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This paper analyses elementary particle stability and applies the resulting stability principle to
resolve divergence issues in quantum field theory without renormalization. For quantum electrody-
namics (QED), stability is enforced for an electron by requiring that the positive electromagnetic
field energy £, be balanced by a negative interaction energy &.,, between the observed charge and
a local vacuum potential. Then in addition to the observed core mechanical mass m, an electron
system comnsists of two electromagnetic mass components mZ,, of equal magnitude M = nm but
opposite sign; consequently, the net electromagnetic mass is zero. Two virtual, electromagnetically
dressed mass levels m 4+ nm are constructed to form a complete set of mass levels and isolate the
electron-vacuum interaction; in general, the vacuum current associated with transient dressed core
mass (DCM) states for a fermion opposes that of the core. Similarly, electroweak theory is used
to define a stability condition for bosons and determine dressed boson mass states. For quantum
chromodynamics, the stabilized amplitude takes into account confinement. Total scattering ampli-
tudes for radiative corrections, including core and DCM states, are shown to be convergent in the
limit 7 — oo and equal to renormalized amplitudes when Feynman diagrams for all mass levels are
included. In each case, the infinity in the core mass amplitude is canceled by the average ampli-
tude for DCM levels, which become separated in intermediate states and account for the stabilizing
interaction energy between a particle and its surrounding vacuum. In this manner, S-matrix cor-
rections are shown to be finite for all particles of the Standard Model, all the while maintaining
their mass and charge at physically observed values. The method is verified for radiative corrections
in QED and non-Abelian gauge theories. The results demonstrate that quantum field theory is
fundamentally scale invariant.

I. INTRODUCTION

A long-standing enigma in particle physics is how an elementary charged particle such as an electron can
be stable in the presence of its own electromagnetic field [1, 2]. Critical accounting for charge stability is
essential since radiative corrections in quantum field theory (QFT) involve self-interactions that appear to
change the mass and charge of a particle. This analysis identifies and accounts for the hidden interaction
that energetically stabilizes a particle such that its mass and charge assume their physically observed values.

The agreement between renormalization theory and experiment confirms the effect of vacuum fluctuations
on the dynamics of elementary particles to astounding accuracy. For example, electron anomalous magnetic
moment calculations currently agree with experiment to about 1 part in a trillion [3, 4]. This achievement
is the result of seven decades of effort since the relativistically invariant form of the theory took shape in
the works of Feynman, Schwinger, and Tomonaga (see Dyson’s unified account [5]). The agreement leaves
little doubt that QFT predictions are correct; however, the renormalization technique [6, 7] used to overcome
divergence issues in radiative corrections offers little insight into the underlying physics behind charge stabil-
ity in the high-energy regime. Recall that divergent integrals occur in scattering amplitudes for self-energy
processes and arise in sums over intermediate states of arbitrarily high-energy virtual particles. This stymied
progress until theoretical improvements were melded with renormalization to isolate the physically signifi-
cant parts of radiative corrections by absorbing the infinities into the electron mass and charge. Although
the renormalization method used to eliminate ultraviolet divergences results in numerical predictions in re-
markable agreement with experiments, redefinition of fundamental physical constants remains an undesirable
feature of the current theory in this author’s opinion.

Our main purpose is to develop an alternative to mass and charge renormalization in QFT. A minimal
requirement for this proposal is that it reproduce the successes of the accepted theory: these include the
successful higher-order multiloop calculations of QED, the modern understanding of QED as a part of a
non-Abelian electroweak theory, and asymptotic freedom in quantum chromodynamics (QCD). Starting
with the classical self-energy problem in Sec. III, we define an energetically stable electrical charge. We
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then generalize the stability principle to apply to all interacting particles of the Standard Model. Scattering
matrix corrections for stability are simply constructed using core amplitudes from the literature, involve two
additional Feynman diagrams associated with dressed core mass (DCM) states, and account for the action
of the vacuum back on the charge via an opposing current. After defining divergent integrals for DCM
diagrams, we verify that net S-matrix corrections in QED for vacuum polarization, fermion self-energy, and
vertex processes are finite to all orders in perturbation theory. Finally, we apply the method to one-loop
diagrams in non-Abelian Yang-Mills [8] and electroweak theories [9-11].

II. LAGRANGIAN AND NOMENCLATURE

In this section, we summarize the required machinery of the Standard Model utilizing references [12, 13].
Natural units are assumed; that is, A =c = 1.

A. Electroweak

The electroweak Lagrangian for the physical particles
Lew = Lg + Lu + Ly (1)

includes gauge, Higgs, and fermion parts. Gauge fixing and ghost terms are omitted in (1) since it is
only necessary to consider physical particles for this development. The gauge part, based on a Yang-Mills
prototype (29), is given by
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where the field strength tensors

W,l(,bll/ =0, Wy — auW;} + gw€ach3Wf , and (3)
By, = 0,B, — 0,B,
are expressed in terms of derivatives of the gauge fields: a triplet W, a = 1,2,3 of vector bosons and a
singlet B,, which transform according to SU (2) and U (1) symmetry groups [9], respectively. In (3), gw is
the non-Abelian SU(2) gauge coupling constant, and e, is the Levi-Civita tensor representing the structure
constants of SU (2).
The Higgs part is given by
L = (D) (D'®) — V (@) (4)

where ® is an isospin doublet coupled to the gauge fields via the covariant derivative
, « .Y
D, =0, —igwT W, — 19353# , (5)
T -7 /2 are weak isospin generators, @ are Pauli matrices satisfying the SU(2) algebra [0, 0] = 2ig; k0%,
and gp is the Abelian coupling constant. & carries hypercharge Y = Yp = 1 and a third component of
isospin T5® = f%CD. Minimizing the Higgs potential
V(®) = p2010 + \g (B1®)° (6)

with A > 0 and p3 < 0 for symmetry breaking leads to a stable ground state
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where in a unitary gauge, ¢ = x = 0, and the real Higgs field h(z) fluctuates about a vacuum
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Physical fields for charged W-bosons, neutral Z, and photon are
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where the weak mixing angle 0y is defined by

(W, FW2) , and (8)

cos by = w (10)
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with gz = \/9% + g%, and the second line in (10) follows from (13) and (14). In terms of the physical fields,
(5) takes the form
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where T = Ty +4T, raise (+) or lower (-) the current in interactions between left-handed fermions and W*,
Q=T+ % is the Gell-Mann-Nishijima relation for the charge operator, and the electrical charge satisfies
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e = gw sinfy = g cos Oy . (11)

Omitting higher-order non-mass terms, (4) becomes
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where vector boson masses

1
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mz = igZ v, (14)

generated via the Higgs mechanism [10, 11, 14], come from the kinetic part of (4), and the photon remains
massless: m, = 0. The scalar boson mass (Higgs), resulting from an expansion of V' (®) in (6) about v, is

m% =20\ , (15)
where ¢ may be determined using the identity
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and experimental values [15] for myy, sin® Oy, and my.
Suppressing the color attribute for quarks, the fermion part of the Lagrangian is given by
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for each lepton or quark family (), where v* are Dirac matrices,

) Jj+
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is a left-handed fermion doublet with component index ¢ = 4, and wf; is a right-handed singlet for a
fermion f indexed by jo.
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is the Yukawa interaction term, and g;, are fermion coupling constants. The complete set of fermions

includes leptons:
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which carry color and belong to the fundamental representation of the color group G = SU (N) of degree
N = 3. Employing (7)

and quarks:

LY (ms) = —miq B wh + R 0L | | (19)

where the masses generated from the interaction between the fermion and Higgs fields are

1
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We will also need vertex factors and propagators below for later reference; these, along with propagators
for the Higgs, ghost fields, and vertex factors for SU(N) theories may be found in the literature and [13].
For fermions coupling to the W, Z, and +, vertex factors are
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where (f = jo,oc =+, f' =jo’, 0’ = F), and the vector and axial vector coefficients
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are neutral current (NC) coupling constants with {s,, = sinfw , ¢, = cosfy }.
The fermion propagator [16] is

i

p
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where p = v¥p,,, and anti-fermions are denoted by f. The vector boson propagator is
k —ig®P
=D (k)= ——2 26
a3 r (k) k? —m? +ie (26)
in the Feynman-"t Hooft gauge [17], where the metric tensor g, = ¢g*° has non-zero components
goo = —g11 = —g22 = —g33 =1,
and b € {W, Z, v}. For the Higgs, we have
e (27)

k2 —m?2 +ie
Finally, unphysical particles including gauge fixing Higgs {¢*, x} and unitarity preserving Faddeev-Popov

ghosts {u®,u?,u"} occur in loop corrections discussed in Sec. VIIB.

B. Yang-Mills Theory

The SU(3) Yang-Mills theory involves ny = 6 quarks interacting with n, = 8 massless gluons in the adjoint
representation r = G. Again omitting gauge fixing and Faddeev-Popov ghost terms, the QCD Lagrangian is

ny
Locp = ZJJ; (Z’Wka - mf5jk) Wf + Ly, (28)
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where w’} is a Dirac spinor for the quark field with flavor f and color state k € {R, G, B}, g is the color
charge, t* = X\*/2, a = 1,...,n, are generators represented by 3 x 3 Gell-Mann matrices A\*, Aj, are color-

charged gluon fields, and f 2% are structure constants of G. The t-matrices, which occur in a quark/gluon
vertex

= igsyHt® (30)

and gluon propagator
k _igm/tatb
= ———— 31
ap by k2 +1ie (31)
rotate the quark in color space and generate the Lie algebra for G:
[ta’ tb] _ Z-fabctc )
The structure constants occur in three- and four-gauge-boson vertices and satisfy

facdfbcd _ 02 (G) 5ab ,

where C3 (G) = N is an eigenvalue of the quadratic Casimir operator.



