper time. Our discussions focus on the black hole and gives 

some special results for the possible occurrence of this superluminal phenomenon of 

light. 

II. The Kerr-Newman metric and the speed of light 

When we discuss the geodesic of light at the black hole, an appropriate choice is 

using the Kerr-Newman metric [12-14] because it considers the angular momentum J 

and charges Q of a black hole simultaneously. The rotation of a black hole inherits from 

the previous star and it may be charged because the black hole absorbs charged plasma 

from the high-temperature accretion clouds or neighboring stars. The expression of the 

Kerr-Newman metric in the spherical coordinate (r, 𝜃, 𝜙) is  

      d𝑠2 = −𝑐2d𝜏2

= (
d𝑟2

Δ
+ d𝜃2) 𝜌2 − (𝑐d𝑡 − 𝑎sin2𝜃d𝜙)2

Δ

𝜌2

+ ((𝑟2 + 𝑎2)d𝜙 − 𝑎𝑐d𝑡)
2 sin2𝜃

𝜌2
,                                                            (1) 

where ds is the invariant interval, 𝜏 is the proper time, t is the coordinate time, a=J/Mc 

with mass M of the black hole is the rotational term, and  

                                                 𝜌2 = 𝑟2 + 𝑎2cos2𝜃.                                                      (2) 
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                                                  Δ = 𝑟2 − 𝑟𝑅𝑆 + 𝑎2 + 𝑅𝑄
2 .                   (3)  

The Schwarzschild radius is 𝑅𝑆 = 2𝐺𝑀/𝑐2 and G is the gravitational constant. 

𝑅𝑄
2 =KQ2G/c4 is the term related to the charge Q and K is the Coulomb’s constant. In 

addition, the coordinate time is the time read by the clock stationed at infinity where 

the proper time and coordinate time becomes identical [15]. The geodesic of light is 

ds2=0, then through deduction we have the velocity of light obeying the following 

equation  

                
𝜌4

Δ(Δ−𝑎2sin2𝜃)
(

d𝑟

𝑑𝑡
)

2

+
𝜌4  

𝑟2(Δ−𝑎2sin2𝜃)
(𝑟

d𝜃

d𝑡
)

2

 

                           −
(Δ𝑎2sin2𝜃 − (𝑟2 + 𝑎2)2)  

𝑟2(Δ−𝑎2sin𝜃)
(𝑟sin𝜃

d𝜙

𝑑𝑡
)

2

                   

−
2𝑎𝑐(−Δ + (𝑟2 + 𝑎2))sin𝜃  

𝑟(Δ−𝑎2sin2𝜃)
(𝑟sin𝜃

d𝜙

𝑑𝑡
) = 𝑐2.                                (4) 

In Eq. (4), (
d𝑟

d𝑡
), (𝑟

d𝜃

d𝑡
), and (𝑟sin𝜃

d𝜙

𝑑𝑡
) are the three velocity components of light in 

the spherical coordinate. It is also the geodesic of light in space. This way to obtain the 

velocity of light from ds2=0 has been used to get the velocity of light in the 

Schwarzschild metric [16-19]. It reveals that the velocity of light at the black hole is 

much different from the Minkowski spacetime structure, and the form in Eq. (4) is much 

complicated and dependent on the spherical coordinate, the mass, the angular 

momentum as well as the charge of a black hole. In the following, we discuss the 

possibility of the superluminal phenomenon for each velocity component individually.  

Because we discuss the rotating black hole, we check the gravitational dragging [18] 

or the frame-dragging effect [16] to make sure the reasonableness of our results. The 

black hole has the angular velocity ω. We consider the instantaneously local inertial 

system rotating with angular velocity ω and tangential velocity v respect to the black 

hole. Then a light beam in the equatorial plane (θ=π/2) propagates in the radial direction 

toward the center of the Kerr-Newman black hole. Two persons at different inertial 

frame observe the trajectories of light. One observer A is in this instantaneously 

dragging frame and the other observer B is in the non-rotating or very weak dragging 

frame far away from the black hole. It is alike a situation that a man, the observer A, 

stays on a transparent train with a velocity v moving toward the right, and another man, 

the observer B, stand at rest on the platform. From the viewpoint of the observer B, a 

light beam perpendicular to the movement of the train passes through it directly as the 

light trajectory L1 shown in Fig. 1. However, due to the dragging-frame effect, the 

observer A will see the same light beam propagating along the light trajectory L2. It 

means that the observer on earth has the same viewpoint as that of the observer B when 
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light propagates in the equatorial plane from the place far away the Kerr-Newman black 

hole along the radial direction to its center. The dragging-frame effect can be ignored 

in this situation. It is also true when light propagates toward two poles. 

