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ABSTRACT 
We are told that as expansion of the universe continues to accelerate, stars will 

eventually be ripped from galaxies, then planets will be ripped from their stars.  
Eventually the planets themselves will be torn apart by the force of expanding 
space-time and then even molecules and atoms.  When asked at what specific 
expansion rates these things will happen, no one has an answer. 

Galaxy models used to estimate the amount of dark matter required to explain 
observed rotation rates do not account for universal expansion in the calculations, 
as if expansion is not happening within galaxies at all.  The consensus is that 
expansion is very small, and is easily overcome by local forces.  This may be true on 
Earth, or in our solar system, but galaxies are very large, and orbits in galaxies 
take place in a realm of very small accelerations acting over very large distances.  
Within a galaxy the size of the Milky Way, outward drift due to expansion may 
exceed inward fall due to gravity, on a per second basis, by up to thirteen orders of 
magnitude. 

It is difficult to imagine how gravity overcomes these relatively large expansion  
rates and calls into question the correctness of ignoring universal expansion in 
galaxy models.  If ignoring expansion is correct, then does it mean that universal 
expansion does not actually happen within galaxies? And if not, why not?  Why do 
we see red shift in the light from distant galaxies, clearly a sign of an expanding 
universe, and yet see no evidence of expansion going on locally in the solar system 
or within our galaxy? 

If a method for calculating the orbital velocities of gravitationally bound objects 
including the effect of expansion (or contraction) of space-time could be developed, 
these questions will have definitive answers.  That is the object of this paper. 

SECTION 1.   The Galactic Gravitation Environment. 
A galaxy the size of the Milky Way is around 30,000 parsecs or greater in 

diameter and may have a mass of over 500 billion suns (including all types of 
matter).  Orbital velocities of over 250,000 meters per second are observed right out 
to the rim.  Amidst all these very large numbers, the accelerations due to gravity 
are actually very small.  At 9,000 parsecs from the center (where our sun would be) 
the acceleration is around 2.7e-10 meters per second.  At the rim, accelerations drop 
to 1.35e-10 meters per second.  Thus stars occupy very long lazy orbits taking 
hundreds of millions of years to complete. 

Given that we see stars at the rims of galaxies orbiting a 250,000 meters per 
second, we may expect with great confidence that an object released at the rim of 



the galaxy, at rest with respect to the galactic center, will fall slowly inward.  If 
however, we apply a Hubble expansion rate of 73.2 km/s/Mega parsec to the 15,000 
parsec radius at the rim, space-time at the rim will be expanding outward at around 
1,100 meters per second.  For an object to fall 1,100 meters at an acceleration of 
1.35e-10 meters per second would take over 500,000 years.  In that amount of time 
the object will have been carried 1.9 light years outward from its starting point.  It 
might seem there is no way gravity, even with dark matter, can compete with that 
rate of expansion, but galaxies work on vast time scales and half a million years is 
small fraction of star’s orbit. 

One might argue that stars have an intrinsic inward velocity toward the 
galactic center that negates expansion.  But after a quarter orbit, that velocity 
vector would be parallel to the orbital path and after a half orbit it would be 
directed away from the galactic center.  Unless the inward intrinsic velocity vector 
somehow rotates with the orbit, expansion would noticeably elongate gravitational 
orbits of stars within galaxies.  Then again, seeing a star in an elongated orbit 
would be no surprise at all. 

SECTION 2.   Circular Orbits. 
Given that we observe objects in stable orbits, and that universal expansion is 

well accepted, we may thus suppose that stable orbits are possible in expanding 
space-time.  Let’s begin with the simple case of a circular orbit and assume an 
object is in a stable gravitational orbit around a body of mass M at a radius R in an 
expanding or contracting space time.  By stable orbit, it is meant that the object has 
gone around many times and all transient effects have vanished.  The object follows 
the trace of the circle at the same radius and velocity over and over again. 

