The HELLENIC OPEN BUSINESS ADMINISTRATION Journal

AIMS AND SCOPE

The HELLENIC OPEN BUSINESS ADMINISTRATION Journal is published two times a year and focuses on applied and theoretical research in business Administration and economics.

Editor: Dimitrios A. Giannias, HELLENIC OPEN UNIVERSITY, Greece

Associate Editors:
 Athanassios Mihiotis, HELLENIC OPEN UNIVERSITY, Greece
 Eleni Sfakianaki, HELLENIC OPEN UNIVERSITY, Greece

Editorial Advisory Board:
 o M. Suat AKSOY, ERCIYES UNIVERSITY KAYSERI, Turkey
 o Charalambos Anthopoulos, HELLENIC OPEN UNIVERSITY, Greece
 o Christina Beneki, TECHNOLOGICAL EDUCATIONAL INSTITUTE OF IONIAN ISLANDS, Greece
 o George Blanas, TECHNOLOGICAL EDUCATIONAL INSTITUTE OF THESSALY, Greece
 o Chepurko Yuri, KUBAN STATE UNIVERSITY, Russia
 o Tuncay Çelik, ERCIYES UNIVERSITY KAYSERI, Turkey
 o Vida ČIULEVIČIENE, ALEKSANDRAS STULGINSKIS UNIVERSITY, Lithuania
Bruno Eeckels, LES ROCHES INTERNATIONAL SCHOOL OF HOTEL MANAGEMENT, Switzerland
Figus Alessandro, LINK CAMPUS UNIVERSITY & UNIVERSITY OF GENOVA, Italy
George Filis, UNIVERSITY OF BOURNEMOUTH, UK
George Gantzias, HELLENIC OPEN UNIVERSITY, Greece
Gbadebo Olusegun Odularu, FARA & YPARD, Ghana
Apostolos Gerontas, HELLENIC OPEN UNIVERSITY, Greece
Mansi Godshi, UNIVERSITY OF BOURNEMOUTH, UK
Hossein Hassani, UNIVERSITY OF BOURNEMOUTH, UK
Woo Kok Hoong, UNIVERSITY TUNKU ABDUL RAHMAN, Malaysia
Dinh Tran Ngoc Huy, BANKING UNIVERSITY HCMC, Viet Nam & GSIM, INTERNATIONAL UNIVERSITY OF JAPAN, Japan
Fadi Kattan, BETHLEHEM UNIVERSITY, Palestine
Nadir Ali Kolachi, SKYLINE UNIVERSITY, U.A.E
Maria Kontochristou, HELLENIC OPEN UNIVERSITY, Greece
Tryfon Kostopoulos, PANTEION UNIVERSITY, Greece
Fred KU, THE CHINESE UNIVERSITY OF HONG KONG, The People’s Republic of China
Costas Leon, CEZAR RITZ COLLEGES, Switzerland
Leonidas Maroudas, UNIVERSITY OF PATRAS, Greece
Samuel, O. Masebinu, CERTIFIED INSTITUTE OF WAREHOUSING AND MATERIALS MANAGEMENT, Nigeria
John Marangos, UNIVERSITY OF MACEDONIA, Greece
Vassilis Moustakis, TECHNICAL UNIVERSITY OF CRETE, Greece
Ian Ndlovu, NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY, Zimbabwe
Ravinder Rena, UNIVERSITY OF THE WESTERN CAPE, South Africa
Yorgos Rizopoulos, UNIVERSITÉ PARIS DIDEROT, France
Mihaela Simionescu, INSTITUTE FOR ECONOMIC FORECASTING OF THE ROMANIAN ACADEMY, Romania
Gianfranco Vento, REGENCY'S UNIVERSITY, UK
Muhammad Yameen, IQR UNIVERSITY ISLAMABAD, Pakistan
Vita Zarina, TURIBA UNIVERSITY, Latvia
Andra Zvirbule-Berzina, LATVIA UNIVERSITY OF AGRICULTURE, Latvia
The HELLENIC OPEN BUSINESS ADMINISTRATION Journal is concerned with theory, research, and practice in business administration and economics (in its wider sense encompassing both private and public sector activities of profit-seeking ventures, as well as of governmental, private non-profit, and cooperative organisations) and provides a forum for academic debate on a variety of topics which are relevant to the journal’s central concerns, such as:

- Administration of Businesses and Organizations
- Marketing
- Public Administration and Policy
- Accounting
- Financial Management
- Total Quality Management
- Law and Administration
- European Business
- Tourism Business Administration
- Cultural Organisations Management
- Health Care Management
- Environmental Management
- Industrial Organization
- Economic Analysis and Policy
- Money and Capital Markets
- Quantitative Methods
The HELLENIC OPEN BUSINESS ADMINISTRATION Journal also publishes special issues. A special issue focuses on a specific topic of wider interest and significance, which is announced through relevant call for papers.

The journal was established in 2014 following the completion of the HELLENIC OPEN BUSINESS ADMINISTRATION International Conference.

The HELLENIC OPEN BUSINESS ADMINISTRATION Journal (The HOBA Journal) is published two times a year, in January and July. These two issues constitute one volume. One or more issues may focus on a specific topic of wider interest and significance, which is announced through relevant call for papers.

The editorial process at The HOBA Journal is a cooperative enterprise. Articles received are distributed to the Editor for a decision with respect to publication. All articles are first reviewed to be judged suitable for this journal. The Editor arranges for refereeing and accepts and rejects papers or, alternatively, forwards the papers to a member of the Board of Editors. The member of the Board of Editors, then, arranges for refereeing and accepts or rejects papers in an entirely decentralized process. In any case, each submission is sent to two referees for blind peer review and the final decision is based on the recommendations of the referees. The referees are academic specialists in the article’s field of coverage; members of the Board of Editors and/or members of the Editorial Advisory Board may act as referees in this process. Only when a paper is accepted for publication it is sent again to the Editor. Subsequently, the Editor sends the finally accepted paper to The HOBA Journal office for final editing and typesetting.

The Editor or the member of the Board of Editors who coordinates the decision with respect to publication of an article may send an article for refereeing to member(s) of the Editorial Advisory Board or cooperate with one or more of them to jointly assign referees who have some substantive knowledge of the topic and research in the relevant field and, finally, to jointly decide whether to accept or reject a paper.

The Editor, the members of the Editorial Board, and the members of the Editorial Advisory Board come from a breadth of fields designed to cover the largest
substantive areas in economics and business administration from which we expect to receive submissions.

The above outlined co-editing process has major advantages. First, it is helpful in the assignment of referees and in the decision whether to publish a submission. Second, it avoids the apparent conflict of interest that results when an Editor handles a colleague’s article. As a general rule the Editor and the members of the Board of Editors never assign papers written by authors at the same institution.

Finally, it provides an efficient way to handle about 200 submissions annually.

The editorial structure and process is reviewed annually.

While the Journal seeks to publish papers, which are academically robust, hence the rigorous review process (double blind peer review), it also seeks to publish papers that communicate effectively. It is interesting, well written and, therefore, readable papers that really contribute to the area of interest. Articles submitted should, therefore, keep technical jargon and statistical formulae within papers to a minimum and always aim to present material, however complex, simply and clearly.

As a forum, the Journal invites responses to articles that are published and is also willing to publish controversial articles to stimulate debate. To facilitate this, in addition to standard articles, the Journal also publishes “viewpoints” and “notes”. These are short papers (up to 2,000 words), that explore, or comment on, an issue in a way which is useful, interesting, worthwhile, relevant and, ideally, provocative.

It will contain book reviews, and review essays designed to bring relevant literatures to the attention of a wider readership.

For libraries subscribed to the Journal, all printing or photocopying fees or any royalty payments for multiple internal library use are waived. Special arrangements exist for subscribers in low-income countries.