 
Figure 1. The observations of the light trajectory from different inertial frame. The rotating inertial frame 

has the tangential velocity v with respect to the Kerr-Newman black hole as the transparent train. An 

observer stays with the train and the other one is at rest on the platform. A light beam observed by the 

observer on the platform is perpendicular to the movement of the train as the light trajectory L1. The 

same light beam observed by the observer moving with the train is the light trajectory L2. 

Before discussing, there is a basic requirement that the time is real at any reference 

frame. When we consider the geodesic along the radial direction without including the 

d𝜙  term, then it requires the dt2 term in Eq. (1) having 

                               𝜌2 > 0,                             (5) 

                               (Δ − 𝑎2sin2𝜃) > 0.                                                   (6) 

From Eq. (6), it can be expanded as 

                         𝑟2 − 𝑟𝑅𝑆 + 𝑅𝑄
2 + 𝑎2cos2𝜃 > 0.                (7) 

For any real r, Eq. (7) further requires the condition at r=RS/2  

                          𝑅𝑆
2 ≤ 4(𝑎2cos2𝜃 + 𝑅𝑄

2).                     (8) 

It is the condition for the black hole at r=RS/2 but at other place r>0 the condition is 

different. Such as at r=RS, it only requires  

                                                          𝑅𝑄
2 + 𝑎2cos2𝜃 > 0,                         (9) 

and r>RS Eq. (7) automatically establishes till to the place far away from the black hole. 

Although the event horizon depends on 𝜃, it is convenient to discuss the phenomenon 

using RS as a reference position and the event horizon approximates to a spherical 

surface while a<<RS and RQ<<RS. Because the conditions of Eq. (8) holds for all 𝜃, 

then it gives the lowest requirement 

                          𝑅𝑆
2 ≤ 4𝑅𝑄

2                                                               (10) 
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at r=RS/2 and 𝜃= 𝜋/2, and Eq. (9) gives 

                          𝑅𝑄
2 > 0,                                  (11) 

at r=RS. This is just the condition for the charged black hole. The other requirement for 

the dr2 term in Eq. (1) is 

                                                                       Δ > 0.                             (12) 

It also gives the other condition at r=RS/2 and θ=π/2 

                                                             𝑅𝑆
2 ≤ 4(𝑎2 + 𝑅𝑄

2).                        (13) 

From Eqs. (10) and (13), the minimum rotated condition can be obtained 

                                                               0 ≤ |𝑎|.                                                                    (14) 

However, at r=RS similar to Eq. (10), the requirement is 

                            𝑅𝑄
2 + 𝑎2 > 0,                          (15) 

which automatically establishes. The other factor worth mentioning is 𝜌2 when it is at 

the denominator. It arises a mathematical singularity at r=0 and 𝜃= 𝜋/2. If the black 

hole has finite-size nucleus, this singularity will automatically remove because J=0, 

Q=0 as well as zero gravity at r=0. According to Eqs. (10) and (14), it means that even 

the massive star is very heavy, the formation of a black hole exists some basic 

conditions.  

III. The Judgement of The Superluminal Requirements From The Velocity 

Component dr/dt of Light 

According to Eq. (4), when we discuss the speed of light in the radial direction, t the 

other velocity components are zero. This choice is the convenient way to discuss the 

superluminal conditions. The rule used here is also applied to discuss other velocity 

components individually. We first focus on the dr/dt velocity component to check 

whether the superluminal phenomenon of light exists or not. When an observer rests in 

a reference frame such as on Earth or the place with very weak gravitation, Eq. (1) gives 

the time relationship between the proper time and the coordinate time 

                                                  d𝜏2 =
(Δ−𝑎2sin2𝜃)

𝜌2
d𝑡2.                                          (16)  

According to the equivalence principle in general relativity, the time dilation requires 

the coefficient of the dt2 less than one which gives the condition  

                         𝑟 > 𝑅𝑄
2 /𝑅𝑆.                          (17) 

The range for this requirement also exists between 0 and RS, and considering Eq. (11) 

at r=RS it requires 
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                                                              𝑅𝑆
2 > 𝑅𝑄

2 > 0.                      (18) 

When r>RS, the time dilation automatically establishes because Eq. (18) gives the 

maximum of RQ less than RS. However, it seems that Eq. (17) is not well-defined for 

the region 𝑅𝑄
2/𝑅𝑆 >r≥0. It is the reason that we adopt a singularity at the center of the 

black hole where all mass and charges gather there. When we use the model of a finite-

size nucleus in the black hole, the Coulomb’s repulsive force as well as the strong 

interaction make all particles not shrink to a singularity and the problem can be solved 

by establishing the charge distribution between 0 and RS. Then RQ is a function of r and 