Next, in order to visualize what is happening with space-time as it expands or 
contracts, lets imagine a new sort of material, inventing it akin to the way dark 
matter was conjured up.   Unlike dark matter, which does not interact with light 
(other than through gravitational lensing) but does interact with gravity, this new 
material will interact with light but will not interact with gravity.  Let’s call it “light 
matter.”  Light matter would be a perfect “dye marker” to paint onto the fabric of 
space-time.  It will be visible but unaffected by gravity so it will drift along with the 
reference frame into which it is placed. 

If a ring of light matter dust is sprinkled along the circular path of the orbiting 
object, it will act as glitter embedded in the fabric of space-time, and it will mark 
the path of the orbit in flat space-time.  In expanding space-time it will mark the 
path of the orbit as space-time expands, as shown in figure 1.  Over the course of an 
orbit, the ring of light matter dust will expand or contract by a distance equal to the 
expansion / contraction velocity at R times the period of the orbit. 

 



 
Figure 1. 

In this thought experiment, both gravity and expansion act along the radial line 
between the central mass and the orbiting object, and the radial line is always 
perpendicular to the velocity vector of the orbiting object.  As it orbits, the object 
will experience a perpendicular “space-time crosswind”, thus it will be swept either 
outward by expansion or inward by contraction over the course of the orbit. 

The object however, must follow the original circle, this keeps the radius and 
gravitational acceleration from the central mass constant.  Since the expansion or 
contraction velocity (drift velocity)  is also a function of radius, it remains constant 
as well.  The only variable allowed to change is the orbital velocity.  In expanding 
space-time, the object must orbit at a lower velocity, allowing it to fall back inward 
due to gravity by a distance equal to the distance it will be swept outward by 
expansion.  In contracting space-time, the object must orbit at a higher velocity, 
allowing it to rise outward against gravity by a distance equal to the distance it will 
be swept inward by contraction. 

To better illustrate how this works, spirals of light matter have been placed 
onto the fabric of space-time in figure 2, leading both inward and outward from the 
orbiting object.  These spirals have been carefully placed so that as the object orbits, 
the spirals are expanded or contracted keeping the crossing point with the circle 
coincident with the center of the satellite.  The inward spiral represents the path of 
the satellite in expanding space, showing how it must continuously fall inward at 
the drift velocity as it circles the central mass.  The outward spiral represents the 
path of the satellite in contracting space, showing how it must continuously rise 
outward as it circles the central mass. 

 



 
Figure 2. 

To find the change in orbital velocity required, we begin by calculating the 
distance s that the object will be swept inward or outward over an arbitrary time 
interval delta t.  For expanding or contracting space-time, the rate (velocity) of 
expansion or contraction is usually expressed as a function of radius R.  Any 
function may be used because in the case of circular orbits R is constant.  Expansion 
is generally expressed as increasing linearly with R.  The term H is used to indicate 
Hubble expansion.  Rather than using –H, I will use capital C to indicate 
contraction. 

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  𝑣𝐸 = 𝐻𝑅 
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑣𝐶 = 𝐶𝑅 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒   𝑠 = 𝐻𝑅∆𝑡   𝑜𝑟   𝑠 = 𝐶𝑅∆𝑡 
 
The distance s will be equal to either HR times delta t or CR times delta t.  

Having established the distance s, one might think it a simple matter of either 
increasing or decreasing the centripetal acceleration by an amount just enough to 
equal the same distance s over the same delta t.  Difficulties arise, however, with 
this method because on one hand s is proportional to delta t and on the other, for 
acceleration, it is proportional to delta t squared.  Thus for very short values of 
delta t, expansion is much more influential, and for very long values of delta t, 
acceleration becomes dominant. 

In an attempt to avoid the apples to oranges mix of velocity and acceleration, 
my approach is to calculate the displacement distance s for each separately and 



then add the results.  The total displacement distance s is equal to the contribution 
due to gravity plus the contribution due to contraction or expansion. 

