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This paper analyses elementary particle stability and applies the resulting stability principle to
resolve divergence issues in quantum �eld theory without renormalization. For quantum electrody-
namics (QED), stability is enforced for an electron by requiring that the positive electromagnetic
�eld energy E+

em be balanced by a negative interaction energy E−em between the observed charge and
a local vacuum potential. Then in addition to the observed core mechanical mass m, an electron
system consists of two electromagnetic mass components m±

em of equal magnitude M ≡ ηm but
opposite sign; consequently, the net electromagnetic mass is zero. Two virtual, electromagnetically
dressed mass levels m ± ηm are constructed to form a complete set of mass levels and isolate the
electron-vacuum interaction; in general, the vacuum current associated with transient dressed core
mass (DCM) states for a fermion opposes that of the core. Similarly, electroweak theory is used
to de�ne a stability condition for bosons and determine dressed boson mass states. For quantum
chromodynamics, the stabilized amplitude takes into account con�nement. Total scattering ampli-
tudes for radiative corrections, including core and DCM states, are shown to be convergent in the
limit η →∞ and equal to renormalized amplitudes when Feynman diagrams for all mass levels are
included. In each case, the in�nity in the core mass amplitude is canceled by the average ampli-
tude for DCM levels, which become separated in intermediate states and account for the stabilizing
interaction energy between a particle and its surrounding vacuum. In this manner, S-matrix cor-
rections are shown to be �nite for all particles of the Standard Model, all the while maintaining
their mass and charge at physically observed values. The method is veri�ed for radiative corrections
in QED and non-Abelian gauge theories. The results demonstrate that quantum �eld theory is
fundamentally scale invariant.

I. INTRODUCTION

A long-standing enigma in particle physics is how an elementary charged particle such as an electron can
be stable in the presence of its own electromagnetic �eld [1, 2]. Critical accounting for charge stability is
essential since radiative corrections in quantum �eld theory (QFT) involve self-interactions that appear to
change the mass and charge of a particle. This analysis identi�es and accounts for the hidden interaction
that energetically stabilizes a particle such that its mass and charge assume their physically observed values.
The agreement between renormalization theory and experiment con�rms the e�ect of vacuum �uctuations

on the dynamics of elementary particles to astounding accuracy. For example, electron anomalous magnetic
moment calculations currently agree with experiment to about 1 part in a trillion [3, 4]. This achievement
is the result of seven decades of e�ort since the relativistically invariant form of the theory took shape in
the works of Feynman, Schwinger, and Tomonaga (see Dyson's uni�ed account [5]). The agreement leaves
little doubt that QFT predictions are correct; however, the renormalization technique [6, 7] used to overcome
divergence issues in radiative corrections o�ers little insight into the underlying physics behind charge stabil-
ity in the high-energy regime. Recall that divergent integrals occur in scattering amplitudes for self-energy
processes and arise in sums over intermediate states of arbitrarily high-energy virtual particles. This stymied
progress until theoretical improvements were melded with renormalization to isolate the physically signi�-
cant parts of radiative corrections by absorbing the in�nities into the electron mass and charge. Although
the renormalization method used to eliminate ultraviolet divergences results in numerical predictions in re-
markable agreement with experiments, rede�nition of fundamental physical constants remains an undesirable
feature of the current theory in this author's opinion.
Our main purpose is to develop an alternative to mass and charge renormalization in QFT. A minimal

requirement for this proposal is that it reproduce the successes of the accepted theory: these include the
successful higher-order multiloop calculations of QED, the modern understanding of QED as a part of a
non-Abelian electroweak theory, and asymptotic freedom in quantum chromodynamics (QCD). Starting
with the classical self-energy problem in Sec. III, we de�ne an energetically stable electrical charge. We
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then generalize the stability principle to apply to all interacting particles of the Standard Model. Scattering
matrix corrections for stability are simply constructed using core amplitudes from the literature, involve two
additional Feynman diagrams associated with dressed core mass (DCM) states, and account for the action
of the vacuum back on the charge via an opposing current. After de�ning divergent integrals for DCM
diagrams, we verify that net S-matrix corrections in QED for vacuum polarization, fermion self-energy, and
vertex processes are �nite to all orders in perturbation theory. Finally, we apply the method to one-loop
diagrams in non-Abelian Yang-Mills [8] and electroweak theories [9�11].