𝜃 related to the totally enclosed charges at (r,𝜃), that is, 

                                                             𝑅𝑄 = 𝑅𝑄(𝑟, 𝜃).                       (19) 

Eqs. (8) and (9) support this assumption. It also means that a is a function of (r, 𝜃) 

between 0 and RS which might be due to the distribution of its mass M. From the 

viewpoint of the rotational movement, Eq. (19) is reasonable for a rotationally charged 

black hole. It means that the charge distributions in Eq. (19) have to ensure Eq. (17) 

between 0 and RS correctly and the time dilation is still correct from r≥0. Using r=𝛼RS 

with 0<𝛼<1, then Eq. (7) becomes 

                                                (𝑅𝑄
2 + 𝑎2cos2𝜃)/(𝛼 − 𝛼2) > 𝑅𝑆

2.                 (20) 

This inequality holds for all 𝜃. For very small a, combing Eq. (17) with Eq. (20) gives 

                                               𝛼 > 𝑅𝑄
2 /𝑅𝑆

2 > (𝛼 − 𝛼2).                     (21) 

By Eq. (21), it reveals the minimum and maximum of the charge distribution varying 

with the radial distance r form r=0 to r=Rs as shown in Fig. 2 (a) and (b).   

If the superluminal phenomenon occurs, it means (
d𝑟

d𝑡
) > 𝑐. Then according to the 

dr/dt term in Eq. (4), it gives the requirement 

                                                   
Δ(Δ−𝑎2sin2𝜃)

𝜌4
> 1.                                                     (22) 

Because 𝜌4 > 0, it becomes 

                                                       (Δ2 − Δ𝑎2sin2𝜃 − 𝜌4) > 0.                   (23) 

Substituting Eqs (2) and (3) into Eq. (23) gives the following relation  

0 < 2𝑟2(−𝑟𝑅𝑆 + 𝑅𝑄
2 ) + 𝑟2𝑎2sin2𝜃 + 𝑟2𝑅𝑆

2 − 2𝑟𝑅𝑆𝑅𝑄
2 + 𝑅𝑄

4  

                          +(𝑎2 + 𝑎2cos2𝜃)(−𝑟𝑅𝑆 + 𝑅𝑄
2) + 𝑎4cos2𝜃sin2𝜃.             (24) 

Further rearranging Eq. (24), then we have 

(−𝑟𝑅𝑆 + 𝑅𝑄
2 + 𝑎2sin2𝜃/2)(2𝑟2 − 𝑟𝑅𝑆 + 𝑅𝑄

2 + 𝑎2/2 + 3𝑎2cos2𝜃/2) 

                                                                    > 𝑎4sin4𝜃/4,                                                      (25) 
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or 

(𝑟𝑅𝑆 − 𝑅𝑄
2 − 𝑎2sin2𝜃/2)(2𝑟2 − 𝑟𝑅𝑆 + 𝑅𝑄

2 + 𝑎2/2 + 3𝑎2cos2𝜃/2) 

                                                                   < −𝑎4sin4𝜃/4.                   (25′) 

This inequality allows us to discuss the range for occurring superluminal phenomenon. 

First, the case at 𝜃=0 or 𝜋 is discussed, then Eq. (23) becomes  

                   (−𝑟𝑅𝑆 + 𝑅𝑄
2 )(2𝑟2 − 𝑟𝑅𝑆 + 2𝑎2 + 𝑅𝑄

2 ) > 0.           (26) 

The solutions of Eq. (26) are 

                                                           −𝑟𝑅𝑆 + 𝑅𝑄
2 > 0 and                       (27a) 

                                             2𝑟2 − 𝑟𝑅𝑆 + 2𝑎2 + 𝑅𝑄
2 > 0,                  (27b) 

or 

                                                −𝑟𝑅𝑆 + 𝑅𝑄
2 < 0 and                       (28a) 

                                                         2𝑟2 − 𝑟𝑅𝑆 + 2𝑎2 + 𝑅𝑄
2 < 0.                (28b) 

From Eqs. (27a) and (27b), it gives the ranges of r that  

                                                              𝑅𝑄
2 /𝑅𝑆 > 𝑟,                        (29a) 

                                     𝑟 <
𝑅𝑆 − [𝑅𝑆

2 − 8(2𝑎2 + 𝑅𝑄
2)]1 2⁄

4
,                                   (29𝑏) 

                                       𝑟 >
𝑅𝑆 + [𝑅𝑆

2 − 8(2𝑎2 + 𝑅𝑄
2 )]1 2⁄

4
,                                 (29c)  

accompanying with the condition due to the real r 

                                                      𝑅𝑆
2 ≥ 8(𝑅𝑄

2 + 2𝑎2).                                                          (30) 