𝑠𝑡𝑜𝑡𝑎𝑙 =  𝑠𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ±  𝑠𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 
To derive a formula for an orbital velocity in contracting space-time, I will use 

Newton’s method of equivalent triangles [1] as he applied it to the orbit of the moon 
in 1666.  As shown in figure 3, as an object moves around a circular path from point 
A to point B it will be swept toward the central mass M by distance S while 
translating perpendicular to S by a distance X.  By the law of equivalent triangles, 
as shown above, distance S is to distance X, as distance X is to distance 2R minus S. 

 

 
Figure 3. 

Newton’s derivation of the velocity for a gravitational circular orbit in flat 
space-time follows. Where G is the gravitational constant and M is the mass of the 
central body.   
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𝑥

2𝑅 − 𝑠
    𝑜𝑟   𝑥2 = (2𝑅 − 𝑠)𝑠  

𝑊ℎ𝑒𝑛 𝑅 ≫ 𝑆  (2𝑅 − 𝑆) ≈ 2𝑅  𝑎𝑛𝑑 𝑡ℎ𝑢𝑠   𝑥2 ≈ 2𝑅𝑆 

𝑥2 = 2𝑅𝑠    𝑜𝑟   𝑥 =  √2𝑅𝑠   
𝑂𝑟𝑏𝑖𝑡𝑎𝑙 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑥/∆𝑡 = �2𝑅𝑆/∆𝑡2 

𝑢𝑠𝑖𝑛𝑔  𝑆 =
𝑎∆𝑡2

2   𝑎𝑛𝑑  𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛   𝑎 =
𝐺𝑀
𝑅2  



𝑇ℎ𝑢𝑠   𝑉𝑜𝑟𝑏𝑖𝑡 =  �𝐺𝑀/𝑅 

𝑂𝑟𝑏𝑖𝑡𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑓𝑙𝑎𝑡 𝑠𝑝𝑎𝑐𝑒: 𝑣𝑜𝑔 = �𝐺𝑀/𝑅   𝑜𝑟  𝑣𝑜𝑔 =  √𝑎𝑅 
 
To adjust the orbit velocity for the effect of contraction or expansion of space-

time, the amount of expansion or contraction that happens over delta t is subtracted 
from, or added to the value of s, as shown in Figure 4. 

 

 
Figure 4 

 

𝑠𝑒 = ±𝐻𝑅∆𝑡 = ±𝑉𝐷𝑟𝑖𝑓𝑡∆𝑡  𝑎𝑛𝑑  𝑠𝑔 =
𝑎∆𝑡2

2
  𝑎𝑛𝑑  𝑥 = �2𝑅(𝑠𝑔 + 𝑠𝑒)   

Doing the algebra we get. 
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2𝑉𝐷𝑟𝑖𝑓𝑡
𝑎∆𝑡
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The result is an expression for orbital velocity where the acceleration of gravity 

is multiplied by a dimensionless scale factor.  Let’s see how this works for the 
planets in our solar system using NASA’s latest value for the expansion of the 
universe. 

The velocity required to orbit in space-time expanding at H will be computed by 
subtracting the distance space-time will expand over delta t from the distance the 



orbiting body would fall due to gravity over the same delta t.  The value of H used in 
the calculations is from NASA [2] and appears below*. 

H = 73.2 Km/s per Mega parsec, or 2.37223 x 10-18 s-1.  
(*H may have been updated since the writing of this paper.) 

Planet 
or 
Object 

Orbit Diameter in 
meters (circular orbit 
is assumed) 