IIT. FORMULATION
A. Physical Model for QED

Regarding an electron as a point particle [18], the classical electrostatic self-energy e?/2a = aA, diverges
linearly as the shell radius a — 0, or energy cutoff A, — oo, where —e is the charge and a = e?/4r is
the fine-structure constant. However, Weisskopf [19, 20] showed using Dirac’s theory [21] that the charge is
effectively dispersed over a region the size of the Compton wavelength due to pair creation in the vacuum
near an electron, and the self-energy only diverges logarithmically. Feynman’s calculation [22] in covariant
QED yields an electromagnetic mass-energy

3am A 1
Mem = ? (ln E + 4) 5 (32)

where m is the electron mass. In the absence of a compensating negative energy, (32) signals an energetically
unstable electron. This is the fermion self-energy (SE) problem, whose general resolution will suggest a
solution for boson SE processes as well resulting in finite amplitudes for all radiative corrections. In this
section we derive an electron stability condition and apply it to develop a corresponding correction to the
scattering amplitude.

To ensure that the total electron mass is its observed value, renormalization theory posits that a negatively
infinite “bare” mass must exist to counterbalance me,,. For lack of physical evidence, negative matter
is naturally met with some skepticism (see Dirac’s discussion [23] of the classical problem, for example).
Nevertheless, energies that hold an electron together are expected to be negative, and we can understand
their origin by first considering the source for the electrical energy required to assemble a classical charge
in the rest frame. Recall that the work done in assembling a charge from infinitesimal parts is equal to the
electromagnetic field energy. Since the agents that do the work must draw an equivalent amount of energy
from an external energy source (well), the well’s energy is depleted and the total energy

E=m+EL + &, (33)

of the system including matter, electromagnetic field £, and energy well &, is constant. For an elementary
particle, could the depleted energy well be the surrounding vacuum?

From another point of view, consider an electron and its neighboring vacuum treated as two distinct
systems that can act on one another. Suppose the electron acts on the vacuum to polarize it creating a
potential well, then there must be an opposing reaction of vacuum back on the electron. The resulting
vacuum potential ®,,,. confines the physical (core) charge akin to a spherical capacitor depicted in Fig. 1,

and the interaction energy

Ew = E5, = —eDyac (34)

em —

is assumed to just balance £F, resulting in a stability condition

m:m T Mo, = 0, (35)

where the mass-energy equivalence &£ = mZ utilizing natural units has been applied. Therefore, the
net mass-energy of a free electron is attributed entirely to the observed core mechanical mass m which is
generated via the Higgs field interaction (20) in electroweak theory. In contrast to Poincaré’s theory [24]
wherein internal non-electromagnetic stresses hold an electron together, external vacuum electrical forces are
assumed to provide charge stabilization and energy balance via a steady state polarization field surrounding
the electron. Corresponding to a divergent self-action process, we require a mechanism whereby the core
charge interacts locally with the polarized vacuum according to (34).
Apart from £, , the energy of the core charge in the potential well of Fig. 1 is shifted

em
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FIG. 1: Effective vacuum potential confines core electron charge similarly to spherical capacitor. Since the
stability principle requires £F — e®,4. = 0, the total energy of the electron in the well and dressed in its
electromagnetic field is just its observed mass-energy.

where mypq.e may be identified with the bare mass, and
Mpare + ML, =m (37)

captures the mass renormalization condition which is equivalent to (33) with (34) and (35). However,
notice that the bare mass corresponds to a core electron dressed in negative electromagnetic energy; hence,
its characterization as a “mechanical mass” is a misnomer (see [25] for example). Only the core mass is
observable, and only it is expected to appear in the Lagrangian if one takes (35) seriously. In renormalization
theory, however, one starts with a bare electron, self-interaction dresses it with positive electromagnetic
energy, and (37) is subsequently applied to redefine the mass. On the other hand, suppose we start with the
observed electron charge; then taking into account (33), (34), and (35), mJ,,, and m_,, are always present, and
the total mass reduces to the observed core mechanical mass. Starting with this premise, we can formulate a
finite theory of radiative corrections that accounts for all possible electromagnetically dressed intermediate
states, and no asymmetry necessitating a redefinition of mass and charge is introduced.

Equations (33) and (35) suggest that a stable electron consists of three rest mass components: a core mass
m and two electromagnetic masses m2, that are assumed large in magnitude but finite until the final step
of the development. We can think of mZ%, as components of an electromagnetic vacuum (zero net energy)
which are tightly bound to the core mass and inseparable from the core and each other, at least for finite
field actions. Considering all non-vanishing masses constructed from the set {m, mg,,, m_,,}, we are led to
define a complete set of mass levels m + AM, where A = {0, £1} and M = |mZ|. In the following, an
electromagnetically dressed core mass (DCM) refers to a composite particle with mass-energy levels m + M.
Associated four-momenta are pge,, = p £ Pas, where {p, Py} correspond to {m, M}, respectively. DCM
rules for fermion self-energy processes are defined by

m — m+ AM , and (38)
p—=p+APy. (39)

To transition this charge stability model into quantum theory, first consider a free particle state |p, m)
satisfying p? = p,p" = m?, where p* = (p°, p) and p, = g,.p” are contravariant and covariant momentum



four-vectors, respectively. Spin is omitted in |p, m) since it is inessential to the subsequent development,
and the rest mass is included because it is the fundamental particle characteristic which becomes dressed in
stability corrections to the S-matrix; see (61). We employ the relativistic normalization

¥, m |p, m) =2E (p, m) (2m)* 6 (5 — §") ,

where E (p, m) = v/p? + m2. Now construct a superposition

1 cm
) = 7 gj;l T8 (p) (40)

of DCM states
| T8 (p)) = |p+ APar, m+ AM) (41)

where the core four-momentum is dispersed per an uncertainty Ap = APj;. DCM states are normalized
according to

(rdem ()| T4 (p)) = 2B (ﬁ+ APy, m+ )\M) (2m)% (5— 7+ (A= X) ﬁM)
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where the latter form follows upon assuming M > m and requiring the vector components satisfy
|Ph| > |p* —p"| . i=1,2,3

thereby excluding a zero in the delta function argument at infinity for A’ # A. While | pt—p 1| is arbitrarily

large in an integral over p’* in the delta function, it is assumed small compared to |P]\’/1| The expected
momentum and mass are given by

(x |{popa mop}| X)
{(x[x)

={p,m} , (42)

where { pop, Mop} are corresponding operators. Therefore, the composite state (40) is energetically equivalent
to the core mass state |p, m) as required by (33) and (35). A core electron dressed with positive or negative
energy as in (41) is a transient state that is sharply localized within a spacial interaction region r ~ i/Mc in
accordance with Heisenberg’s uncertainty principle [26] Ap*Az# > h/2 (no implied sum over p). Scattering
amplitudes for low-energy processes are assumed unaffected because the energies are insufficient to induce a
separation of tightly bundled states (41) in (40). For infinite field actions, however, DCM states may become
separated in intermediate states with infinitesimally small lifetimes; in this case, we shall need to account
for both core and DCM scattering amplitudes. To account for all possible intermediate states in QED and
satisfy (35), both mass levels m + M are required for interaction between the physical charge and vacuum
potential; this generalizes the classical model in Fig. 1.

Since the interaction region reduces to a point as M — oo for DCM states, self-interaction effects vanish,
and an electromagnetically dressed electron is assumed to interact only with the positive component of the
polarized vacuum as indicated in Fig. 2. Suppose the dressed electron, located at space-time position x1,
has current density j, (z1). The current at a neighboring point zs # z; within the interaction region is
distinct from that of the dressed core and reversed in sign; that is,

sgn [Ju (22)] = —sgn [ju (z1)] , (43)

where the core current is defined by the normal product [27, 28]

Ju (1) = —eN quz/)]wl .

Similarly to (43), the Hamiltonian density at nearby points must satisfy
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FIG. 2: Dressed electron interacts with opposing vacuum current in interaction region.

sgn [Hint(22)] = —sgn [Hini (21)] , (44)

where Hine () = j, () A* (z) in the interaction representation [29], and A" (z) is the radiation field. From
(44) we anticipate a sign reversal in the DCM scattering amplitude relative to that for the core mass since
second-order S-matrix [30] corrections involve a product Hins (1) Hint (22).

From (42), the averages of the dressed mass and momentum for charged fermions are just the core values.
How do we apply this notion to calculation of radiative corrections in QFT? Consider a single fermion in
QED whose Lagrangian is

£9°4 (m) = L3 (m) — 7 (Fu)” (45)

where

LE (m) =4 (i —eA—m) ¥,
F = 0,4, — 0,4,

is the electromagnetic field strength tensor, and # = ~v*0,. Notice that the expectation

1
3 D LE(m+ AM) = L3 (m) (46)
A==£1

is unchanged under (38) which suggests a general requirement: that the expectation of the Lagrangian for
each field be invariant under DCM transformations. For radiative corrections containing primitive diver-
gences in fermion self-energy or vertex diagrams, S-matrix charge stability corrections associated with DCM
states are evaluated in the same manner — this entails a core mass replacement (38) in fermion lines internal
to loops, that is, in each fermion propagator (25). Resulting loop-operator amplitudes are to be averaged
over dressed mass levels; that is, A = £1. For an external line entering a loop as indicated in Fig. 3 (b,c),
the momentum is similarly modified according to (39) since the propagator is required to have a pole at
m + AM. The same approach using (38) actually works for Fig. 3 (a), but is not generally valid for massive
boson SE calculations in electroweak theory. Electroweak theory constrains DCM rules for boson self-energy
processes.

B. Electroweak Application

The purpose of this section is to generalize and extend the DCM rules in Sec. IITA to all particles of the
electroweak Standard Model including interactions.
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FIG. 3: Baseline radiative corrections in QED: (a) photon self-energy, (b) fermion self-energy, and (c)
vertex involve the core mass only in internal fermion lines. Two additional diagrams, obtained by replacing

the core mass with electromagnetically dressed mass levels, are required for each radiative process to
account for interaction with an opposing vacuum current and ensure stability.