II. LAGRANGIAN AND NOMENCLATURE

In this section, we summarize the required machinery of the Standard Model utilizing references [12, 13].
Natural units are assumed; that is, ~ = c = 1.

A. Electroweak

The electroweak Lagrangian for the physical particles

LEW = LG + LH + LF (1)

includes gauge, Higgs, and fermion parts. Gauge �xing and ghost terms are omitted in (1) since it is
only necessary to consider physical particles for this development. The gauge part, based on a Yang-Mills
prototype (29), is given by

LG = −1

4
W a
µνW

a,µν − 1

4
BµνB

µν , (2)

where the �eld strength tensors

W a
µν = ∂µW

a
ν − ∂νW a

µ + gW εabcW
b
µW

c
ν , and (3)

Bµν = ∂µBν − ∂νBµ

are expressed in terms of derivatives of the gauge �elds: a triplet W a
µ , a = 1, 2, 3 of vector bosons and a

singlet Bµ which transform according to SU (2) and U (1) symmetry groups [9], respectively. In (3), gW is
the non-Abelian SU(2) gauge coupling constant, and εabc is the Levi-Civita tensor representing the structure
constants of SU (2).
The Higgs part is given by

LH = (DµΦ)
†

(DµΦ)− V (Φ) , (4)

where Φ is an isospin doublet coupled to the gauge �elds via the covariant derivative

Dµ = ∂µ − igWTaW a
µ − igB

Y

2
Bµ , (5)

−→
T = −→σ /2 are weak isospin generators, −→σ are Pauli matrices satisfying the SU(2) algebra [σi, σj ] = 2iεijkσk,
and gB is the Abelian coupling constant. Φ carries hypercharge Y = YΦ ≡ 1 and a third component of
isospin T3Φ = − 1

2Φ. Minimizing the Higgs potential

V (Φ) = µ2
ΦΦ†Φ + λΦ

(
Φ†Φ

)2
(6)

with λΦ > 0 and µ2
Φ < 0 for symmetry breaking leads to a stable ground state

Φ (x) =

(
φ+

(v + h(x) + iχ) /
√

2

)
φ+=χ=0

=
1√
2

(
0

v + h(x)

)
, (7)
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where in a unitary gauge, φ+ = χ = 0, and the real Higgs �eld h(x) �uctuates about a vacuum

v =

√
−
µ2

Φ

2λΦ
.

Physical �elds for charged W -bosons, neutral Z, and photon are

W±µ =
1√
2

(
W 1
µ ∓W 2

µ

)
, and (8)

(
Zµ
Aµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
W 3
µ

B
µ

)
, (9)

where the weak mixing angle θW is de�ned by

cos θW =
gW
gZ

(10)

=
mW

mZ

with gZ =
√
g2
W + g2

B , and the second line in (10) follows from (13) and (14). In terms of the physical �elds,
(5) takes the form

Dµ = ∂µ − i
gW√

2

(
T+W

+
µ + T−W

−
µ

)
− igZ

(
T3 −Q sin2 θW

)
Zµ − ieQAµ ,

where T± = T1± iT2 raise (+) or lower (-) the current in interactions between left-handed fermions and W±,
Q = T3 + Y

2 is the Gell-Mann-Nishijima relation for the charge operator, and the electrical charge satis�es

e ≡ gW sin θW = gB cos θW . (11)

Omitting higher-order non-mass terms, (4) becomes

LH

(
m2
W , m

2
Z , m

2
H

)
' 1

2
∂µh ∂

µh+m2
WW

−
µ W

+µ +
1

2

(
Zµ Aµ

)( m2
Z 0

0 m2
γ

)(
Zµ

Aµ

)
− 1

2
m2
Hh

2 , (12)

where vector boson masses

mW =
1

2
gW v , and (13)

mZ =
1

2
gZ v , (14)

generated via the Higgs mechanism [10, 11, 14], come from the kinetic part of (4), and the photon remains
massless: mγ = 0. The scalar boson mass (Higgs), resulting from an expansion of V (Φ) in (6) about v, is

m2
H = 2v2λΦ , (15)

where λΦ may be determined using the identity

v2 =
m2
W sin2 θW√

πα
(16)

and experimental values [15] for mW , sin2 θW , and mH .
Suppressing the color attribute for quarks, the fermion part of the Lagrangian is given by

LF =
∑
j

ψ
j

Liγ
µDµψ

j
L +

∑
jσ

ψ
jσ

R iγµDµψ
jσ
R + LYukawa

F (17)
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for each lepton or quark family (j), where γµ are Dirac matrices,

ψjL =

(
ψ j+L
ψ j−L

)
is a left-handed fermion doublet with component index σ = ±, and ψ jσR is a right-handed singlet for a
fermion f indexed by jσ.