Observed 
Period T in 
seconds 

Calculated 
Velocity by 
(pi*D)/T  
m/s 

Velocity 
Predicted 
by Newton  
m/s 

Orbital 
Velocity 
from H 
m/s 

Corrected 
Orbital 
Velocity for 
H m/s 

Mercury 115,800,000,000.00 7,603,200 47847.805 47867.531 -0.166 47867.365 

Venus m 216,400,000,000.00 19,414,080 35017.917 35016.012 -0.793 35015.219 

Earth 299,200,000,000.00 31,558,464 29784.863 29779.302 -1.783 29777.519 

Mars 455,800,000,000.00 59,356,800 24124.244 24127.268 -5.107 24122.161 

Jupiter 1,557,000,000,000.00 375,545,721 13024.938 13054.222 -110.603 12943.619 

Saturn 2,853,000,000,000.00 930,974,688 9627.505 9643.716 -514.273 9129.443 

Uranus 5,742,000,000,000.00 2,650,910,976 6804.840 6797.727 -4132.740 2664.987 

Neptune 8,997,000,000,000.00 5,200,834,867 5434.687 5430.583 -5772.213 -337.526 

Kuiper 
Belt 
(100 AU) 14,959,787,000,000.00 

  

4211.459 -12616.6 -8105.141 

Oort 
Cloud 
(300 AU) 44,325,294,814,814.80 

  

2446.637 -45889.5 -43442.863 

Table 1.  Delta t equals 1 second. 
 
Table 1 shows the values of orbital diameters and periods observed for the 

planets and orbital velocities calculated based on Newtonian gravity, assuming 
circular orbits.  The last two columns show reductions in orbital velocities 
calculated for space-time expansion at the currently observed H and that value 
subtracted from the velocity of the gravitational orbit.  The effect of expansion on 
the inner planets is small but becomes increasingly significant with increasing 
radius R from the sun.  The equation blows up at the orbit of Neptune.  Values 
shown for Neptune and beyond were calculated using contraction (to keep the term 
under the radical positive) and then applied in reverse. 

The conventional wisdom is that universal expansion is too small to have any 
effect on the orbits of bodies within our solar system.  Based on this method, the 
results show that if expansion is going on in our solar system, the sun would not be 
able to retain any object beyond the orbit of Uranus.  In fact, Uranus would barely 
orbit at all, hovering nearly motionless at the edge of the solar system. 



Initial reactions will likely be that there is either something wrong with the 
method or with the calculations.  Newton used the method of similar triangles to 
check his gravitational equation, and it may also be used to derive the formula for 
gravitational orbital velocity used above. 

The use of a delta t of one second may be questionable.  As the equation for 
orbital velocity under expansion stands above, there is a dependency on the value of 
delta t chosen.  There ought to be a single answer for orbital velocity independent of 
the time period used.  On one hand, if a very long time period is used, the effect of 
expansion will vanish (making life easy for cosmologists).  On the other hand, if one 
were setting up a computer simulation, it would be tempting to use a very short 
time step to improve accuracy, but in that case it would be gravity that vanishes.  
For Newton’s method to work, the time period must be some fraction of the orbital 
period.  That rules out very long time periods that make the problem of expansion 
vanish.  What we need is a time period that balances the second order term with the 
first order term. 

Two possible approaches could be taken to resolve the issue.  First, another 
mathematical relationship could be sought to identify the proper value of delta t, 
and second, a value of delta t could be chosen to match observations.  In a Fluid 
Space Theory [3] model of the galaxy and the solar system, the value for delta t 
which best matches observations for contraction fields is e seconds or 2.71828.  This 
is also reasonable from a mathematical standpoint as e is the natural balancing 
point for terms of different orders. 

  𝑣𝑜𝑒 = �𝑎𝑅(1 ±
2𝑉𝐷𝑟𝑖𝑓𝑡
𝑎𝒆𝑡

)   𝑤ℎ𝑒𝑟𝑒 𝑡 𝑖𝑠 1 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡. 

After checking the method and the calculations, even using time units 
multiplied by e, the current value of H will still strip away anything orbiting our 
sun beyond Uranus.  It is even worse for our galaxy, ripping it apart even with the 
assumption of vast amounts of dark matter.  The conclusion is that universal 
expansion is not happening within our solar system and is certainly not happening 
within our galaxy.  Therefore, it is correct to ignore universal expansion in the 
computation of orbits within the galaxy.  But why?  The fact that we see stars 
orbiting within galaxies at higher velocities than predicted by Newton may be an 
indication that space-time contraction is going on within galaxies instead [3]. 
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