For each fermion mass m; € {mj,} in £E"a%2 (19) is invariant under an expectation
1 ukawa ukawa
3 D LY (my 4+ AMy) = LY (my) (47)
A==1
similarly to (46). Assume identical scaling My = nmy, then DCM levels are generated by
my — mys (14 An) . (48)

Taking into account (20) with h # 0, we notice that DCM levels can be associated with a displacement of
the vacuum from the ground state; that is,

Av=hy(n) =M. (49)

For selected A and 7 , the vacuum displacement (49) is the same for all fermions.
For bosons, Ly in (12) is not invariant under a rule of the form (48). To determine the correct rule, let us
follow the approach in Sec. III A and define [31]

M? = Re (Zb(ml%)) , (50)

where Y° is a boson self-energy function (see Sec. VIIB), and m is the core mass. Now assume that the

. b . . . .1 . .
vacuum response is a term X, . satisfying a free particle stability condition

¥yl =0 (51)

vac

analogous to (35). Noting that X% . corresponds to a mass M,q. = iMj, construct two squared DCM states

mi > {mi + M, mi + (iM,)*} | (52)
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wherein the second member of (52) corresponds to a complex mass state for an inherently unstable boson.
Using our A—index notation, the rule takes the form

mi —mi +AMZ, b=W, Z , H. (53)

Substituting (53) into (12), we find

1
3 Z Ly (m%v + AMZ,, m% + AMZ, m?%; + )\MIQJ) =Ly (m‘Z,V, m%, qu) (54)
A=£1

is invariant. Assume identical scaling
{Mw, Mz, Mg} =n{mw, mz, mg} , (55)
then each mass my € {mw, mz, my} is dressed according to
mi = mp (14 An?) . (56)
Substituting (16) in (15) and applying (53) with M3, = n*m%,, one obtains
mi — mi (1+ An?) (57)

suggesting that DCM states of the W- or Z-bosons induce dressed states for the Higgs and vice versa.
Substitution of (15) into (57) reveals that the boson vacuum is shifted v? — v? + Av? with

Av? = \n?v?; (58)

compare (58) with (49).

Vertex factors {(21), (22), (23)}, including the weak mixing angle (10), charge (11), and NC coupling
constants (24) are all stationary under DCM transforms (56). On the other hand, propagators {(25), (26),
(27)} involving massive particles are not stationary under DCM transforms, and the resultant amplitudes
constructed from them are either driven to zero or a stabilizing correction for finite tree or divergent loop
processes, respectively. While the electrical charge (11) is an invariable according to (176), the couplings
{92, 9%} and Oy can vary due to finite on-shell mass shifts {ém?,, 6m%} derived from stabilized W- and
Z-boson self-energy corrections discussed in Sec. VIIB; see (201) and (202).

Construction of scattering amplitudes using fermion (25) and boson {(26),(27)} propagators results in
a mixing of fermion and boson masses. The regulation of infrared singularities for soft photon emissions
provides a simple example: for fermion self-energy (FSE) and vertex processes, a small fictitious mass p is
introduced in the photon propagator [22]; that is, m;, — p in (26). Fermion and pseudo-boson masses m
and p mix in terms of form In %; for consistency, we define a DCM state

p— p(l+An), (59)
then ln% is invariant under (48) and (59). Generally, for massive bosons in FSE or vertex processes,
we require mp — mp (1 + An). Similarly, when fermion and boson masses mix in boson self-energy (BSE)
processes, we require mfc — m? (1 + )\772).

Introduction of DCM states for massive bosons does not break gauge invariance of Lgw in (1) since it
constitutes a displacement of the vacuum from the ground state and is therefore consistent with the Higgs
mechanism; moreover, the Lagrangian is stationary under the expectations in (47) and (54).

C. Total Finite Scattering Amplitude

Rules for the total scattering amplitude take their simplest form if dimensional regularization is used to
tame improper integrals; therefore, define the total loop-operator associated with a SE or vertex part by

2= eore (M) + 24 (M) | (60)
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where (2., accounts for self-interaction effects involving a core mass set

McS,, = {mf; mw, Mz, My, M} ) and

1.
'Qdcm (M) = _5 lim Qcore (Mdcm ()\a 77)) (61)
e A==+1

enforces stability via interaction of DCM states with an opposing vacuum current as required by (43). From
(48), (56), and consistency conditions discussed near (59),

1+ An  FSE/vertex
Maem (A, n) = M- [m = { NiEpy P{SE (62)

for FSE, vertex, and BSE diagrams in electroweak theory; for any m € M, the DCM state is

Maem (M2) = mam . (63)

In addition to mass my or my, {2.ore depends on external momenta {k, p} for Feynman diagrams in Fig. 4
which may be on- or off-shell. Blobs in Fig. 4 involve one-particle irreducible (1PI) amputated correlation
functions. For FSE/vertex processes, p = m¢ + dp,s, where dp, is an off-shell component; the corresponding
DCM state is

Pdem = my (14 An) + 0pos FSE/vertex . (64)
For BSE processes, k% = m} + §k2,, and
k2., =m? (1+ An?) + 0k2, BSE; (65)

of course, a massless photon (b =+) is naked except for any off-shell term. For notational simplicity, any
dependence on external momentum parameters has been suppressed during construction of (24, because
{k, p, ¢} are implicitly dependent on associated core masses.

If an energy cutoff A, is assumed in lieu of dimensional regularization, then we must include A, in the
argument set of 2.,... The cutoff scales in the same way as (63); that is,

Adcm = ’f]/\Ao . (66)

Scaling rules for the cutoff are required for consistent definition of the integrals — they ensure that

Adcm > Mdem (77)\)

for arbitrarily large 7y, synchronize cutoff to A,, and yield a well defined limit as 7 — oo in (61). In the
next section, we show that divergent integrals occurring in core and DCM terms are invariant under (63)
and (66); as a result, the net amplitude is finite after cancellations.

Finally, we seek to apply the foregoing DCM rules to QCD. As with electroweak, all vertex factors are
independent of mass and are therefore DCM invariant. Briefly, two modifications are required: First, the
sign of the core and DCM amplitudes are reversed — this is because free quarks and gluons are confined
and can not be experimentally isolated; therefore, apart from hadrons outside the region of confinement, the
surrounding vacuum is effectively the primary observable. Relative to QED, this suggests an interchange of
particles and vacuum and a sign reversal of the stabilized amplitude; thus, a factor

Ao =—1 (67)

is introduced for color confinement. Second, for diagrams involving massless gluons only in the pure gauge
sector, we lack a mass reference — the solution is to introduce a small gluon mass u, via k? — k? — H?, in
propagators (31) when constructing amplitudes, then (53) is used to define DCM states
Miem = Mo + AMQQIMZO with M2 = n°pu? (68)

where p, is a unit of mass measure. The rationale for (68) is discussed further in Sec. VITA.

In contrast to the regulator technique of Pauli and Villars [32], the above method employs physically
meaningful dressed mass levels (albeit virtual only), and we assume that the same principle applies to all
self-energy processes in QFT without introduction of auxiliary constraints.
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IV. DIVERGENT INTEGRALS

Here we develop integration formulae required for evaluation of stability corrections using cutoff and
dimensional regularization. In the p-representation, loop diagrams involve four-dimensional integrals over
momentum space, and the real parts of scattering amplitudes contain integrals of the form [33]

_ 1 d4p _ (—l)n d4ps
2@ - [ Goar G o)

where A depends on the core mass m, momentum parameters external to the loop, and integration variables.
On the right side of (69), a Wick rotation has been performed via a change of variables p = (ip2, p.), so that
the integration can be performed in Euclidean space where p? = pp° + p. - p-. Integrals for the divergent
case (n = 2) must be regulated such that they are consistently defined for core and dressed core masses. For
the core mass, D is regularized using a cutoff A, on s = |p.|. In four-dimensional polar coordinates, we have

pasy =L fao a2 7
(70)—p/ /o Sm (0)

For DCM states, A depends on mgep,, and the domain of integration in (70) must be scaled according to
(66); consequently, we need to evaluate

Ddcm =D [A (mdcm)7 Adcm] .

With a change of variables s = 1)t and taking the limit 7 — oo, we obtain

Ddcm =D (AO7AO) ) (71)

where

T
A, = nlgr;o Ny “A(nam) . (72)

For example, the standard divergent integral [33]

A2 2
DOED(A=m2,AO)=1nm3—1+0(7\12> (73)

is manifestly invariant under scaling rules (63) and (66); that is,
Do = D (M3 Mdem) - (74)

Note that the average of (32) over DCM states is stationary due to (74); this ensures that the FSE in QED
is finite as shown in detail in Sec. V B.

In contrast to the cutoff method, dimensional regularization evaluates a Feynman diagram as an analytic
function of space-time dimension d. For n = 2 and d*p — d%p in (69), D may be evaluated using [34, 35]

D(A,o0)=7"°T(c)A™° (75)
:%—hﬁA—v—FO(o) ,

where 0 =2 — d/2 and v = 0.577... is Euler’s constant. For o # 0, the limit A, — co may be taken since o
regulates the integral. For DCM states, Dg.,, must yield consistent results for both cutoff and dimensional

regularization methods. Considering the requirements used to derive (71) and employing appendix formulae
in [34], we conclude

13
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FIG. 4: Generic self-energy and vertex diagrams: (a) BSE, (b) FSE, and (c) vertex.

Dyerm, = D (Mg, 0) . (76)
For the processes in Fig. 4, the argument A in (75) has the form
A (my ) = am? +b0* + cu? (77)

where m = my|my, €2 = k*| p?| ¢, {a, b, ¢} depend on Feynman parameters, and ¢ = 0 for BSE pro-
cesses. Applying (72) to (77) taking into account (64) and (65), the momenta go on-shell upon computing
lim n;zﬁgcm; that is,

n—00

k* - m? BSE
p? — mfc FSE
¢> = 0 Vertex

: (78)

which we recognize as on-shell renormalization conditions. For the vertex, the dressed momentum transfer
Qdem = q + X (Pj; — Par) is assumed bounded, so lim n;Qqﬁcm = 0. As mentioned in Sec. IIIC, the case
7]-}00

where particle masses internal and external to the blob in Fig. 4 (a) are both zero occurs for BSE processes
in the pure-gauge sector of QCD. For this case, where A = bk?, choose a = 1 and replace m? — m?_, in
(77) using (68), then evaluate

A, = lim n;gA (M = Napto) = p2 (79)

n—00

with ny = v/An. Thus for all m > 0, the net S-matrix amplitude computed from (60) is well defined since it
involves a factor
I'(e) I'(o)

Ar A

A

=—In A

(80)

The second term on the left side of (80) is associated with an opposing vacuum energy required for overall
energy conservation and system stability. In addition to a divergent part, {24c,, in (61) may include a finite
part, a constant, that cancels a like term in (2.,.c.