All articles must be submitted in WORD format to: theHOB AJournal@gmail.com

Dimitrios A. Giannias, Editor
School of Social Sciences
Hellenic Open University

www.hoba.gr
CONTENTS

AIMS AND SCOPE .. 5

EDITOR’S NOTE ... 7

COMPLEXITY IN A MONOPOLY MARKET WITH NON LINEAR DEMAND AND COST FUNCTIONS 13

IS HEDGE FUNDS DECLARED STRATEGY COMPATIBLE WITH WHAT ACTUALLY DATA SAY? 23

JOB SATISFACTION AND DEMOGRAPHIC CHARACTERISTICS OF GREEK BANK EMPLOYEES .. 47

INVENTORY HOLDING AND INTERNATIONAL MIXED DUOPOLY ... 73

TOURIST DESTINATION MARKETING AND MEASUREMENT OF TOURIST SATISFACTION: THE CASE OF SANTORINI ISLAND ... 91
INVENTORY HOLDING AND INTERNATIONAL MIXED DUOPOLY

Kazuhiro Ohnishi
Institute for Basic Economic Science, Japan

Abstract

This paper considers a two-period international mixed duopoly model in which a domestic state-owned welfare-maximizing public firm and a foreign profit-maximizing private firm are allowed to hold inventories as a strategic device. In the first period, each firm simultaneously and independently chooses how much it sells in the current market and the level of inventory it holds for the second-period market. By holding inventory, a firm can change the competitive environment in the second period. The paper demonstrates that inventories are used by the domestic state-owned public firm to achieve a collusive outcome.

Keywords: International mixed duopoly, Quantity competition, Inventory holding, Domestic public firm, Foreign private firm

JEL Classification: C72, D21, D43, F23, L30

Introduction

The theoretical analysis of mixed oligopoly models has received significant attention in the past few decades and has been extensively studied by many researchers. For example, Cremer et al., (1991) examine a mixed oligopoly in which firms choose product characteristics. Mujumdar and Pal (1998) examine taxation in a mixed duopoly. Delbono and Denicolò (1993) and Poyago-Theotoky (1998) investigate mixed markets with R&D. Willner (1994) and Wen and Sasaki (2001) construct mixed markets in which firms choose
capacity. Bárcena-Ruiz and Garzón (2003) consider a mixed duopoly model in which a private firm and a public firm merge or one of them acquires the other. Pal (1998) examines a Stackelberg-type sequential-move mixed oligopoly with a single homogeneous product. White (1996) investigates the welfare effects of domestic production subsidies in a mixed oligopoly regarding privatization and efficiency, and Anderson et al., (1997) consider a mixed oligopoly with product differentiation that privatizes a public firm. In addition, Fershtman (1990), George and La Manna (1996), Matsumura (1998), Fujiwara (2007), and Lu and Poddar (2007) investigate the partial privatization of public firms. However, these studies consider mixed market models with domestic firms and do not include foreign firms.

As is well known, examples of international mixed oligopolies can be found in developed and developing countries as well as in former communist countries. State-owned public firms compete against foreign private firms in many industries, such as the airline, banking, life insurance, shipbuilding, steel, and tobacco.

Some studies consider international mixed market models with foreign private firms. For example, Fjell and Pal (1996) extend the analysis to an international context by considering a mixed market where a state-owned public firm competes with both domestic and foreign private firms and examine the effects of entry by an additional private firm. Pal and White (1998) examine the welfare effects of privatization in the presence of strategic trade policies within an international mixed oligopoly serving a single market. Matsumura (2003) examines an international mixed duopoly model where a domestic public firm and a foreign private firm first choose the timing for choosing their quantities. Ohnishi (2008) investigates the equilibrium of the following three-stage model: First, a social-welfare-maximizing domestic public firm can adopt either a lifetime employment contract or a wage-rise contract as strategic commitments; Second, the foreign private firm decides whether or not to enter the market; Third, if the foreign private firm enters, each firm independently chooses its actual output, while if the foreign private firm does not enter, the public firm acts as a monopolist. There are also other studies, such as Fjell and Heywood (2002), Chang (2005), Chao and Yu (2006), and Han and Ogawa (2008). However, to the best of my knowledge, the analysis of international mixed market models with inventories as a strategic device has been ignored.

Therefore, we study an international mixed market model in which a domestic state-owned public firm and a foreign private firm are allowed to hold
inventories as a strategic device. There are two periods in the model. In the first period, each firm simultaneously and independently chooses how much it sells in the current market and the level of inventory it holds for the second-period market. By holding inventory, a firm can change the competitive environment in the second period.