However, Eq. (29a) doesn’t satisfy the requirement in Eq. (17), and Eq. (30) obviously 

violates Eq. (13) at r=RS/2 so we have to look for the other solution. Then Eqs. (28a) 

and (28b) give the other ranges for the superluminal phenomenon 

                                                        𝑅𝑄
2/𝑅𝑆 < 𝑟,                          (31a) 

            
𝑅𝑆 − [𝑅𝑆

2 − 8(2𝑎2 + 𝑅𝑄
2 )]1 2⁄

4
< 𝑟 <

𝑅𝑆 + [𝑅𝑆
2 − 8(2𝑎2 + 𝑅𝑄

2)]
1 2⁄

4
,         (31b) 

with the same condition as Eq.(30). Both solutions for r cannot give satisfied ranges. 

To sum up, the discussions from Eqs. (22) to (31) are for the requirements and solutions 

of vr
2, not vr,.  

Then we discuss this phenomenon directly from the expression of the only velocity 

component (dr/dt) term obtaining from Eq. (4). This term is 
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                              𝑣𝑟,𝑝𝑜𝑙𝑒 =
d𝑟

d𝑡
|

𝜃=0,𝜋
= ±𝑐

𝑟2 − 𝑟𝑅𝑆 + 𝑎2 + 𝑅𝑄
2

𝑟2 + 𝑎2
.                      (32)   

There are two expressions for (dr/dt), ‘+’ means light leaving away from the center of 

the black hole, and ‘-‘ means light propagating toward the center of the black hole. So 

the superluminal solution leaving away the center satisfies the condition 𝑅𝑄
2 /𝑅𝑆 > 𝑟.                     

However, it still violates the requirement in Eq. (17) and Eq. (18) gives r<RS in Eq (32). 

It means that the superluminal phenomenon doesn’t happen when light leaves away 

from the center of the black hole at 𝜃=0 or 𝜋. The other superluminal solution toward 

the center has the same r condition that the superluminal phenomenon also doesn’t 

happen when light propagates towards the center of the black hole at 𝜃=0 or 𝜋.  

 
(a)                                   (b) 

Figure 2. (a) The minimal distribution of RQ and (b) the maximal distribution of RQ varying with the 

radial distance r for very small a. The color bar is in unit of RS. 

Next, Eq. (24) is discussed for any 𝜃 situations. A tricky way to solve Eq. (24) is to 

define 

 𝑎4sin4𝜃/4 = (𝛼𝑎2)(𝛽𝑎2).                   (33) 

Then Eq. (24) can be directly divided into two terms 

                                          (−𝑟𝑅𝑆 + 𝑅𝑄
2 + 𝑎2sin2𝜃/2) ≥ 𝛼𝑎2,                   (34) 

                            (2𝑟2 − 𝑟𝑅𝑆 + 𝑅𝑄
2 + 𝑎2/2 + 3𝑎2cos2𝜃/2) ≥ 𝛽𝑎2.             (35) 

Eq. (34) gives the range for the superluminal phenomenon 

                                               𝑟 < [𝑅𝑄
2 + 𝑎2(sin2𝜃/2 − 𝛼)]/𝑅𝑆.                  (36) 

When Eq. (36) combines with Eq. (17), the range of r for the superluminal phenomenon 

is given 

                                   𝑅𝑄
2 /𝑅𝑆 ≤ 𝑟 < [𝑅𝑄

2 + 𝑎2(sin2𝜃/2 − 𝛼)]/𝑅𝑆.               (37) 

It means that the superluminal phenomenon possibly occurs when this condition in Eq. 

(37) satisfies. Then Eq. (37) further gives 
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                           sin2𝜃/2 − 𝛼 > 0,                        (38) 

or                      

sin2𝜃/2 > 𝛼 > 0.                        (38’) 

In Eq. (38’), the first condition of α is defined. In the meanwhile, the first condition of 

β is given as 

                           𝛽 > sin2𝜃/2.                           (39) 

In Eq (35), it gives the second condition of β between RQ, a, and RS for the superluminal 

phenomenon 

                                [8(𝑎2/2 + 3𝑎2cos2𝜃/2 + 𝑅𝑄
2) − 𝑅𝑆

2]/8 > 𝛽𝑎2.             (40) 

In the meanwhile, it also gives the second condition of 𝛼 using Eqs. (33) and (39), that 

is,  

2𝑎4sin4𝜃/[8(𝑎2/2 + 3𝑎2cos2𝜃/2 + 𝑅𝑄
2 ) − 𝑅𝑆

2] < 𝛼𝑎2.       (41) 

Combining Eqs. (39) with (40), and (38’) with (41), they give the limited conditions for 