V. QED APPLICATIONS

Let us apply the foregoing theory with integration formulae given above to verify that net amplitudes
for second order radiative corrections in QED are convergent and agree with results obtained via renormal-
ization theory. Cutoff and dimensional regularization approaches are used to illustrate the method. Since
the complete amplitude 2 is distinct from Rcore, we drop the “core” subscript for unrenormalized (core)
amplitudes to be consistent with notation in the literature.

A. Vacuum polarization
The photon self-energy associated with Fig. 3 (a) results in a propagator modification [30]
DgP = DY 4 por (zﬂ,w> Dy,
where
I, =1, + T

is a polarization tensor generalized to include the stability (aka DCM) correction, and

Iy (k, m) = —(;)4 /d4ptr [VuSF(p, M)V, Sp(p — k,m)]

follows from the Feynman-Dyson rules [5, 22]. In consequence of Lorentz and gauge invariance [7] or by
direct calculation, it factors into

I, (k, m) =11 (k*, m?) (guk® — kuky) -

As is well known, the contribution from terms k,k, vanishes due to current conservation upon connection
to an external fermion line. For a massless photon, k2 is invariant under a DCM transform, and we need
only focus on the scalar function II (k2, m?).

Since the scattering amplitude is in general a complex analytic function, it follows from Cauchy’s formula
that the real and imaginary parts are related by a dispersion relation [36]. The imaginary part is divergence
free and may be obtained by replacing Feynman propagators with cut propagators on the mass shell according
to Cutkosky’s cutting rule [37] or, alternatively, via calculation in the Heisenberg representation as shown
in Kéllén [38]. In particular for vacuum polarization, the real part for the core mass is given by

an? g (dm2
I (k*, m?) = l/ dsu (81)
4

s 5 — k2

m2
with imaginary part
«
g (w) = —5\/1 —w(l+w/2).
Applying (61) using (63) and (66) and performing a change of variables s = (14 Ap?) ¢ in (81), we have

yerm = Ly Z IT (K%, m? + Mnp*m?) (82)

e A==*1
4A2 <4m2>
t
—— lim / .
27 n—o0 Z (14 An2)~ " k2

A==£1
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Letting 7 — 0o, we see that (82) is equivalent to a subtracted core amplitude evaluated on the light cone
Hyem = —II(k* = 0, m?) .

Combining (81) and (82), we obtain a once-subtracted dispersion relation

IT (k) = I (k% m?) — 11 (0, m?) (83)

k2/°° d579(47:2)
4

T Jamz  S(s—k?)

in agreement with renormalized QED. From (83), II (k? = 0) = 0 epitomizes the free boson stability condition
(51) for a photon. For an infinite sum of 1PI insertions, the generalized photon propagator is

’\ﬁ\@'\/\/:fV\J-F’\/\O\/\/-F’\/\O\/\O\/\/—F... (84)

= —%Z}, (k) , where

7 () = 1_;{(1{2) (85)

modifies the free photon propagator. Alternatively, one can define a running coupling constant
o (k?) = Zs (k) e ; (86)
in this interpretation, the bare (ozo = %) and effective couplings are equivalent on the light cone

Z3(0)=1. (87)

In terms of an external current jZ"’” (z), the observable current is given by

3 (@) = 5t (x) + 6 ()
where

§j, () = (271T)4/d4k:eikwjz” (k) [IL(k?, m?) —T1(0, m?)]

is the induced current. In standard renormalization theory (SRT), the last term in brackets is associated
with a correction to a divergent bare charge (e,), but here we suggest that the correction is a stability

requirement associated with a vacuum reaction current. The physical and bare charges in SRT are related
by

1
2: Z _ 2
€ ( 3 1—H(O,m2)>e°’

where /Z3 is the charge renormalization constant.

B. Fermion self-energy

The fermion self-energy operator for a core mass corresponding to the Feynman diagram in Fig. 3 (b) is

SJWLA = —iX(p,m) , where

Y
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2
(2m)"

After standard reduction and dimensional regularization, ¥ simplifies to

Z(pam) -

1
[ Se o= kom) s (38)

(07

{Sl—i—/oldx [2m—]ﬁx+a(}éaj—m)]D(A,a)}7 (89)

where D (A, o) is given by (75) with
A=(1-z)(m®—zp®) +zp’.
The integral expression in (89) is equivalent to a form given in [13], while the term

l1—0

T4

follows from appendix formulae in [33] and represents a surface contribution arising from a term linear in k
during reduction of (88).
Evaluation of ¥ 4., using (61) reduces to negating (89) and replacing A — A, according to (76); we obtain

Sy =

«

Ydem (p,m) = o {Sl +/01 dz [2m — pr + o (pr — m)] D(AO,J)} ) (90)

where
Ao =m? (1 —2)° + ap?

follows from (78). Terms involving [(APy, AM) ; M = nm] have canceled in the average over DCM levels
yielding a function of the observable mass and momentum only. The net correction, including all three mass
levels in Fig. 3 (b), is given by (cf. [22])

S (p) =2+ Zaem (91)
o [ Mt
=5y | (am -y [(mQ—wQ)(l—x)erQ

where the limit ¢ — 0 has been taken to recover four-dimensional space-time. With a change of variables
x=1-— 2z (91) is seen to be identical to the renormalized result given in Bjorken & Drell [39].
The processes in Fig. 3 (b), including iterations in the series

yields a modified propagator [5, 30]

)

Sk = Sp+ Sk (5 (1) Sk (93)
7
—m—=3(p)+ic’

p
which has the desired pole at y = m since (91) vanishes on the mass shell



Using the general expression for the stabilized fermion self-energy (190)
. ox

Yp)=Xp—-2X(m)— 5

» L{_m (- m) (95)

derived in Sec. VIIB 2, we see that

d (p)

dp e

and the residue of the pole is i. Note that one can write (93) in the form

—2 Z%_mﬂ.jz(ﬁ), (96)

)

where

Zy = <1 . —EWL> (97)

p—eris

is a finite stabilization parameter modifying the free field fermion propagator, and is analogous to the
renormalization constant Z5 in SRT relating the bare and renormalized fields via ¥, = v/ Z21.
Upon identifying

mg, =X (p=m, n=0) , and (98)
Mgy, = Ydem (}j =m, b = O) ) (99)
we see that (94) is equivalent to the stability principle (35). Reverting to cutoff A, using (69), it follows that

(98) reduces to Feynman’s result (32); for derivation, see [33].
In the language of renormalization theory, the bare mass in the propagator [35]

i

S =
F ﬂ_mbare_z'i_ig

must be renormalized using (37) with (98).

C. Vertex

A second-order correction to a corner (23) involves a replacement iey* — iel'*, where
It =t 4 AF (100)

ot q
=MF (%) + ——F (¢%)
and o" = % [v*,~"] are spin matrices. Complete expressions for the form factors F; and F» can be found
in [13]. For small ¢2, the vertex function A* for the core mass corresponding to Fig. 3 (c) is given by the
approximation [22]

;v 2
A" (q,m) = "L + a(2)% +0 (:12) , where (101)
11
L::T(DO—&—?—ZLIHTZ) (102)



is a divergent constant. Note that L = 21, where r is given by Eq. (23) in [22]. The coefficient a(?) = 2 is
the second-order contribution to the anomalous magnetic moment first derived by Schwinger [40] and verified
experimentally by Foley & Kusch [41].

Inserting (101) into (61), using (59), and accounting for the invariance of D, (74) under scaling rules (63)
and (66), the stability correction is A/, ~= —7*L, where finite terms in (101) of order O (1) involving
replacements m — m (1 + An) and ¢ — ¢gem vanish in the limit 7 — oo since gger, is bounded as we argued

in Sec. IV. Therefore, the total vertex function

A (q) = A"+ K (103)
is convergent, and A* satisfies the usual renormalization condition for a vertex
Ar =0. (104)

qz:O,}zf: '=m

This completes verification that lowest-order S-matrix corrections are finite without renormalization.

VI. GENERALIZATION TO HIGHER ORDERS

Our next task is to show that stabilized higher-order radiative corrections in QED are finite and agree
with renormalization. The proof closely follows renormalization arguments in the original references and [33];
therefore, we keep our remarks brief highlighting required modifications and differences of interpretation.

Irreducible (skeleton) diagrams include second-order self-energy (SE) and vertex (V) parts discussed in
Sec. V plus infinitely many higher-order primitively divergent V-parts. Using Dyson’s expansion method
[30], second-order SE- and V-part operators for the core mass are

S=mA-(p-m)B+3%, (105)
I=C+1II, (106)
A = AR 4 AR (107)

where {4, B,C, L} are logarithmically divergent coefficients depending on D, — specifically, A = 3% (D, + 2)
using (32), and Ward’s identity [42] gives B = L from (102). Innocuous finite terms can depend on the
regularization method used; for example, compare C = —Ilgem = 5~ (Do +1n4 — %) from (82) with expres-
sions in [33, 35]. Higher-order primitively divergent V-parts are also of the form (107) since the degree of

divergence [30, 43]

K=4- fefbe

3
2
is zero (logarithmic), where f. (b.) are the number of external fermion (boson) lines; in this case, L (D,) is
a power series in «.

To determine the interaction of an electromagnetically dressed core with the polarized vacuum, we apply
(61) with (74) to obtain

Ydem = —[mA — (p —m) B] , (108)
Hdcm = *C, (109)
Agcm = _ryﬂLv (110)

where the stabilized second-order amplitudes (83), (91), and (103)

2 (p*=m?) =0 (111)
II(k*=0)=0 (112)
A (2 =0)=0 (113)



vanish on the mass shell. Higher-order primitively divergent V-parts also satisfy (113) since dressed stabilized
amplitudes vanish and yield on-shell conditions. In this way, (60) yields unique finite results

3 =54 Zaem (114)
II =11+ e, , and (115)
Ar = A* 4 Ak (116)

for all irreducible diagrams; therefore, SE-part insertions
Sp — Sp + Sp (—@E) Sp , and (117)
D = DY + D (iguk* M) DY (118)

into lines, and V-part insertions

A s AH 4 AP (119)

into corners of a skeleton diagram yield no additional divergences.