The purpose of this paper is to draw the reaction curves of the domestic state-owned and foreign private firms and to describe the equilibrium in the international mixed duopoly model with inventories as a strategic device.

The Model

There is an industry composed of one foreign private firm (FPF) and one domestic state-owned public firm (DSF), producing perfectly substitutable goods. In the remainder of this paper, subscripts F and D denote the FPF and the DSF, respectively, and superscripts 1 and 2 denote period 1 and period 2, respectively. In addition, when i and j are used to refer to firms in an expression, they should be understood to refer to F and D with $i \neq j$. The demand and cost conditions that firms face remain unchanged over time. The price of each period is determined by $P(S')$, where $S' = s_F^t + s_D^t$ is the aggregate sales in period $t (t = 1, 2)$. We assume $P' < 0$ and $P'' < 0$.

The timing of the game is as follows. In the first period, each firm non-cooperatively chooses its first-period production $q_i^1 \in [0, \infty)$ and its first-period sales $s_i^1 \in [0, q_i^1]$. Therefore, each firm’s inventory I_i^1 becomes $q_i^1 - s_i^1$. In the second period, each firm non-cooperatively chooses its second-period production $q_i^2 \in [0, \infty)$. At the end of the second period, each firm sells $s_i^2 = I_i^1 + q_i^2$ and holds no inventory. For notational simplicity, we take into account the game without discounting.

Since $\sum_{i=1}^2 q_i^r = \sum_{i=1}^2 s_i^r$, each firm’s profits are

$$
\Pi_i = \sum_{r=1}^2 \left[P(S')s_i^r - c_i q_i^r \right] = \sum_{r=1}^2 \left[P(S')s_i^r - c_i s_i^r \right],
$$

(1)

Matsumura (1999) examines a Cournot mixed duopoly model in which profit-maximizing private firms are allowed to hold inventories as a strategic device.
where c_i denotes the constant cost. We assume that the DSF is less efficient than the FPF, i.e., $c_D > c_F$. We define
\[\pi_i' = P(S_i')s_i' - c_is_i'. \] (2)

The objective of the FPF is to maximize the sum of undiscounted profits.

Since $\sum_{t=1}^{2} q_i' = \sum_{t=1}^{2} s_i'$, social welfares are
\[W = \sum_{t=1}^{2} \left[\int_{0}^{s_i'} P(x)dx - c_Dq_D' - Pq_F' \right] = \sum_{t=1}^{2} \left[\int_{0}^{s_i'} P(x)dx - c_Ds_D' - Ps_F' \right] \] (3)

We define
\[w' = \int_{0}^{s_i'} P(x)dx - c_Ds_D' - Ps_F'. \] (4)

The objective of the DSF is to maximize the sum of undiscounted social welfares. We use subgame perfection as our equilibrium concept.

Supplementary Explanations

First, we derive the DSF’s reaction functions from (4). In the first period, since there is no inventory available, the DSF’s reaction function is defined as:
\[R_D^1(s_F^1) = \arg \max_{s_D^1 \geq 0} \left[\int_{0}^{s_i'} P(x)dx - c_Ds_D^1 - Ps_F^1 \right]. \] (5)

In the second period, the DSF’s reaction function without inventory is defined as:
\[R_D^2(s_F^2) = \arg \max_{s_D^2 \geq 0} \left[\int_{0}^{s_i^2} P(x)dx - c_Ds_D^2 - Ps_F^2 \right], \] (6)

and thus its best response is shown as follows:

\[\]

2 This assumption is justified in Gunderson (1979) and Nett (1993, 1994), and is often used in literature studying mixed oligopolies. Let us assume that the DSF is equally or more efficient than the FPF. In this case, since the DSF is interested in domestic social welfare, it chooses q_D' and s_D' such that price equals marginal cost. Therefore, the FPF has no incentive to participate in the market, and the DSF maximizes domestic social welfare by supplying monopolistically.
We now present the following lemma:

Lemma 1. In the international mixed duopoly model, $R_D^t(s^t_F)$ is upward sloping.

Lemma 1 means that the DSF treats s^t_F as strategic complements.