𝛼 and 𝛽 respectively 

          [8(𝑎2/2 + 3𝑎2cos2𝜃/2 + 𝑅𝑄
2 ) − 𝑅𝑆

2]/8𝑎2 > 𝛽 > sin2𝜃/2,        (42)  

and 

          sin2𝜃/2 > 𝛼 >2𝑎2sin4𝜃/[8(𝑎2/2 + 3𝑎2cos2𝜃/2 + 𝑅𝑄
2)  − 𝑅𝑆

2].    (43) 

Furthermore, comparing the upper limitation with the lower limitation in Eq. (42) gives 

another condition for the other requirement of 𝑅𝑄
2  

                       8(2𝑎2cos2𝜃 + 𝑅𝑄
2 ) > 𝑅𝑆

2.                  (44) 

This requirement is to consider the superluminal phenomenon. After discussing above 

conditions, the upper limitation of r can be obtained. Considering RS~RQ, Eq. (37) 

reveals that the superluminal phenomena can be observed in the range 

                                           𝑅𝑆 < 𝑟 < 𝑅𝑆 + 𝑎2sin2𝜃/2𝑅𝑆,                  (45) 

which is function of 𝜃 . An example of the region occurring the superluminal 

phenomenon for a black hole with a=2RS and RQ=0.999RS is given in Fig. 3(a), where 

the deep blue region is a spherical region with a radius of RS and the yellow region 

means the region for the occurrence of the superluminal phenomena. It means that the 

region of r≥RS is discussed, and RS is the boundary because it exists the case of which 

the event horizon is close to a spherical surface when both a<<RS and RQ<<RS. The 

furthest distance from the center of the black hole in Fig. 3(a) is about 3RS at the equator 

of 𝜃=𝜋/2. All the rotating axes in Figs. 3(a) to 3(d) are parallel to the y-axis. According 

to Eq. (4) in the case of (dr/dt, 0, 0), the speed distribution of light is shown in Fig. 3(b) 
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where the unit of the color bar is c. The velocity distribution matches the region of the 

superluminal occurrence in Fig. 3(a) and the maximum is about 2.20c at r=RS and 

𝜃=𝜋/2. When a is increased to 8RS and RQ is held at 0.999RS, the speed distribution of 

light is shown in Fig. 3(c). The maximum velocity of light is about 8c at r=RS and 

𝜃=𝜋/2, and the furthest distance of the superluminal phenomenon is 33RS from the 

center of the black hole in Fig. 3(c). For the case of a=20RS and RQ=0.999RS, the speed 

distribution of light is shown in Fig. 3(d). The maximum speed of light is about 20c at 

r=RS and 𝜃=𝜋/2, and the furthest distance of the superluminal phenomenon is 201RS 

from the center of the black hole in Fig. 3(d). From Figs. 3(c) to 3(d), the occurrences 

of the high speed of light is centered more and more to the region near 𝜃=𝜋/2. Our 

discussion is using the Kerr-Newman metric that is a spacetime solution in general 

relativity, so considering light bending near the high-speed rotational supermassive 

black holes, it possibly explains some astronomical observations about the 

superluminal phenomena from the relativistically massive jet [1,3-6]. This result can be 

also extended to some supermassive stars with very high density, large a, and RQ. 

(a)                                     (b) 

(c)                               (d) 
Figure 3. (a) The superluminal region is denoted by the yellow color. The center of the picture is a 

spherical region with a radius of RS (deep blue color). In this case, a = 2RS and RQ=0.999RS. The 

maximum distance for the superluminal phenomenon from the center of the black hole is 3RS at 𝜃=𝜋/2. 

(b) The speed distribution of light at a=2RS and RQ = 0.999RS. (c) The speed distribution of light at a=8RS 

and RQ=0.999RS. The maximum distance of the superluminal phenomenon is 33RS from the center of the 

black hole in this case. (d) The speed distribution at a=20RS and RQ=0.999RS. The maximum distance of 

the superluminal phenomenon is 201RS from the center of the black hole in this case. All these cases the 

rotational axes are parallel to the y-axis and the color bars show in unit of c.                           
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IV. The Judgement of The Superluminal Requirements For The Velocity 

Component r(d𝜽/dt) of Light  

The second study case is the velocity component rd𝜃/dt term in Eq. (4). All the other 

velocity components are zero. This term is easy to check whether the superluminal 

phenomenon exists or not. Assuming that it happens, then 

                                                    
𝑟2(Δ−𝑎2sin2𝜃)

𝜌4
> 1.                                                  (46) 

Expanding above equation, we have 

                                𝑟2(−𝑟𝑅𝑆 + 𝑅𝑄
2) − 𝑟2𝑎2cos2𝜃 − 𝑎4cos4𝜃 > 0.              (47) 