For reducible vertex diagrams, the V-part resolves into a skeleton along with stabilized SE- and V-part
insertions. With replacements (117), (118), and (119) in the skeleton, the vertex operator again reduces
to the form (107), where L — L is the skeleton divergence. In general, Ly depends on multiple functions
D, corresponding to all possible charged fermion masses arising from photon self-energy insertions which
may in turn contain SE- and V-parts. Since each D, is invariant under (74), (113) holds, and (61) yields
AY .. = —~" L similarly to (110); therefore, the complete reducible V-part given by (116) is convergent.

For reducible self-energy diagrams, a skeleton with SE insertions is handled in the same way as reducible
vertex diagrams. However, vertex insertions into fermion and photon SE skeletons involve overlapping
divergences that require further analysis [44, 45]. Integration of Ward’s identities yields expressions of the
same form as (105) and (106); in this case, the coefficients {A, B, C'} are all power series in « depending on
D,, and vertex insertions in SE-parts are convergent upon including stability corrections (108) and (109).
We conclude that infinite field actions excite dressed mass levels uniformly in all connected fermion lines
internal to overlapping loops; for a specific example, apply (60) to calculate the real part of the fourth-order
vacuum polarization kernel [46] using the dispersion method given in Sec. V A. Therefore, a diagram with
overlapping divergences is not a special case for implementation of stability corrections.

The complete propagators, replacing fermion and photon lines in a skeleton diagram, follow from Egs.
(63) and (64) of Dyson [30]; one obtains

, i
Sr (#) }é—m—i’w—ia R
—ig®B
D (k) = ——
K2 [1— 1] + e

)

where {ﬁ‘ - I *} are given by sums over all proper SE-parts. Similarly, the most general vertex replacing

a corner in a skeleton diagram is given by a sum over all proper V-parts. Since both core and DCM
contributions are included in each sub-diagram, the complete propagators and vertices are well defined
(convergent).

VII. NON-ABELIAN APPLICATIONS

Stabilized radiative corrections are computed for diagrams in Yang-Mills and electroweak theories.

A. Yang-Mills Theory Corrections

In the examples below, we focus on a key subset of one-loop diagrams [47, 48] that occur in the SU(3)
Yang-Mills theory discussed in Sec. II B.
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FIG. 5: Gluon/quark self-energies and vertex diagrams

For diagrams in Fig. 5, core amplitudes differ from QED only by group factors and the confinement factor
Ac from (67); therefore, finite S-matrix amplitudes (60), including stability corrections, are

0§ = Atr (t°t°) I [QED] , (120)
2 = A\t [QED)] , and (121)
APH = A tbttPA* [QED) . (122)

Group factors are given by
tr (t°t?) = C(r) 6,
tete = CQ (7") ,

1
tbtotb = |Cy (r) — 502 (G| t*

where C(N) = 3, and Cy (N) = 221 = 4 are normalization and quark color charge factors, respectively.
In addition to the fermion (quark) loop diagram in Fig. 5 (a), gluon SE corrections in Fig. 6 yield [13]
[Flg 6]core = iTl“/ (k2) 6ﬂbH2 (kQ) ’ (123)

T (K*) = guk® — kuky

1
s r
1, (1) = ACM/ iz L9 (“1+0)(1-22)"+2] , (124)
47T 0 AU
where a, = g2 /47 is the strong coupling constant, A = —k?z (1 — 2), and x is a Feynman parameter. While

individual gluons are massless to ensure gauge invariance of Ly s, systems of gluons depicted in Fig. 6 are
expected to have a non-zero mass defined by (50) with self-energy function XJ ~ k?II;. The generation
of such systems must draw energy from the vacuum leaving it with a squared energy deficit X, = —Mg2
such that (51) is satisfied. Consequently, we need to include a stability correction for an opposing vacuum
response involving DCM states, and for this we need a mass term in A. If we appeal to massive Yang-Mills
theories [49], we get unwanted particles and ghosts, and it might seem that we have an impasse. While
gauge invariance demands that mass be acquired via a Higgs mechanism, introduction of DCM states in (29)
yielding

1
Lyn = Lym =5 > g +2Mg], (A2)?
A==£1
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FIG. 6: Gluon SE corrections in pure-gauge sector: (a) gluon loop, (b) four-gluon vertex, and (c) ghost
loop.

does not break gauge invariance of Ly s since the expectation over DCM states is zero. Therefore, let us
temporarily assign a small mass y, to the gluon, then propagators in the loops are modified

1 1 B /1 dzx
PP =g (p+ k) —p2 Jo [P2— A ()
where the usual change of variables P = p 4+ zk has been made for loop integration parameter p, and
A(pg) = py — Kz (1 —x).

To evaluate the stability contribution, make the replacement (68)

po = g+ n*ue], g

in A (ug); then from (79), we have A, = p?, and the stability correction is obtained simply by negating
(124) and replacing

11
AT AZ
From (60), the net amplitude
2oy @sC2(G) ! K -ax)]1 L 2
Iy (1) = A= [t | == { (1 2z) +2} (125)

is finite. If we define a reference mass Mg by

gln(A%) E/Oldl‘ Info (1—a)] [~ (1—-20)° +2| , then

~ ]{32 QSCQ G) b5
H2 (ps = _W> = —)\c$§ lnps (126)

S

vanishes at spacelike k% = —M?2.

In the stabilized theory, it is invalid to neglect quark masses my in the calculations since they are required
for defining DCM corrections; in contrast, QCD calculations in the usual theory often omit m¢ in processes
where the momentum transfer ¢ is presumed much larger than physical masses involved in the problem.
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Therefore, following Peskin & Schroeder [13], but assuming m = my # 0, the core amplitude for the
quark/three-gluon vertex shown in Fig. 7 is

; (127)

2 rabcybyc Y NP k, /7
@wzk%f “*/#ZW W (K+m) 7, (k. p',p)

1
(2m) —m?2 +ig) [(p’ _ k)2 — 2+ if} [<P — k)2 _ 2 e
where
NHV’D (k>p/7p) = gwj (q +pl — k)p -+ g”” (2]{3 — pl 7p)p’ —+ gPM (p _ k _ q)l’

is the tensor part of the 3-gluon vertex function. Introducing Feynman parameters (x,y, z) for the factors
in the denominator, letting £ = k — pr — p'y, dropping terms linear in ¢ that vanish upon symmetrical
integration, and using the identity f®*°t*t¢ = £C5 (G)t®, (127) reduces to

2 a
zgﬂ:a&%gﬂgﬁf/mmwk5@+y+z—1ﬂ“, (128)
(2m)
where
g (129)

"= j//h g Wl (=g + 297701 — gPre?)
1 3
(€2 - A)

') u

= —3in2
T G ,

Ao v
gu:/ gip L PPy )N (pr 4 Py, ) g

(02— Ay

A=mz+ (pr +p'y)° —pPe —py+ 2 (1-2) .

The cutoff is retained in the divergent and finite parts {I{’, I§'} as a reminder that for computation of the
stability correction, A, — m\A, followed by a change of variables £ — n)¢. Now apply (61), (76), and
integration formulae in [13] to obtain

Igcm = If,dcm + I/;,dcm ’ (130)
oI (o
Iﬁdcm = 327T2 A(U)’YM )

m2
Igdcm = iTFQA 2(2 - Z) ('Y# - 4) )

where from (72)
Ay =m?22 + 21— 2),
and we have used
p” (m) =m+dp), , and
Jim o (nam) = m

; u
for evaluation of 1'27 dem-

Finally, the stabilized integral is given by

=141

dem

(131)
A
= 3ir%In ~ + finite
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and the complete amplitude
920 (G) t°
(2m)*

is finite without renormalization and only involves physical parameters.
From standard renormalization theory (SRT), the seven diagrams in Figs. 5, 6, and 7 yield a running
coupling constant characterized by a Callan-Symanzik [50, 51] beta function [52, 53]

AGH =N, /dacdydzé (x+y+z—1)I" (132)

Oayg o? [11 4
s) = =-S5 | = —_ = s ]_
ﬁQCD (a ) 31nMS2 I |: 3 CQ (G) 37”LfC (’l"):| ( 33)
where o is the renormalized coupling. Compared to QED where Sgpp (a) = % with charge screening,

Bocp (as) < 0 leads to an anti-screening effect or asymptotic freedom resulting in a weaker coupling for
high energies. The dependence of ay on momentum transfer ¢ is
g (q2)

Qs (MQ)
1+ QS(M ) (11 — 7nf) ln‘

(134)
Mz

where M is usually chosen to be the Z—boson mass. The running of the strong coupling constant in SRT
models experimental data [54] well; therefore, our remaining task is to show that the stabilized theory yields
an effective running of the coupling constant in agreement with SRT and experiment. Well known formulae
from SRT are used with stabilized amplitude parameters.

Leading terms of stabilized amplitudes for the asymptotic case of high energy yield an effective color charge

9s (ps) 9s < = (135)
o\ 75
s (11- 20 here
o~ — - = n T
Gs °Sn 3nf Ps| » W
Zyt =14 A1 (ps) + A2 (ps) (136)
Zyt=1-— = , and (137)
dap
P=ps
23" = 1= (1 (ps) + 11z (ps)] (138)

are finite running stabilization parameters that modify the vertex (30), fermion field propagator (25), and
gluon field propagator (31), respectively. With ny = 6 the confinement factor A\, = —1 in (135) leads to
asymptotic freedom; note that the need for \. arises from opposing signs of the first two terms of (75). For
loops including quarks, asymptotic amplitudes involve spacelike momenta ¢ in ratios

52
p=——5>1; e {k p’ ¢}, (139)
my

where we have reinstated m = my. Setting p* = ¢® = k?, energy ratios p in (139) may be approximated by

Inp=1Inps +0 (1) (140)
~Inp; .

