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Abstract—This article presents the only possible proof of
Fermat’s last theorem in Fermat’s requirements of 1637: the
theorem is proved universally for all numbers; the theorem is
proved on the apparatus of Diofont arithmetic; the proof takes
no more than two notebook pages of handwritten text; the proof
is clear to the pupil of the school; the real meaning of Fermat’s
words about the margins of the book page is revealed.

Index Terms—algorithm

I. DEFINITION OF THE LAST THEOREM OF FERMAT

xn + yn 6= zn, where x ∈ N∗, y ∈ N∗, z ∈ N∗, n ∈ N∗,
n > 2.
N∗ are positive integers without zero.

II. ALGORITHM FOR PROOF BY CONTRADICTION

A. Detailing the Original Formula

Let’s:
xn + yn = zn. (1)

Let’s:
y < x < z. (2)

Then:
xn + yn = (x+ yn)

n, (3)

where:
yn < y. (4)

B. Original and New Terms of the Formula for n=2

Consider (1) and (3) for n = 2:

x2 + y2 = z22 = (x+ y2)
2. (5)

Let’s open the brackets in (5):

y2 = 2x · y2 + y22 . (6)

Let’s express x from (6):

x =
y2 − y22
2y2

. (7)

Substitute (7) into (5):(
y2 − y22
2y2

)2

+ y2 =

(
y2 + y22
2y2

)2

= z22 . (8)

Let’s express z2 from (8):

z2 =
y2 + y22
2y2

. (9)

C. Conclusion 1

Let’s explain the value of z2 for given x and y, where
x ∈ N∗ and y ∈ N∗. For this let’s represent (6) as the following
expression:

y2 = y2(2x+ y2). (10)

Let’s represent the value y2 under the conditions y2 /∈ N∗ and
(2x) ∈ N∗.
Let’s:

y2 =
l

m
, (11)

where l 6= p ·m, l ∈ N∗, p ∈ N∗, m ∈ N∗.

Substitute (11) into (10):

y2 =
l(2x ·m+ l)

m2
. (12)

Let’s transform (12), translating m2 to the left side of the
expression:

(m · y)2 = l(2x ·m+ l). (13)

But because of (11), the right-hand side of (13) can not be a
multiple of m.
Therefore, in (10) y ∈ N∗ only in the case when y2 ∈ N∗.
Then z2 = (x+ y2) ∈ N∗.
That is, (1) will be true if z2 ∈ N∗ for x ∈ N∗ and y ∈ N∗

in (5) .

D. Detailing the Formula (5)

Let’s consider in detail the values of y, x and z2 in (5),
taking into account Conclusion 1. Expression (5) has a number
of solutions, but there are patterns that can be determined.
Let’s represent solutions of (5) in natural numbers with al-
lowance for condition (2):

32 + 42 = 52 = (4 + 1)2, (14)

where y2 = 1;

and the following derivatives of (14):

(3y2)
2 + (4y2)

2 = (4y2 + y2)
2, (15)

where y2 ≥ 2;

(3 + 2n)2 +

(
n+1∑
n=1

4n

)2

=

(
1 +

n+1∑
n=1

4n

)2

, (16)



where n ∈ N∗, y2 = 1;

((3 + 2n)y2)
2 +

((
n+1∑
n=1

4n

)
y2

)2

=

=

((
1 +

n+1∑
n=1

4n

)
y2

)2

,

(17)

where n ∈ N∗, y2 ≥ 2.

It follows from (14), (15), (16), (17) that the larger
term x2 of the (5) will always be an even number.
Then:

x− always an even number. (18)

Let’s represent (5) as following expression:

(y2xo)
2 + (y2yo)

2 = (y2z2o)
2 = (y2xo + y2)

2, (19)

where yo ∈ N∗, xo ∈ N∗, z2o ∈ N∗.

In (19):

yo ≥ 3, z2o = (xo + 1)− always odd numbers (20)

(see (14) and (17)).

Let’s substitute (7) and (9) into (19) and transform the
expression by representing y = y2yo:(

y22y
2
o − y22
2y2

)2

+ (y2yo)
2 =

(
y22y

2
o + y22
2y2

)2

. (21)

Let’s make visible cuts in (21):

y22(y
2
o − 1)2

4
+ (y2yo)

2 =
y22(y

2
o + 1)2

4
. (22)

Let’s derive new expressions for x and z2 from (22):

x =
y2(y

2
o − 1)

2
, (23)

z2 =
y2(y

2
o + 1)

2
. (24)

E. Transformation of the Original Formula

If (1) is true, then:

x < z < z2. (25)

Then:
y2 ≥ 2. (26)

If (1) is true, then taking into account Conclusion 1, it can be
represented as follows:

xn + yn = (z2 − k)n = ((x+ y2)− k)n, (27)

where k ∈ N∗, k < y2.

Substitute (23), (24) and the value of y from (19) into (27):(
y2(y

2
o − 1)

2

)n

+ (y2yo)
n =

(
y2(y

2
o + 1)

2
− k

)n

. (28)

From (26) it follows that (28) can be represented as the
following expression:

yn2

((
y2o − 1

2

)n

+ yno

)
=

(
y2(y

2
o + 1)

2
− k

)n

. (29)

Let’s: ((
y2o − 1

2

)n

+ yno

)
= w, (30)

where w ∈ N∗.

F. Proof of the Theorem

Let’s transform (29), taking into account (30):

yn2w = zn =

(
y2(y

2
o + 1)

2
− k

)n

. (31)

Let’s take yn2 out of the brackets in the right side of (31):

yn2w = zn = yn2

(
y2o + 1

2
− k

y2

)n

= yn2 v
n. (32)

According to (20) and (27):

v /∈ N∗. (33)

Then:
w 6= vn or

z

y2
6= v, (34)

where v ∈ N∗, n > 2.

Then (32) for natural numbers can be represented as
the following expression:

yn2w = zn 6= yn2 v
n. (35)

But (35) can be represented as the following expression:

zn = yn2w = yn2 + (yn2 f) = yn2 (1 + f), (36)

where f ∈ N∗, w = 1 + f .

According to (36):

yn2 f = zn − yn2 =

= (z − y2)(z
n−1 + zn−2y2 + · · ·+ z · yn−2

2 + yn−1
2 ).

(37)

But according to (34) the right-hand side of (37) can not be
a multiple of y2:

yn2 f 6= zn − yn2 =

= (z − y2)(z
n−1 + zn−2y2 + · · ·+ z · yn−2

2 + yn−1
2 ).

(38)

If (34) is true, then:
yn2w 6= zn. (39)

According to (27), (28), (29), (30), (31):

xn + yn =

(
y2(y

2
o − 1

2

)n

+ (y2yo)
n 6=

6=
(
y2(y

2
o + 1)

2
− k

)n

= zn.

(40)

Then:
xn + yn 6= (z2 − k)n = zn (41)



for n > 2.

The Last Theorem of Fermat is proved.
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