LYukawa
F = −

∑
jσ

gjσ

[(
ψ
j

LΦ
)
ψ jσR + ψ

jσ

R

(
Φ†ψ jL

)]
(18)

is the Yukawa interaction term, and gjσ are fermion coupling constants. The complete set of fermions
includes leptons: (

νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

, eR, µR, τR

and quarks: (
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

, uR, dR, cR, sR, tR, bR

which carry color and belong to the fundamental representation of the color group G = SU (N) of degree
N = 3. Employing (7)

LYukawa
F (mjσ) = −mjσ

[
ψ
j−
L ψ jσR + ψ

jσ

R ψ j−L

]
, (19)

where the masses generated from the interaction between the fermion and Higgs �elds are

mjσ =
1√
2
gjσ (v + h)

∣∣∣∣
h=0

. (20)

We will also need vertex factors and propagators below for later reference; these, along with propagators
for the Higgs, ghost �elds, and vertex factors for SU(N) theories may be found in the literature and [13].
For fermions coupling to the W , Z, and γ, vertex factors are

W±

}
feDf ′

= i
e√
2 sw

γµ
1

2
(1− γ5) , (21)

Z

}
feD

= ieγµ (vf − afγ5) , (22)

γ

}
feD

= ieQfγ
µ , (23)

where (f = jσ , σ = ± , f ′ = jσ′ , σ′ = ∓), and the vector and axial vector coe�cients

vf =
T f

3 − 2s2
wQf

2swcw
, (24)

af =
T f

3

2swcw

4



are neutral current (NC) coupling constants with {sw ≡ sin θW , cw ≡ cos θW }.
The fermion propagator [16] is

f

pF = SF (p,mf ) =
i

�p−mf + iε
, (25)

where �p = γµpµ, and anti-fermions are denoted by f̄ . The vector boson propagator is

α

kg
β
= Dαβ

F (k) =
−igαβ

k2 −m2
b + iε

(26)

in the Feynman-'t Hooft gauge [17], where the metric tensor gαβ = gαβ has non-zero components

g00 = −g11 = −g22 = −g33 = 1 ,

and b ∈ {W, Z, γ}. For the Higgs, we have

kh =
i

k2 −m2
H + iε

. (27)

Finally, unphysical particles including gauge �xing Higgs {φ±, χ} and unitarity preserving Faddeev-Popov
ghosts

{
u±, uZ , uγ

}
occur in loop corrections discussed in Sec. VIIB.

B. Yang-Mills Theory

The SU(3) Yang-Mills theory involves nf = 6 quarks interacting with ng = 8 massless gluons in the adjoint
representation r = G. Again omitting gauge �xing and Faddeev-Popov ghost terms, the QCD Lagrangian is

LQCD =

nf∑
f=1

ψ̄jf

(
iγµD

µ
jk −mfδjk

)
ψkf + LYM , (28)

Dµ
jk = δjk∂

µ − igs
(−→
t ·
−→
Aµ
)
jk
,

LYM = −1

4
F aµνF

µν
a , (29)

F aµν = ∂µA
a
ν − ∂νAaµ + gs f

abcAbµA
c
ν ,

where ψkf is a Dirac spinor for the quark �eld with �avor f and color state k ∈ {R, G, B}, gs is the color
charge, t a = λa/2 , a = 1, ..., ng are generators represented by 3 × 3 Gell-Mann matrices λa, Aaµ are color-

charged gluon �elds, and f abc are structure constants of G. The t-matrices, which occur in a quark/gluon
vertex

g

}
feD

= igsγ
µta , (30)

and gluon propagator

a,µ

kg
b,ν

=
−igµνtatb

k2 + iε
(31)

rotate the quark in color space and generate the Lie algebra for G:[
t a, t b

]
= if abct c .

