Refutation of Clifton's Kochen-Specker statistical argument

We assume the method and apparatus of Meth8/VL4 with Tautology as the designated proof value, \(F\) as contradiction, \(N\) as truthity (non-contingency), and \(C\) as falsity (contingency). The 16-valued truth table is row-major and horizontal.

LET: \(p, q, r: \) prob, \(v(A) = a, v(B) = b; \) & And; \(>\) Imply, greater than; \(=\) Equivalent; \%
possibility, for one or some; \(#\) necessity, for all or every; \((%p > #p)\) ordinal 1.

From: plato.stanford.edu/entries/kochen-specker/ [Carsten Held]

"3.5 A Statistical KS [Kochen-Specker] Argument in Three Dimensions (Clifton)

We now assume, in addition, that any constraint on value assignments will show up in the measurement statistics. In particular:

If \(\text{prob}[v(A) = a] = 1,\) and \(v(A) = a\) implies \(v(B) = b,\) then \(\text{prob}[v(B) = b] = 1.\)"

\[((p \& q) = (%p > #p)) \& (q > r)) > ((p \& r) = (%p > #p)) ; \quad \text{TNTT TTTT TTTT TTTT} \quad (3.5.1)\]

Eq. 3.5.2 as rendered is \textit{not} tautologous, meaning something other than a theorem is assumed in Clifton's KS argument.

What the author(s) could write was a \textit{non} statistical argument using ordinal 1 to mean a designated proof value. For example, "if valid\([v(A) = a]\) is a proof, and \(v(A) = a\) implies \(v(B) = b,\) then valid\([v(B) = b]\) is a proof" is tautologous. But ejecting probability produces a no-go statistical assumption.

\textbf{Remark:} This is an example of the faulty mathematical logic which unfortunately peppers the quantum hypothesis field, beginning from about Gödel.