With (140), the sum over fermions in Fig. 5(a) becomes trivial. Neglecting O (1) terms, we have
nf P ) a
Z { Fig. 5(a GMU} ~ T, (K?) 5% [Hl (p) = Az 2ny C (1) Inpy] . (141)
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[Fig. 5(0)] = =i [$ (4. p) = A L2C2 (1) (5 = 4mp) | (142)

[Fig. 5(c)] ~ igst?y* {/il (ps) = —Ac% {02 (r) — %02 (G)} In ps} : (143)
[Fig. 6] = iT,, (k%) 5% {ﬁz (ps) = —Ac%ﬂ(g)g In ps} (144)
from (126), and
. . A ag 3
[Fig. 7] ~ igst®~* |:A2 (ps) = —)\05502 (G)In ps] . (145)

With the approximation —k? >> m?c, IT; in (141) follows from (120) using (83). Similarly, 3 in (142) is
obtained from (121) using (91), and A; in (143) is derived using (122) with (100) to obtain

A [QED) = Fy ()" + ...,
where the stabilized form factor

B (q2) = (qz) — F1(0)

1
:g/ dedydz o (z+y+2z—1)In
2 0

ms (1 —2) 1_’_

m3 (1 - 2)" — ¢y

2
« q «

follows from (78) and results given in [13] assuming —¢* > mfc. The stabilization parameters Z;, Zo, and

Zs are defined similarly to their SRT counterparts. Zf !is the coefficient of ig,y*t* for the sum of proper
vertex diagrams in (30), Fig. 5(c), and Fig. 7

g
/g\. (1 + A+ /iz) =g Z
L

Using (137) or (97) and assuming —p? > mfc, we have
Zyt=1- )\CZ—;CQ (M np=Inps +0(1)] .

For Z3 we employ (85) with IT = IT, + IT, using gluon SE contributions (141) and (144).
An estimate of M, may be obtained by synchronizing the energy ratios for p in (139) across diagrams in
Fig. 5 (a) with that for ps in (126) for Fig. 6: let ¥ — ¢ in Fig. 5 (a), and require

2 k2
wy T

(146)

Noting that II[QED] is a function of p only from (83) and using (146), the sum over fermions is given by

5 A LSt} <1fay "AC (147
== =1{ny " rvv .
— a,p b,v ’ﬂf =1 Ms2 S a,p b,
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FIG. 7: Quark/three-gluon vertex.

The condition in brackets is obtained by factoring

2
T (¢2) = 25T (%)

= 2720
and comparing (147) with (141), then we have
1 &
M2=—Y m? 148
S (119

for the reference mass. Evaluating (148) for quarks gives M, = 70.65 GeV/c?; compare with Z-boson mass
given in Appendix Table II.
Finally, the beta function is given by

85 =20 = g (11_2nf>

Olnp, 3

from which the running coupling constant (134) follows; see [55] for example.

B. Electroweak Corrections

We compute finite electroweak amplitudes using dimensionally regularized radiative corrections for un-
renormalized (core) functions [12, 56, 57]. Core one-loop SE functions include X% (ab = v, vZ, ZZ, WW)
for bosons, ¥/ for fermions (f = jo for family j and doublet index ¢ = +), and vertex Azf . For repeated
indices a = b, we abbreviate X* = X% b = v, Z, W; in general formulae applicable to 7 — Z mixing, we
admit b = vZ as well for brevity. A subscript “sa” is appended to a stabilized amplitude X* = X% when it
is necessary to distinguish it from a corresponding renormalized amplitude Z:’fa.

In Hollik’s notation [12], the basic singular function

1 2
Ae==—y—In2% {Indr (149)
I

o 2

o

differs from (75) by finite terms. For consistency, the input momentum to a loop is k with s = k2 for both
bosons and fermions. Abbreviations for squared boson masses

z=m%3, w=m}, h=my
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are used. In addition to (149), core amplitudes involve finite functions

— ! 225 — 2 (s +m? —m3) +m? —ie
Bo(s,ml,mg):—/ dx ln[ ( 1= mh) +mi : (150)
0 mimeso
m%—&—m% mi =
F(s,m1,mg) = =1+ ——— In— + B, (s,m1,ma) , (151)

mi—msz Mo

— 1 m32 my  m3—mi—s
Bl (S,ml,mQ):—i—kmlnmfz—l—TF(s,ml,mg) s (152)
and singular expressions
1 _
B, (s,m1,mq) = 3 (A, + Apy) + Bo (s,mq,ma) , and (153)
1 1 —
Bl (s,ml,mg) = —5 (Am2 + 2) + B1 (s7m1,m2) . (154)

Scalar one-loop integrals, including (150), are defined in [58].

1. Boson SE corrections

For these corrections, it is useful to expand the core boson SE

oo n yb
2 (s) = X" (mg) + > aj (s —mi)" . (155)
n=1 S:mg

From core amplitudes below, it can be seen by inspection and dimensional analysis that averages of £° (m%)
and 86—2: over DCM states in (61) are invariant similarly to (54) — this may be shown in detail by
s:m%
applying (62) for the mass set {m,} Vkel,,, where
I, ={f,,W,Z ,H,+,-}
is a complete set of mass indices occurring in (169), (173), (178), and (180); the DCM transform is
{mZ} = {m2}- 1+ ) . (156)

On the mass shell, the self-energy function has the general form
b (m%) = Zaimi ,

b

where a,

are dimensionless coefficients which may depend on invariant mass ratios. Therefore, under (156)
b (my) = (14 Ap?) 2 (my) ,

and the average over DCM states

(2 ) ge = 5 3 (1 X07) 5 () (157



is stationary. Since the derivative ‘96% , 18 dimensionless, it is invariant under (156); in particular,

s:mb
partials

OF (s,m1,m2)

F' ,my) =
(S7m1 m2) 85

(158)

. . b
occurring in 83%

transform as
S:m%

F' (mg,mi,mz) — (1 +>\772)71F/ (mg,mi,ma) ,

and terms of form g = m?F' (mi,m1, m2) are again invariant under (156). Finally, higher order derivatives
are either zero outright, or

an Eb 1—n —n

G|~ (m) " =0 (nm )) (159)

s:mb

vanishes under (156) as 7 — oo for n > 2. Therefore, (61) yields

ox®

Shem (8) = =X (mf) — 2| (s —mj) . (160)

Since the off-shell factor (s —m7? = 0k2,) is invariant under (156), the entire expression (160) is stationary
under an average over DCM states similarly to (157). The net stabilized amplitude

5 (s) = 5 (5) + Xl (5) (161)
from (60) satisfies
2P (mi) =0, and (162)
L (s)
o = 0. (163)
s:mb

Taking the real part of (162) and (163) yields Denner’s alternative renormalization conditions [59] to those
given in [12]. For stabilized amplitude (161), (162) and (163) yield a propagator residue of unity so there is
no need for external wave function corrections as in the on-shell renormalization scheme proposed by Ross
and Taylor [60]; however, inclusion of Ar corrections discussed in Sec. VIIB4 leads to finite wave field
corrections. Splitting off singular terms (149), the core boson SE can be expressed in the form

£ (s) =Y [alsu + BEmEAL] + Shinire (5) (164)

K

where the sum over £ is Viel,,,, and {a?, 82} are constant coefficients. Singular terms involving {sA,, m2A, }

in XY, cancel those in ¥°, and (161) reduces to
Cib b b 2 825’%”6 2
X7 (s) = Zfinite (s) — Efinite (m ) T T os (3 - mb) . (165)
s:mg
For a free boson, the squared mass shift
smj = Re [ X410 (m7)] (166)

represents the residual boson self-energy of the core after divergent parts of the vacuum response in Egcm (m%)
have canceled those in (164). For later reference, the polarization function is

R b 5b 'y 2 b
[ (s) = ) 2 2(mb) _ oz . (167)
s —my s —mj 0s s=m2

28



Neglecting Ar corrections [31], mixing angle functions ¢,, = cosfy (10) and s, = sinfy, and neutral
current constants (24) are invariant under (56). See (181) and (182) for inclusion of Ar.
Application of (161) to photon SE corrections shown in Fig. 8 yields

£7(s) = 27 (s) + X, (5) (168)

4
3 ZQ? [(5 + 2mfc) F(s,mp,mys)— 3
f

2
— (8s+4w) F (s, mw,mw) + 350

s
¥ (s) = 471- ZQf [sAf—&—(s—l—me)F(s,mf,mf)—g (169)

—3sAw — (3s + 4w) F (s,mw,mw) p ,

P!

s s=0

where
57 (0) =0,
a3 4 2
= Ar —3Aw — 2

0s s=0 3 ;Qf ! ’ v 3 ’

and the sum over fermions includes color for the case of quarks. Both 7 (s) and II7 (s) vanish in the
Thomson limit s — 0, and physically meaningful corrections in (168) are due to incomplete cancellation for

s = k? # 0. Singular terms in ¥} exactly cancel those in ¥7 for all s, and there remains a term

«
[Et’iycm]finite = (5af’inite = @) s (171)

in the vacuum response, where da finise is the finite part of renormalization constant (5Z; in the usual theory.
For v — Z mixing corrections also represented in Fig. 8, we have
27 (5) =27 4 007 (172)

dem

a 4 5
i) 3 ;Qﬂ)f [(s-+2m3) F (s,mp,mg) — ]

1 1 4 s 4
3c2 + 4c2 + - F — 4¢3 + -
+Cw5w |:< Cw+6>8+ ( Cw+3> w:| (S7mW7mW) 6CwSw ( Cw+3) ’

ZVZ( _

OJM-P

ZQfo {sAer(s+2mf)F(s,mf,mf)f§} (173)
f

{30 + >8+2w]AW

@
C4rm

Cwa

4 s
4 F
t eote [(30 * ) (C +3> } (S’mw’mw)+9cwsw ’
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1 Four gauge boson vertex with internal W, ¢

FIG. 8: Photon self-energy and photon—7 mixing diagrams.

oxXZ
s

EZCZm = -2

~—~
=]
=

s, (174)
s=0

where

« 2w
Z"/Z(O):M{c . AW} ,

oxX% o 4 1 1 1 4 1
S At — (32 + =) Aw+ = (42 +2) + =
ir 3%:@“’1‘ It s Kc”fa) W+6(c‘”+3)+9} ’

Os

s=0

and ¥7% (0) # 0 is due to non-Abelian boson loops in Fig. 8. For both photon SE and v — Z mixing
corrections, we used the approximation [12]

s
F (s,m,m) ~ G2

for small s < m?, then the partials in (160) yield terms of the form m?F’ (s, m, m) = . Reverting to (155),
the expansion of F (s,m,m) about s = 0 yields higher-order terms m?O ([#]2) in X for b = ,7Z which

vanish when dressed according to (156) in agreement with (159).
Renormalization starts with a bare charge e,, and the correction [56]

be (I, X7%) = e, {52; — ‘252;] (175)
1 xz
= e, [m (0) — 2 2(0)]
2 Cw My

renormalizes the charge e = e, + de, where

s 277 (0)

Cw Mm%

877 = —II"(0) — , and

§2) = —11" (0)
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are the charge and photon field renormalization constants, respectively. In the usual theory, arguments on
the left in (175) are core functions {II7, X7#}; however, in the stabilized theory, we utilize the complete
amplitudes (168) and (172) to obtain

Je (fﬂ, 272) ~0. (176)

Therefore, e = e,, and there is no charge renormalization. Any redistribution of vacuum charge which shifts
the energy is just a natural consequence of the stability requirement: Charge e acts on the vacuum |0) — |0,),
and the polarized vacuum |0,) acts back on e shifting its energy as illustrated in Fig. 1.