It can be further rearranged as 

                                 (−𝑟𝑅𝑆 + 𝑅𝑄
2 − 𝑎2cos2𝜃)𝑟2 > 𝑎4cos4𝜃.                (48) 

Similar to the discussions of the velocity component dr/dt, a tricky way is to assume  

                           𝛼2𝛽 = cos4𝜃.                           (49) 

Then Eq. (48) gives the requirements of r 

                                             𝑟2 > 𝛼2𝑎2,                                 (50) 

                                                   −𝑟𝑅𝑆 + 𝑅𝑄
2 − 𝑎2cos2𝜃 > 𝛽𝑎2.                  (51) 

Combining Eqs. (51) with (17), and considering the condition of Eq. (8), the range of r 

for the occurrence of the superluminal phenomenon is given by 

                             𝑅𝑄
2 /𝑅𝑆 < 𝑟 < (𝑅𝑄

2 − 𝑎2cos2𝜃 − 𝛽𝑎2)/𝑅𝑆.              (52) 

Because 𝛽 ≥ 0, this requirement doesn’t exsti. Eq. (52) means that in this case of the 

velocity component rd 𝜃 /dt the superluminal phenomenon doesn’t exist and isn’t 

observable astronomically on Earth. 

V. The  Judgement of The Superluminal Requirements For The Velocity 

Component rsin𝜽(d𝜙/dt) of Light 

The velocity component rsin 𝜃 (d𝜙 /dt) term is the third case for discussing the 

possibility of the superluminal phenomenon. All the other velocity components are zero. 

From Eq. (4), the velocity equation for this case is 

−
(Δ𝑎2sin2𝜃 − (𝑟2 + 𝑎2)2)  

𝑟2(Δ−𝑎2sin𝜃)
(𝑟sin𝜃

d𝜙

𝑑𝑡
)

2

 

             −
2𝑎𝑐(−Δ + (𝑟2 + 𝑎2))sin𝜃  

𝑟(Δ−𝑎2sin2𝜃)
(𝑟sin𝜃

d𝜙

𝑑𝑡
) = 𝑐2.                                       (53) 

Next, we replace rsin𝜃(d𝜙/dt) with hc, where h is a real value. Then the equation 

becomes  
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     −
(Δ𝑎2sin2𝜃 − (𝑟2 + 𝑎2)2) 

𝑟2(Δ−𝑎2sin2𝜃)
ℎ2  −

2𝑎(−Δ + (𝑟2 + 𝑎2))sin𝜃  

𝑟(Δ−𝑎2sin2𝜃)
ℎ = 1.                (54) 

If the superluminal phenomenon happens, it means h>1. Eq. (54) is the second-order 

equation in the general form 𝐴ℎ2 + 𝐵ℎ + 𝐶 = 0. It requires 0≤ 𝐵2 − 4𝐴𝐶 to make 

sure the real solutions existing. According to this, we have 

0 ≤
{2𝑎[−Δ + (𝑟2 + 𝑎2)]sin𝜃}2 − 4[Δ𝑎2sin2𝜃 − (𝑟2 + 𝑎2)2](Δ − 𝑎2sin2𝜃)  

𝑟2(Δ−𝑎2sin2𝜃)2
.  

                                                                                                                                                   (55) 

After rearrangement, it gives 

                           0 ≤
4(r2 + 𝑎2 − 𝑟𝑅𝑆 + 𝑅𝑄

2)(𝑟2 + 𝑎2cos2𝜃)2  

𝑟2(Δ−𝑎2sin2𝜃)2
,                          (56) 

or          

                                                  0 ≤
4Δ𝜌4  

𝑟2(Δ−𝑎2sin2𝜃)2
.                                                      (56′) 

Because 𝜌4 ≥0 as well as the denominator 𝑟2(Δ−𝑎2sin2𝜃)2 ≥ 0, it requires Δ ≥0 

and r>0. The former condition has been shown in Eq. (8). Eq. (56’) makes sure that Eq. 

(54) has real solutions and then we can further discuss whether the superluminal 

phenomenon exists or not in this case.                        

In the following, we solve Eq. (54) directly to obtain two solutions of h, that is,  

ℎ± = 

−
2𝑎(−Δ + (𝑟2 + 𝑎2))sin𝜃  

𝑟(Δ−𝑎2sin2𝜃)
±

2(𝑟2 + 𝑎2 − 𝑟𝑅𝑆 + 𝑅𝑄
2)1/2(𝑟2 + 𝑎2cos2𝜃)  

𝑟(Δ − 𝑎2sin2𝜃)
 

2
(Δ𝑎2sin2𝜃 − (𝑟2 + 𝑎2)2)  

𝑟2(Δ−𝑎2sin2𝜃)

 