Second, we derive the FPF’s reaction functions from (2). In the first period, since there is no inventory available, the FPF’s reaction function is defined as:

$$R_F^1(s_D^1) = \arg \max_{s_D^1 \geq 0} \left[P(S^1) s_D^1 - c_F s_D^1 \right].$$

(8)

In the second period, the FPF’s reaction function without inventory is defined as:

$$R_F^2(s_D^2) = \arg \max_{s_D^2 \geq 0} \left[P(S^2) s_D^2 - c_F s_D^2 \right],$$

(9)

and thus its best response is shown as follows:

$$R_D^2(s_F^2) = \begin{cases} R_F^2(s_D^2) & \text{for } s_D^2 > I_F^1, \\ I_F^1 & \text{for } s_D^2 = I_F^1. \end{cases}$$

(10)

We now state the following lemma:

Lemma 2. In the international mixed duopoly model, $R_F^t(s_D^t_F)$ is downward sloping.

Lemma 2 means that the FPF treats s^t_F as strategic substitutes.

Third, we state the Cournot-Nash equilibrium of the international mixed duopoly model. In each period, each firm selects s^t_F simultaneously and independently. The DSF maximizes domestic social welfare with respect to $s_D^t_F$ given s^t_F, while the FPF maximizes its profit with respect to s_F^t given $s_D^t_F$. A

3 The concepts of strategic complements and substitutes were introduced by Bulow et al., (1985).
Cournot-Nash equilibrium is a pair \((s^*_D, s^*_F)\) of sales levels where each firm maximizes its objective given the other firm’s sales.

Fourth, we consider Stackelberg games. If the DSF is the Stackelberg leader, then the DSF selects \(s'_D\), and the FPF selects \(s'_F\) after observing \(s'_D\). The DSF maximizes domestic social welfare \(w'(s'_D, R'_F(s'_D))\) with respect to \(s'_D\). On the other hand, if the FPF is the Stackelberg leader, then it maximizes its profit \(\pi'_F(s'_F, R'_D(s'_F))\) with respect to \(s'_F\). We state the following lemma:

Lemma 3. In each period, each firm’s Stackelberg leader sales are lower than its Cournot sales without inventory.

Lemma 3 means that each firm prefers lower sales than its Cournot sales without inventory.

Results

We begin by considering the equilibrium in the first period. There is no inventory available in the first period, and moreover \(s'_i\) does not affect \(s'_i\) and \(s'_j\). Since each firm’s payoff decreases by deviating from the Cournot-Nash solution, it has no incentive to do so, and therefore the equilibrium in the first period coincides with the Cournot-Nash solution without inventory.

We now consider the second period. It is thought that the equilibrium of the second period is decided by the level of \(I'_j\). We discuss the following three cases.

Case 1: Only the DSF can hold inventory.

Case 2: Only the FPF can hold inventory.

Case 3: Each firm can hold inventory.

We discuss these cases in order.
Case 1

Case 1 is illustrated in Figures 1 and 2, where \(R_i^2 \) denotes the reaction curve without inventory. \(R_D^2 \) slopes upward, whereas \(R_F^2 \) slopes downward. First, we consider Figure 1. Suppose that the DSF holds \(I_D^{1,4} \) in the second period. By holding inventory, the DSF’s best response changes to (7). The DSF’s inventory holding thus creates a kink in its reaction curve at the level of \(I_D^{1,4} \). Therefore, the DSF’s reaction curve becomes the kinked bold lines. The solution is decided in a Cournot fashion. In other words, the intersection of the reaction curves gives us the equilibrium outcome of the game. In Figure 1, the reaction curves do not cross each other. Therefore, if the DSF maintains the level of \(I_D^{1,4} \), then there is no solution.
Next, we consider Figure 2. Suppose that the DSF holds I_{D}^{1B}. The DSF’s reaction curve is the kinked bold lines. The intersection of the reaction curves gives us the equilibrium of the game. The inventory level of I_{D}^{1B} changes the equilibrium of the game. The intersection of the reaction curves is the equilibrium sales in the second period. The reaction curves cross twice as depicted in Figure 2. We can see easily that both E and N are stable equilibria. That is, there are two stable equilibria. However, we see that if the DSF prefers to hold the level of I_{D}^{1B}, then both social welfare and the FPF’s profit are higher at E than at N.
Case 2

Case 2 is illustrated in Figures 3 and 4. First, we look at Figure 3. Suppose that the FPF holds I^G_F in the second period. By holding inventory, the FPF’s best response changes to (10). The FPF’s inventory holding thus creates a kink in its reaction curve at the level of I^G_F. That is, the FPF’s reaction curve becomes the kinked bold broken lines. The intersection of the reaction curves gives us the equilibrium of the game. Figure 3 shows that the intersection of reaction curves is not affected by the kink. Hence, the equilibrium occurs at N.