For the remaining amplitudes, we list only the net and core since DCM expressions, although lengthy, are
easily evaluated using analytic expressions for partials (158) derived from (150), (151), and integral tables.
For Z-boson self-energy corrections shown in Fig. 9, we have

7 z z ox”
() =%7(s) = X% (2) — s (s—2), (177)
where
Zg= 2 )4 2 S (-5
b)) (5)747r 3l_eHT2al5{Al+3 ln< w2 ze)} (178)
4 s
+ gz {(v? +a3) (sAf+ (s+2m3) F (s,mys,mys) — §)
f#v
3 2
8c2 52 my (Ap + F(s,mg,my))

_|_

19 1 11\

(—cfﬂ (40s + 80w) + (cfu — sfu)2 (8w +s)+ 12w> F (s,mw,mw)

(h—2)? h z
+ |10z —2h+ s+ —— | F(s,myg,mz) —2hln — — 2zIn —
s w w

+ (102 — 2k + s) (1—h

_|_

2 2 212 9 1
3° (1 (0 —5u)” - 46“’)} 12¢2 s2

The first sum in (178) includes leptons (1) only, and the second excludes neutrinos (v).

For W-boson self-energy corrections shown in Fig. 10,

SV (s) =W (s) = W (w) — (s —w), (179)
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FIG. 9: Z-boson self-energy.

o . 3 m2 m4 2 m2
4w s2 ) 3 Z KS—?le)Az—I-(s—21—2;)F(s,0,ml)+35_2l} (180)
w I—e T
1A+ S m2 A_ 5 m%—
+qd§let53[2(82m++2 +7 Siim_77
m2 +m2  (mZ —m2)?
+ <3— + 5 _( +28 ) Fs,m,,m.)
: 2 | : 1 2 A
(o miam (mdemd ) 5] (190 (Y] Aw
2 miy —mZ  m_ 3 B ] ;

+ 542—612”<7z—|—7w+105—2(z_w)2>—1<w—|—z—5—<z_w)2> F(s,mz,mw)
bt 3 s 6 2 2s ’ ’

+s§”(—4w—103+2f2>F(s,0,mW)+é<5w—h+;+(h;;”)2>F(s,mH,mW)

+ {cgj"(?zﬁL?erlOsél(zw))sfuz+é(2wZ)] Zs_zwlng

(§w+182>hilwlnzC§”<7z+7w+?§s>+sﬁ)z

| =

+

5 52 32
<35+ w z h) 3 < w + 35> s

and m4 and m_ are masses for upper and lower components of a quark doublet, respectively.
Self-energies for diagrams with b = {vZ, Z, W} require adjustments

{ﬁ’b (s) = Xb(s) + (s —m3) Ar?, b:VV,Z} , and (181)
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FIG. 10: W-boson self-energy.

SV (5) = 2V (5) + sArZ (182)

for Ar corrections [31] which account for variations of {gw, gz} with respect to my and myz; we have

2 2 2 ) 2 K} 2
{AT’YZ7 ATZv ATW} = {_Cw’ o 2 Sw’ C;U} ( Tn2Z o TnQW> ’ (183)
Sw 52 52 my My,
wherein finite-on-shell-mass shifts from (166) are
om% = Re [Zﬁ-mte (m%)] , and (184)
smiy = Re [X7 . (miy)] (185)

2 2
In Sec. VIIB4, we derive Ar® using stability arguments. Values for squared mass ratios {6::22 , 6::2"" } and
zZ w

Ar are given in Appendix Table II.
Net amplitudes in (168), (172), (177), and (179) for boson self-energies are finite and satisfy required mass

shell conditions (162) and (163) for b = {v, vZ, Z, W}. Amplitude £ agrees with the result given in Hollik
[12]; however, {fWZ 27, iW} including Ar corrections differ from Hollik’s results in two respects:

a) a small finite charge renormalization g = 3.87 x 10~* from (171) is absent in {22, 2W} , and

b) they include polarization derivative shifts in (167) — finite parts are given in Appendix Table II.

As regards item a), inclusion of any charge renormalization would be inconsistent with the stability approach
and result (176) in particular. For item b), finite parts differ depending on the renormalization scheme,

and {XA]VZ , 02, XA]W} are consistent with the scheme given in [59]; moreover, all four boson self-energies are

unified under the same formula (161). Numerical results for boson polarization functions are given in the
Appendix.
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2. Fermion SE corrections

For fermion self-energy corrections, we again expand the core amplitude

5 (k) = 5 (my) + 85}? (K—my)+HO.T.. (186)

From (62), the DCM transform is
{m} = {ma}- (1+An) , (187)

where the mass set {m.} C {ms, mw, mz, u} corresponds to terms in (192). Upon applying (61) to (186)
and noting that { B; m?c, my,msg ) ; ¢ = 0,1} occurring in (192) are invariant under (187) applied to all mass

arguments, we obtain
lem (k)’ == (my) . (188)
f=ms

From arguments similar to those for boson self-energies above, f —m and its dimensionless coefficient (first
partial) in (186) are also invariant under (187). The first partial involves derivatives of B, (153) and B;
(154). Finally, higher-order terms in (186) vanish under (187); therefore, the DCM amplitude is

ox/f
o (k) = =2 (my) = —~ (K —my) ; (189)
o -
compare with (160). The net amplitude
21 (k) = 27 (k) + 2, (k) (190)
satisfies the expected mass shell condition
5% (k:)‘ ~0. (191)
f=ms
For the corrections shown in Fig. 11, the core amplitude [56] is
B (k) = K] () + KrsZh (k) +my o6 (K7) (102)
where
o
5 =~ Q3 2B (Pomp. ) +1] + (0 +3) 21 (R5mgomz) + 1

1
+ Q [231 (kz;mf,mw) + 1]} s
1

o
Sh=-1n {2”faf (281 (F5mg,mz) +1] = 55

[231 (kQ;mfr7mW) + 1}} , and

a . 2 2 2.

2=~ {QF [4Bo (Kimy. ) = 2] + (v, — af, ) [4Bo (K my.mz) — 2]} .
Substituting the vector (Vcom = %E‘f,), axial (Acore = 167521{‘), and scalar (Score = me];) parts of (192)
into (189) , we obtain

»f

dem

(k) = Vdcm (k) =+ Adcm (k) + Sdcm (k) 3 (193)
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where

f 2 2 62\);
Viem = 7%2\/ (m ) - me k2 (% - mf) )
k2:m§
Adem = 1:KZ% (m3) , and
X!
Saem = —my%% (m?) = 2m§ =7 (K=my) .
kQZm?
The identity
o5t o5

5 = Fo

has been used to evaluate derivatives for J = {V, A, S}. For the derivative of A.ur., we have replaced
fs = —vsk so ¥ stands to the right as required by (189); one finds

0

B 5% } = 55

8% [ 75% A V524
where the symmetrized expression for the derivative

% {752,{1} = %% [752,{1 + 2,1;75}

)3
= ak? (vsk + Kvs) =0
has also been employed. Collecting terms, the net amplitude (190) reduces to
ST (k) = kv (k) + KvsSa (k) + myDs (K2) (194)
where
. 05
Bu () = 54 () - 2f () - 2wy |
kzzmﬁ
£a (k) = 4 (k) = 24 (m3) .
& g2 (2 f(2 2 05
Y5 (k%) = g (k) — Zg (m}) +2m] k2 7
kz:mb?c

and E{;S = E{; + Z‘g. Using formulae in [12, 56], the renormalization constants are

0%y
_ f( 2 2 Vs
02y = =25, (mf) —2mj 952

)

kQ:mr;’c
§Za = X% (m?) ,
dmy =mypXh (m3)

and it can be seen that the result (194) agrees precisely with that obtained from renormalization. Numerical
results for fermion self-energy functions for an electron are given in Appendix Fig. 17.

3. Vertex corrections

Consider the vertex corrections shown in Fig. 12; in the small fermion mass limit [57], only vector and
axial vector terms contribute, and the core amplitude is

AT (k2 myp) =7, Ay (K my) — v A% (K2, my) (195)
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FIG. 12: Vertex corrections.
where k2 = (p/ — p)°. The functions
kQ
A, (K2 omy) = A4 (0,my) + FYy (m2> (196)
f

involve singular parts at k> = 0 and finite form factors F&J;‘ which vanish at k? = 0. Detailed expressions

for the functions are given in [12]. Applying (61) and (62), the form factors F&Q (k—2> in (196) vanish as

2
my

n — oo in my (n) = my (1 + An); therefore, the DCM vertex is

[407) g = = [ 0,mp) = s 4% (0,m)] (197)

and the net vertex amplitude (60) reduces to the expected result from renormalization

A =~ o ki — 75F7f ﬁ . (198)
o uEv m? 12 A m?
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Wave field renormalization and Ar corrections

In the stabilized theory, Ar factors for {W, Z} follow easily from the constancy of the electrical charge;
squaring (11), taking variations

5e? = 8gi, 82 + gi 052 =0

(199)
= dgpcr, + gpocs, =0, (200)
and using (10), the quadratic coupling deltas are
2 2 2
o o w_ € omy  dmiy,
sai =gty [ =2 o S )] (201)

69% = dgiy + 69%

(202)
g2 [Arzchv—sz) <6m22 om? )} 7

w
2 2 2
s2, ms, miy
where

A similar correction for v — Z mixing may be derived in the manner of [31] by varying the coupling constants
in the Lagrangian term

2

m 2
Ly (9w, 9B) = > (9wW; + gBB,)

taking care to vary only the factors {gw, gg} of the baseline fields {W3 Bu}- Upon taking the variation

oL oL
0L (9w, 9B) = agfj/(sgw + 6‘92 d9B

using (9) to re-express in terms of {Z,

A,}, and considering only terms involving Z,, A*, one obtains

m 1
LYy, = §5mizZuA“ ,
where

Sw \ Mm% m,

5miz =-—m% [AT'VZ =_ <6m22 - 6m%‘/>} .