=
−𝑟𝑎(−Δ + (𝑟2 + 𝑎2))sin𝜃 ± 𝑟 (𝑟2 + 𝑎2 − 𝑟𝑅𝑆 + 𝑅𝑄

2 )1/2(𝑟2 + 𝑎2cos2𝜃)

(Δ𝑎2sin2𝜃 − (𝑟2 + 𝑎2)2)

=
𝑟𝑎(𝑟𝑅𝑆 − 𝑅𝑄

2 )sin𝜃 ± 𝑟 (𝑟2 + 𝑎2 − 𝑟𝑅𝑆 + 𝑅𝑄
2)1/2(𝑟2 + 𝑎2𝑐𝑜𝑠2𝜃)

(𝑟2 + 𝑎2)(𝑟2 + 𝑎2cos2𝜃) + (𝑟𝑅𝑆 − 𝑅𝑄
2)𝑎2𝑠𝑖𝑛2𝜃

. (57) 

It can be further expressed as 

ℎ± = ±
𝑟(𝑟2 + 𝑎2 − 𝑟𝑅𝑆 + 𝑅𝑄

2 )
1 2⁄

𝑟2 + 𝑎2
        

       +𝑟(𝑟𝑅𝑆 − 𝑅𝑄
2 )𝑎 sin 𝜃

1 ∓ (𝑟2 + 𝑎2 − 𝑟𝑅𝑆 + 𝑅𝑄
2)

1 2⁄
𝑎 sin 𝜃 (𝑟2 + 𝑎2)⁄

(𝑟2 + 𝑎2)(𝑟2 + 𝑎2cos2𝜃) + (𝑟𝑅𝑆 − 𝑅𝑄
2 )𝑎2sin2𝜃

.     (58) 
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The other two expressions of ℎ± are 

ℎ± =
𝑟

𝑎 sin 𝜃
 

+
𝑟(𝑟2 + 𝑎2)(𝑟2 + 𝑎2cos2𝜃)

𝑎 sin 𝜃

±(𝑟2 + 𝑎2 − 𝑟𝑅𝑆 + 𝑅𝑄
2 )

1 2⁄
𝑎 sin 𝜃 (𝑟2 + 𝑎2)⁄ − 1

(𝑟2 + 𝑎2)(𝑟2 + 𝑎2cos2𝜃) + (𝑟𝑅𝑆 − 𝑅𝑄
2 )𝑎2sin2𝜃

.  

                                                                                                                                                     (59) 

Then the condition is whether h can be greater than one or not. Eq. (59) reveals a 

possible situation for 

                                                                  
𝑟

𝑎 sin 𝜃
> 1.                                                       (60) 

However, we have to discuss it with the second long term in the right-hand side and 

this velocity component at sin𝜃=0 in Eq. (59) is the same as the velocity component 

r(dθ/dt). It is not easy to deal with so we use the expression in Eq. (58) to judge the 

occurrence of the superluminal phenomenon. When considering the solution for h+ >1, 

the requirement from Eq. (58) is 

𝑟2(𝑟2 + 𝑎2cos2𝜃)2(𝑟2 + 𝑎2 − 𝑟𝑅𝑆 + 𝑅𝑄
2) 

  −[(𝑟2 + 𝑎2)(𝑟2 + 𝑎2cos2𝜃) − (−𝑟𝑅𝑆 + 𝑅𝑄
2 )𝑎sin𝜃(𝑟 − 𝑎sin𝜃)]2 > 0.            (61)  

When sinθ∼0, this requirement becomes  

                             −𝑎2(𝑟2 + 𝑎2)3 + (−𝑟𝑅𝑆 + 𝑅𝑄
2 )𝑟2(𝑟2 + 𝑎2)2 > 0.                     (62) 

However, both terms in the left-hand side are negative when r>RS, so the superluminal 

phenomenon doesn’t occur at r>RS when sinθ∼0. Next, we discuss all other cases of 

sin 𝜃. Through expanding and rearranging Eq. (61), it gives the requirement 

sin𝜃 >
1

𝑎(𝑟 − 𝑎sin𝜃)
[
𝑎2(𝑟2 + 𝑎2cos2𝜃)

2(𝑟𝑅𝑆 − 𝑅𝑄
2 )

+
𝑟2(𝑟2+𝑎2cos2𝜃)

2(𝑟2 + 𝑎2)

+
(𝑟𝑅𝑆 − 𝑅𝑄

2)𝑎2sin2𝜃(𝑟 − 𝑎sin𝜃)2

2(𝑟2 + 𝑎2)(𝑟2 + 𝑎2cos2𝜃)
].                                                    (63) 