The structure constants occur in three- and four-gauge-boson vertices and satisfy

f acdf bcd = C2 (G) δab ,

where C2 (G) = N is an eigenvalue of the quadratic Casimir operator.

5



III. FORMULATION

A. Physical Model for QED

Regarding an electron as a point particle [18], the classical electrostatic self-energy e2/2a ≡ αΛ◦ diverges
linearly as the shell radius a → 0, or energy cuto� Λ◦ → ∞, where −e is the charge and α = e2/4π is
the �ne-structure constant. However, Weisskopf [19, 20] showed using Dirac's theory [21] that the charge is
e�ectively dispersed over a region the size of the Compton wavelength due to pair creation in the vacuum
near an electron, and the self-energy only diverges logarithmically. Feynman's calculation [22] in covariant
QED yields an electromagnetic mass-energy

mem =
3αm

2π

(
ln

Λ◦
m

+
1

4

)
, (32)

where m is the electron mass. In the absence of a compensating negative energy, (32) signals an energetically
unstable electron. This is the fermion self-energy (SE) problem, whose general resolution will suggest a
solution for boson SE processes as well resulting in �nite amplitudes for all radiative corrections. In this
section we derive an electron stability condition and apply it to develop a corresponding correction to the
scattering amplitude.
To ensure that the total electron mass is its observed value, renormalization theory posits that a negatively

in�nite �bare� mass must exist to counterbalance mem. For lack of physical evidence, negative matter
is naturally met with some skepticism (see Dirac's discussion [23] of the classical problem, for example).
Nevertheless, energies that hold an electron together are expected to be negative, and we can understand
their origin by �rst considering the source for the electrical energy required to assemble a classical charge
in the rest frame. Recall that the work done in assembling a charge from in�nitesimal parts is equal to the
electromagnetic �eld energy. Since the agents that do the work must draw an equivalent amount of energy
from an external energy source (well), the well's energy is depleted and the total energy

E = m+ E+
em + Ew (33)

of the system including matter, electromagnetic �eld E+
em, and energy well Ew is constant. For an elementary

particle, could the depleted energy well be the surrounding vacuum?
From another point of view, consider an electron and its neighboring vacuum treated as two distinct

systems that can act on one another. Suppose the electron acts on the vacuum to polarize it creating a
potential well, then there must be an opposing reaction of vacuum back on the electron. The resulting
vacuum potential Φvac con�nes the physical (core) charge akin to a spherical capacitor depicted in Fig. 1,
and the interaction energy

Ew → E−em ≡ −eΦvac (34)

is assumed to just balance E+
em resulting in a stability condition

m+
em +m−em = 0 , (35)

where the mass-energy equivalence E±em = m±em utilizing natural units has been applied. Therefore, the
net mass-energy of a free electron is attributed entirely to the observed core mechanical mass m which is
generated via the Higgs �eld interaction (20) in electroweak theory. In contrast to Poincaré's theory [24]
wherein internal non-electromagnetic stresses hold an electron together, external vacuum electrical forces are
assumed to provide charge stabilization and energy balance via a steady state polarization �eld surrounding
the electron. Corresponding to a divergent self-action process, we require a mechanism whereby the core
charge interacts locally with the polarized vacuum according to (34).
Apart from E+

em , the energy of the core charge in the potential well of Fig. 1 is shifted

E−core = m+ E−em ≡ mbare , (36)
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FIG. 1: E�ective vacuum potential con�nes core electron charge similarly to spherical capacitor. Since the
stability principle requires E+

em − eΦvac = 0, the total energy of the electron in the well and dressed in its
electromagnetic �eld is just its observed mass-energy.