Using (14) and defining 6m? , = iégizzﬂ, we have

8937 = —gz A7 (203)
Therefore, we expect free field propagator modifications of the form
1 1—Art

b=W, Z
/42—771%_)}’@27m12)7 ’

resulting in small departures of the propagator residue from unity. To nail down the propagator modification
for v — Z mixing, one tries an average

1 <<SZZV L 02y )
2 k2 k2 2

—my

and uses the renormalization method reviewed below to relate the coefficients {6Zz,, 67,7} to Ar7Z.
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Standard renormalization theory (SRT) introduces mass and wave field renormalization constants to con-
struct finite S-matrix elements and Green’s functions. Boson self-energy and v — Z mixing propagators

are
1 1
b .
Dul/(k)__zgl“/{k2_m2 _k2_mb
= G and

K2 —mi o+ 52, (K2, 50)

1 /62 0z
Z o Zy vz Z (1.2
D}y (k) =g, {2 ( + o ) 4+ =37 (K

k2 k2 —

= igu g [£37 (2, 577)

where (204) includes iterations with b = bb, and the renormalized amplitudes are given by [12, 61]

2 {ﬁfa (kz’ Eb)] %

2 _ 2
k ms,

—|—...},b:fy,I/V,Z

%, (K2 107) = 7 (K?) + k202, = k2 [T17 (k?) +62,]

207 (K2, 20%) = 0% (k) + % 62,2k + 6 Zz-, (K — m%)]

2Z (K, 2%) = 27 (k) — M3 + 0Z7 (k* —m%) , and

Wk 2V = ZW (k%) — SME, + 02w (K2 —miy) |
where §Z; and dZy are displacements of the field renormalization constants

Zy=14+62Zy,b=2Z,W

from unity. From field renormalization relations

Wo, = {ZV"‘ ~1+ ;6ZW] w,

1
Bop = {2113/2 ~1+ 2523] B,

and (9), the physical fields satisfy

l:ZOI»b:| o |:1+15ZZ 1(5sz

Ao 15Z,z 1+ 362,

(204)

(205)

where the subscript ”,” denotes bare, as opposed to renormalized quantities, and the renormalization con-

stants satisfy [60]

6ZZ o 6121; 121) (5ZW
6Z, | T s2 2 || 6Zp |

’LU

027y = —8wCyw (02w — 6Zp) —
677 = —SwCw (62w — 0Z5) + Ar?Z .

Ordinarily X = £°

Sore 1 (206)-(209); however, with the stabilized amplitudes at our disposal, we are free

to replace X° with Zga = 5’ from (165) to determine all renormalization constants. Applying mass shell

renormalization (stability) conditions

=0, and



Table I: Renormalization constants

] | =0 [sM2, b=2,W| 62, | 622, | 52,2 \ 8 Zw \ 522
Stability b 0 0 0 2Ar7Z ArY Ar?
SRT |l | Re 2" (mf)] [—I1 (0)[ 252 2250 1 9nr7 |11 (0) + A" 4 & 2250 1D (0) 4+ Ar7 4 2t 2250

only finite wave field corrections for Ar shown in Table I are non-zero; SRT results are included for compari-
son. Referring to (205), the stability result 62z~ = 0 means that the photon propagator has no Z-component

52,
k2

consequently, there is no direct coupling between the photon and a neutral current Jy¢ for v — Z mixing
— not even an infinite one. On the other hand, an electromagnetic current couples to Jy¢ via the Z with
amplitude

1
502,z = Ar??

as originally suggested by (203).

5. Muon Decay and Ar corrections

In the Born approximation, the muon decay amplitude corresponds to a Feynman diagram

in the Standard Model. The resulting decay rate [12]

FO — a2 mz 1 _ 8mg
#o 384w simiy, m2

when reconciled with the Fermi contact model prediction

= Grm (1— 8mg> ;

no19278 m2

yields the Fermi constant in lowest order

yes
G°

o= T (210)

With higher-order QED corrections [62, 63],

1 Gimg, | (m?
T, 19273 <mg) (1+Aqep)

defines G in terms of the precisely measured muon lifetime 7,, where

f(z)=1-8x—122%Inz + 82 — z* | and

25
Agep = % <4 —7r2> +0 (a?) .
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In addition to the one-loop correction shown in Aggp, O (az) corrections for two-loops are also known [64—
66]. These QED corrections involve several renormalization schemes; however, the corresponding stabilized
QED corrections are finite without renormalization as shown in Sections V-VI. Stability corrections for
vacuum polarization involve a subtraction of the form (83) at k> = 0 and are therefore equivalent to the
on-shell renormalization scheme. For other renormalization schemes; for example, the modified minimal
subtraction MS, Aggp involves a coupling constant renormalization. Ritbergen [64] gives a prescription
«a
a(my) = ————>+0(a?) (211)

_ oy M
1 3Wlnm§

relating the MS coupling constant « (m,,) to the on-shell value o = 1/137.035999139(31) [15]. However,
from foregoing results (87) and (176), the prescription (211) does not represent an intrinsic renormalization
of electrical charge in the stabilized theory.

Electroweak corrections to the muon lifetime involve Ar corrections to the Fermi constant [12, 31, 67]

Gr =Gy [1+Ar], (212)
where after renormalization
2 Cw
p)
Ar=-Ar? — —6777’2W + —2(0) + Aplvertex box] wigh (213)
My My

2
A,,,[vertex, box] _ ag (6 + 7= isw In Ci) .
4ms2 2s2,

From a stability perspective, the first two terms of (213) are due to finite mass shifts (184) and (185); taking
into account (176), variation of (210) yields

Sm?
6G% = —G% [ATW + QW] : (214)
m
w
In standard renormalization theory, bare parameters {a., s3,, mg, } replace those in (210), and the expression
for Ar includes a charge renormalization term dc, which is subsequently incorporated into a renormalized

coupling.

VIII. CONCLUDING REMARKS

In this paper, we developed a model for a stable electrical charge wherein a hidden interaction between
the electromagnetically dressed charge and an opposing vacuum current offsets the positive electromagnetic
field energy. The model was generalized to apply to all Standard Model interactions by defining stability
conditions for fermion and boson self-energy processes which result in intermediate dressed core mass states
of infinitesimally short duration for radiative corrections. Concise rules for constructing S-matrix corrections
for the dressed core were developed and applied to resolve divergence issues in Abelian QED and non-Abelian
QCD and electroweak theories. The stabilized amplitudes, including core and dressed core contributions,
are finite and agree with renormalized QFT for all cases considered.

Since mass and charge were maintained as observed fundamental constants throughout in both the La-
grangian and subsequent radiative corrections, there is no mass or charge renormalization in this approach.
Fundamentally, the electromagnetic and strong coupling constants {a, «,} are independent of the energy
scale, and QFT is scale-invariant. For a collection of diagrams, however, renormalization methods remain
essential for deriving an effective running coupling constant [68, 69] with an energy scale signature consistent
with QCD’s prediction of asymptotic freedom [47, 48] and its excellent agreement with experimental results
[54].

In conclusion, we remark that the stability approach is simpler compared to renormalization and offers
several other advantages:

1. stabilized amplitudes are uniquely determined in contrast to multiple renormalization schemes,
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2. no separation of left- and right-handed fermion fields in electroweak theory is required, and

3. only finite wave field corrections for Ar are non-zero for electroweak corrections {272 , 22, EW}
Overall, our results suggest that elementary electromagnetic and color charges are rock-solid constants, and
any energy dependence of predictions arising from radiative corrections is better attributed to modifications
to the field propagation and vertex functions rather than fundamental physical constants. Finally, we believe

that it more accurately characterizes the physics involved in radiative processes since it includes the vacuum
reaction (61) that stabilizes the system.
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APPENDIX: NUMERICAL RESULTS
Values for Ar are tabulated in Table IT using sin? (fy) = 0.23122(4) and other physical constants [15].

Table II: Numerical results for Ar and derivative shifts.

L b= ol vz [z [ W]
my (GeV/c*) | 0 [{0, mz}|91.1876| 80.379

oy - ~ ]-0.1061|-0.0920

A 0 | 0.0258 |-0.0329 |-0.0470

22 (m?) |7 |0001165|-0.11421-0.1252

Real parts of boson polarization functions (167) are plotted in Figs. 13-16. Stability profiles use ampli-
tudes (161) or, equivalently, (165) exclusive of Ar. Results in Fig. 13 agree with those in Fig. 8 of [56]
notwithstanding updated physical constants [15]; QED results are added for comparison using an analytic
result for (83) given in [70]. For numerical evaluation of photon SE and v — Z mixing profiles shown in Figs.
13 and 14, the stability value at s = 0 is not represented; but analytically, II7 (0) = Iz (0) = 0 from (167).
Differences between ” Stability + Ar” profiles shown in Figs. 14-16 and Figs. 9-11 of [56] are due to

1. Ar impacts arising from updates to the core functions for { X%, X"} in [12] relative to [56],
2. derivative shifts in Table II, and
3. updated physical constants including a Higgs mass measurement 125.18 4 0.16 GeV/c? [15].

Analytic expressions for F (s,mi,mg) given in [56] and its partials (158) were verified against numerical
integration results for all mass arguments m; and msy over the range 0 < +/|k?| < 200 GeV'.

Electron self-energy function profiles {iv, 2A, XA]S} shown in Fig. 17 agree with those in Fig. 18a of [56].
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FIG. 13: Stabilized electroweak photon polarization is compared with QED for electron, muon, and tau.
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FIG. 14: Stabilized photon—Z mixing profiles with /without adjustments for Ar.
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Z-boson Polarization
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FIG. 15: Stabilized Z-boson polarization profiles with/without adjustments for Ar.
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FIG. 16: Stabilized W-boson polarization profiles with /without adjustments for Ar.
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Electron Self-Energy Coefficients
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FIG. 17: Electron self-energy coefficients for vector, axial, and scalar contributions.
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