Figure 3: The equilibrium occurs at point N.

![Diagram showing equilibrium at point N](image-url)
Next, we consider Figure 4. Suppose that the FPF holds \(I_F^{1H} \). The FPF’s reaction curve becomes the kinked bold broken lines. From Figure 4, we see that the inventory level of \(I_F^{1H} \) changes the equilibrium of the game. The intersection of the reaction curves is the equilibrium sales in the second period. That is, if the FPF holds \(I_F^{1H} \), then the solution occurs at \(J \). However, we see that the FPF’s profit is higher at \(N \) than at \(J \).

Case 3

This case is illustrated in Figures 5 and 6. First, we look at Figure 5. Suppose that the DSF and the FPF hold \(I_D^{1M} \) and \(I_F^{1K} \), respectively. The DSF’s reaction curve is the kinked bold lines, and the FPF’s reaction curve is the kinked bold broken lines. In Figure 5, the new reaction curves do not cross each other. Therefore, if the DSF and the FPF maintain \(I_D^{1M} \) and \(I_F^{1K} \), respectively, then there is no solution.
Next, we suppose that the DSF holds I_D^{w} and the FPF holds I_F^{t}. In Figure 6, the new reaction curves cross twice. We see easily that both U and V are stable solutions. However, the FPF’s profit is higher at U than at V, and therefore the FPF prefers U to V. In addition, the FPF’s profit is higher at Y than at U. The FPF can increase its profit by reducing I_F^{1}.

We can now state the following proposition:

Proposition 1. In the second period of the international mixed duopoly model, there is an equilibrium that coincides with the Stackelberg solution where the DSF is the leader. At equilibrium, both domestic social welfare and the foreign private firm’s profit are higher than in the game without inventory.
Figure 6: The new reaction curves cross at points U and V.

Concluding Remarks

We have considered a two-period model in which a domestic state-owned public firm and a foreign private firm are allowed to hold inventories as a strategic device. We have then demonstrated that the equilibrium in the second period coincides with the Stackelberg solution where the domestic state-owned public firm is the leader, and at equilibrium, domestic social welfare and the foreign private firm’s profit both are higher than in the game without inventory.

The introduction of inventories into the analysis of international mixed market competition between public and foreign private firms is profitable for the firms. That is, inventory holding enables both firms to get more in a non-cooperative setting. Therefore, we find that inventory holding facilitates tacit collusion. Furthermore, inventory holding by the public firm decreases its sales.
while increases the foreign private firm’s sales, thereby improving domestic social welfare. As a result, we see that governments that wish to increase domestic social welfare should adopt an industrial policy that behaves less aggressively toward foreign private firms; that is, inventory holding might be viewed as just one way to achieve this.

Appendix

Proof of Lemma 1

The DSF aims to maximize domestic social welfare with respect to s_D^t, given s_F^t. The optimal solution must satisfy the following conditions: The first-order condition for the DSF is

$$P - c_D - P's_F^t = 0,$$

and the second-order condition is

$$P' - P''s_F^t < 0.$$ (12)

Furthermore, we have

$$R_D'(s_F^t) = \frac{P''s_F^t}{P' - P''s_F^t}.$$ (13)

Thus, Lemma 1 follows from $p'' < 0$. Q.E.D.

Proof of Lemma 2

The FPF aims to maximize its profit with respect to s_F^t, given s_D^t. The optimal solution must satisfy the following conditions: The first-order condition for the FPF is

$$P's_F^t + P - c_F = 0,$$ (14)

and the second-order condition is

$$2P' + P''s_F^t < 0.$$ (15)

Furthermore, we have

$$R_F'(s_F^t) = \frac{P' + P''s_F^t}{2P' + P''s_F^t}.$$ (16)

Thus, Lemma 2 follows from $p' < 0$ and $p'' < 0$. Q.E.D.