The three terms in the right-hand side of Eq. (63) are all positive. According to the 

geometric inequality in which the first term is equal to the third term, Eq. (63) can 

further simplify to the strict condition 

sin𝜃 >
1

𝑎(𝑟 − 𝑎sin𝜃)
[
𝑎2(𝑟2 + 𝑎2cos2𝜃)

2(𝑟𝑅𝑆 − 𝑅𝑄
2 )

+
𝑟2(𝑟2+𝑎2cos2𝜃)

2(𝑟2 + 𝑎2)

+
(𝑟𝑅𝑆 − 𝑅𝑄

2 )𝑎2sin2𝜃(𝑟 − 𝑎sin𝜃)2

2(𝑟2 + 𝑎2)(𝑟2 + 𝑎2cos2𝜃)
] 
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                          ≥
1

𝑎(𝑟 − 𝑎sin𝜃)
[
𝑎2sin𝜃(𝑟 − 𝑎sin𝜃)

(𝑟2 + 𝑎2)
1
2

+
𝑟2(𝑟2+𝑎2cos2𝜃)

2(𝑟2 + 𝑎2)
].         (64) 

It means the mostly possible place for the superluminal phenomenon in this case at 

sin𝜃 =1. It also requires r>asin𝜃. This requirement needs three terms in right-hand side 

to be small enough. When we look at the pre-factor in the right-hand side of Eq. (64), 

it gives the minimum value when 

                                                                 𝑎 =
𝑟

2 sin 𝜃
.                                                        (65) 

Using sin𝜃 =1 and combing the pre-factor, it gives the minimum 

                 
𝑎sin𝜃

(𝑟2 + 𝑎2)1/2
+

1

𝑎(𝑟 − 𝑎sin𝜃)

𝑟2(𝑟2+𝑎2cos2𝜃)

2(𝑟2 + 𝑎2)
 ≥

1

√5
+

8

5
> 1.          (66) 

It means that Eq. (66) doesn’t satisfy Eq. (63) because sinθ≤1 and the superluminal 

phenomenon doesn’t occur in this case of the velocity component rsin𝜃(d𝜙/dt) when 

r>0.  

VI. Discussion 

Above discussions show that only the case of the velocity of (dr/dt, 0, 0) for light can 

possibly occur the superluminal phenomenon at 𝜃>0. The maximum speed of light is 

much related to the rotational term a and the charged term RQ of a black hole. The 

results are at least reasonable at two poles and in the equatorial plane. The other two 

cases of the velocities of (0, rd𝜃/dt, 0) and (0, 0, rsin𝜃d𝜙/dt) for light don’t have the 

possibility of the superluminal phenomenon. However, light can have at least one 

velocity component in the vicinity of a black hole. Generally speaking, the superluminal 

phenomenon also possibly occur in these cases of (dr/dt, rd 𝜃 /dt, 0), (dr/dt, 0, 

rsin 𝜃 d 𝜙 /dt), or (dr/dt, rd 𝜃 /dt, rsin 𝜃 d 𝜙 /dt). In those cases, the radial velocity 

component is dominant for the occurrences of the superluminal phenomena.       

VII. Conclusion 

The superluminal phenomenon is an attracted research and this phenomenon can be 

discussed based on the general relativity with a given spacetime structure. In this 

research, the Kerr-Newman metric is chosen for describing the spacetime structure at 

the black hole and its vicinity. The Kerr-Newman metric considers both a and RQ terms 

that all kinds of the black hole at present knowledge are included. Because the black 

hole possesses strong gravity, it is a good astronomical example for studying the 

superluminal phenomenon. According to the Kerr-Newman metric, the geodesic as well 

as the velocity components of light can be established. In order to study this 

phenomenon, three velocity components are independently discussed, and they are 
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(dr/dt, 0, 0), (0, rd𝜃/dt, 0), and (0, 0, rsin𝜃d𝜙/dt). From our analysis, only the case of 

(dr/dt, 0, 0) has the possibility of the occurrence of the superluminal phenomenon 

between RS and [𝑅𝑄
2 + (𝑎2sin2𝜃)/2]/𝑅𝑆 at sin𝜃>0 when RS~RQ. The result reveals that 

the superluminal phenomenon can possibly happen outer the black hole from the 

observer at infinity or in a reference frame with a very weak gravity. The maximum 

speed of light and the range of the superluminal phenomenon are much related to the 

rotational term a and the charged term RQ of a black hole. The results are at least 

reasonable at two poles and in the equatorial plane when light propagates in the radial 

direction. Generally speaking, the superluminal phenomena for light can possibly occur 

in these cases that the radial velocity dr/dt is dominant and the other two velocity 

components are comparably small or zero. Furthermore, the superluminal phenomenon 

here just means the results of the measurements from an observer in a reference frame 

like on Earth. This conclusion can be also applied on some stars with very high density, 

large a, and big RQ. 
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