where mbare may be identi�ed with the bare mass, and

mbare +m+
em = m (37)

captures the mass renormalization condition which is equivalent to (33) with (34) and (35). However,
notice that the bare mass corresponds to a core electron dressed in negative electromagnetic energy; hence,
its characterization as a �mechanical mass� is a misnomer (see [25] for example). Only the core mass is
observable, and only it is expected to appear in the Lagrangian if one takes (35) seriously. In renormalization
theory, however, one starts with a bare electron, self-interaction dresses it with positive electromagnetic
energy, and (37) is subsequently applied to rede�ne the mass. On the other hand, suppose we start with the
observed electron charge; then taking into account (33), (34), and (35),m+

em andm−em are always present, and
the total mass reduces to the observed core mechanical mass. Starting with this premise, we can formulate a
�nite theory of radiative corrections that accounts for all possible electromagnetically dressed intermediate
states, and no asymmetry necessitating a rede�nition of mass and charge is introduced.
Equations (33) and (35) suggest that a stable electron consists of three rest mass components: a core mass

m and two electromagnetic masses m±em that are assumed large in magnitude but �nite until the �nal step
of the development. We can think of m±em as components of an electromagnetic vacuum (zero net energy)
which are tightly bound to the core mass and inseparable from the core and each other, at least for �nite
�eld actions. Considering all non-vanishing masses constructed from the set {m, m+

em, m
−
em}, we are led to

de�ne a complete set of mass levels m + λM , where λ = {0, ±1} and M ≡ |m±em|. In the following, an
electromagnetically dressed core mass (DCM) refers to a composite particle with mass-energy levels m±M .
Associated four-momenta are pdcm = p ± PM , where {p, PM} correspond to {m, M}, respectively. DCM
rules for fermion self-energy processes are de�ned by

m→ m+ λM , and (38)

p→ p+ λPM . (39)

To transition this charge stability model into quantum theory, �rst consider a free particle state |p, m〉
satisfying p2 ≡ pµp

µ = m2, where pµ = (p◦, ~p) and pµ = gµνp
ν are contravariant and covariant momentum
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four-vectors, respectively. Spin is omitted in |p, m〉 since it is inessential to the subsequent development,
and the rest mass is included because it is the fundamental particle characteristic which becomes dressed in
stability corrections to the S-matrix; see (61). We employ the relativistic normalization

〈p′, m |p, m〉 = 2E (~p, m) (2π)
3
δ
(
~p− ~p ′

)
,

where E (~p, m) =
√
~p 2 +m2. Now construct a superposition

|χ〉 =
1√
2

∑
λ=±1

∣∣Υdcm
λ (p)

〉
(40)

of DCM states ∣∣Υdcm
λ (p)

〉
= |p+ λPM , m+ λM〉 , (41)

where the core four-momentum is dispersed per an uncertainty ∆p ≡ λPM . DCM states are normalized
according to 〈

Υdcm
λ′ (p′)

∣∣ Υdcm
λ (p)

〉
= 2E

(
~p+ λ~PM , m+ λM

)
(2π)

3
δ
(
~p− ~p ′ + (λ− λ′) ~PM

)
' 2E

(
~PM , M

)
(2π)

3
δ
(
~p− ~p ′

)
δλλ′ ,

where the latter form follows upon assuming M � m and requiring the vector components satisfy∣∣P iM ∣∣� ∣∣pi − p′i∣∣ , i = 1, 2, 3

thereby excluding a zero in the delta function argument at in�nity for λ′ 6= λ. While
∣∣pi − p′i∣∣ is arbitrarily

large in an integral over p′i in the delta function, it is assumed small compared to
∣∣P iM ∣∣. The expected

momentum and mass are given by

〈χ |{pop,mop}|χ〉
〈χ |χ 〉

= {p,m} , (42)

where { pop, mop} are corresponding operators. Therefore, the composite state (40) is energetically equivalent
to the core mass state |p, m〉 as required by (33) and (35). A core electron dressed with positive or negative
energy as in (41) is a transient state that is sharply localized within a spacial interaction region r ' ~/Mc in
accordance with Heisenberg's uncertainty principle [26] ∆pµ∆xµ ≥ ~/2 (no implied sum over µ). Scattering
amplitudes for low-energy processes are assumed una�ected because the energies are insu�cient to induce a
separation of tightly bundled states (41) in (40). For in�nite �eld actions, however, DCM states may become
separated in intermediate states with in�nitesimally small lifetimes; in this case, we shall need to account
for both core and DCM scattering amplitudes. To account for all possible intermediate states in QED and
satisfy (35), both mass levels m ±M are required for interaction between the physical charge and vacuum
potential; this generalizes the classical model in Fig. 1.
Since the interaction region reduces to a point as M →∞ for DCM states, self-interaction e�ects vanish,

and an electromagnetically dressed electron is assumed to interact only with the positive component of the
polarized vacuum as indicated in Fig. 2. Suppose the dressed electron, located at space-time position x1,
has current density jµ (x1). The current at a neighboring point x2 6= x1 within the interaction region is
distinct from that of the dressed core and reversed in sign; that is,

sgn [jµ (x2)] = −sgn [jµ (x1)] , (43)

where the core current is de�ned by the normal product [27, 28]

jµ (x1) = −eN
[
ψ̄γµψ

]
x1
.