Proof of Lemma 3

First, we prove that the DSF’s Stackelberg leader sales are lower than its
Cournot sales without inventory. If the DSF is the Stackelberg leader, then it maximizes social welfare \(w' (s_D', R_F'(s_D')) \) with respect to \(s_D' \). Therefore, in each period, the DSF’s Stackelberg leader sales must satisfy the first-order condition:

\[
\frac{\partial w'}{\partial s_D'} + \frac{\partial w'}{\partial s_F'} \frac{\partial R_F'}{\partial s_D'} = 0, \tag{17}
\]

where \(\frac{\partial w'}{\partial s_F'} = -P' s_F' \) is positive from \(P' < 0 \), while \(\frac{\partial R_F'}{\partial s_D'} \) is negative from (16). To satisfy (17), \(\frac{\partial w'}{\partial s_D'} \) must be positive.

Next, we prove that the FPF’s Stackelberg leader sales are lower than its Cournot sales without inventory. If the FPF is the Stackelberg leader, then it maximizes its profit \(\pi_F'(s_F', R_D'(s_F')) \) with respect to \(s_F' \). Therefore, the FPF’s Stackelberg leader sales must satisfy the first-order condition:

\[
\frac{\partial \pi_F'}{\partial s_F'} + \frac{\partial \pi_F'}{\partial s_D'} \frac{\partial R_D'}{\partial s_F'} = 0, \tag{18}
\]

where \(\frac{\partial \pi_F'}{\partial s_D'} = P' s_F' \) is negative from \(P' < 0 \), and \(\frac{\partial R_D'}{\partial s_F'} \) is positive from (13). To satisfy (18), \(\frac{\partial \pi_F'}{\partial s_F'} \) must be positive. Hence, Lemma 3 follows. Q.E.D.

Proof of Proposition 1

First, consider the possibility that the DSF holds inventory as a strategic device. Lemmas 1 and 2 state that \(R_D^2 \) is upward sloping, and \(R_F^2 \) is downward sloping, respectively. Lemma 3 states that the DSF’s Stackelberg leader sales are lower than its Cournot sales without inventory. From (7) and (10), we see that the equilibrium in the second period is decided by the value of \(I_D^1 \). Let \(I_D^1 \) can take values of zero and above. Hence, the DSF can choose \(\overline{I}_D^1 \left(= q_D^1 - N_D \right) \) associated with its second-period Stackelberg leader solution.

Next, consider the possibility that the FPF holds inventory as a strategic device. If the DSF chooses \(\overline{I}_D^1 \), then its reaction function will have a flat segment at the level of \(\overline{I}_D^1 \). Let \(\pi_F^2 \) be assumed to be continuous and concave in \(s_F^2 \). A little change in the FPF’s sales does not change the DSF’s sales and reduces the FPF’s profit. That is, inventory holding by the FPF decreases its profit. Hence, the FPF does not hold inventory as a strategic device.
Our solution concept is the subgame perfect equilibrium and all information in the model is common knowledge. The FPF knows that the DSF holds inventory as a strategic device. Hence, the FPF does not hold inventory as a strategic device. The DSF knows that the FPF does not hold inventory as a strategic device. Lemma 3 states that the DSF’s Stackelberg leader sales are lower its Cournot sales without inventory. Let \(T_D^1 \) can take values of zero and above. In the first period, the DSF chooses \(T_D^1 (= q_D^1 - N_D) \) associated with its second-period Stackelberg leader solution. In the second period, the DSF sells \(s_D^2 = T_D^1 \). Thus, the equilibrium coincides with the Stackelberg solution where the DSF is the leader.

From Lemma 3, we see that the DSF decreases \(s_D^2 \) by holding \(T_D^1 (= q_D^1 - N_D) \) associated with its second-period Stackelberg leader solution. Since \(\frac{\partial \pi_F^2}{\partial s_D^2} = P^* s_F^2 < 0 \), decreasing \(s_D^2 \) increases \(\pi_F^2 \) given \(s_F^2 \), and thus the proposition follows. Q.E.D.

References