Similarly to (43), the Hamiltonian density at nearby points must satisfy
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FIG. 2: Dressed electron interacts with opposing vacuum current in interaction region.

sgn [Hint(x2)] = −sgn [Hint(x1)] , (44)

where Hint(x) = jµ (x)Aµ (x) in the interaction representation [29], and Aµ (x) is the radiation �eld. From
(44) we anticipate a sign reversal in the DCM scattering amplitude relative to that for the core mass since
second-order S-matrix [30] corrections involve a product Hint (x1)Hint (x2).
From (42), the averages of the dressed mass and momentum for charged fermions are just the core values.

How do we apply this notion to calculation of radiative corrections in QFT? Consider a single fermion in
QED whose Lagrangian is

Lqed (m) = LqedF (m)− 1

4
(Fµν)

2
, (45)

where

LqedF (m) = ψ
(
i�∂ − e�A−m

)
ψ ,

Fµν = ∂µAν − ∂νAµ
is the electromagnetic �eld strength tensor, and �∂ = γµ∂µ. Notice that the expectation

1

2

∑
λ=±1

LqedF (m+ λM) = LqedF (m) (46)

is unchanged under (38) which suggests a general requirement: that the expectation of the Lagrangian for
each �eld be invariant under DCM transformations. For radiative corrections containing primitive diver-
gences in fermion self-energy or vertex diagrams, S-matrix charge stability corrections associated with DCM
states are evaluated in the same manner � this entails a core mass replacement (38) in fermion lines internal
to loops, that is, in each fermion propagator (25). Resulting loop-operator amplitudes are to be averaged
over dressed mass levels; that is, λ = ±1. For an external line entering a loop as indicated in Fig. 3 (b,c),
the momentum is similarly modi�ed according to (39) since the propagator is required to have a pole at
m+ λM . The same approach using (38) actually works for Fig. 3 (a), but is not generally valid for massive
boson SE calculations in electroweak theory. Electroweak theory constrains DCM rules for boson self-energy
processes.

B. Electroweak Application

The purpose of this section is to generalize and extend the DCM rules in Sec. IIIA to all particles of the
electroweak Standard Model including interactions.

9



FIG. 3: Baseline radiative corrections in QED: (a) photon self-energy, (b) fermion self-energy, and (c)
vertex involve the core mass only in internal fermion lines. Two additional diagrams, obtained by replacing

the core mass with electromagnetically dressed mass levels, are required for each radiative process to
account for interaction with an opposing vacuum current and ensure stability.

For each fermion mass mf ∈ {mjσ} in LYukawa
F , (19) is invariant under an expectation

1

2

∑
λ=±1

LYukawa
F (mf + λMf ) = LYukawa

F (mf ) (47)

similarly to (46). Assume identical scaling Mf = ηmf , then DCM levels are generated by

mf → mf (1 + λη) . (48)

Taking into account (20) with h 6= 0, we notice that DCM levels can be associated with a displacement of
the vacuum from the ground state; that is,

∆v = hλ (η) = ληv . (49)

For selected λ and η , the vacuum displacement (49) is the same for all fermions.
For bosons, LH in (12) is not invariant under a rule of the form (48). To determine the correct rule, let us

follow the approach in Sec. IIIA and de�ne [31]

M2
b ≡ Re

(
Σb(m2

b)
)
, (50)

where Σb is a boson self-energy function (see Sec. VIIB), and mb is the core mass. Now assume that the
vacuum response is a term Σbvac satisfying a free particle stability condition

Σb + Σbvac = 0 (51)

analogous to (35). Noting that Σbvac corresponds to a mass Mvac = iMb, construct two squared DCM states

m2
b →

{
m2
b +M2

b , m
2
b + (iMb)

2
}
, (52)
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wherein the second member of (52) corresponds to a complex mass state for an inherently unstable boson.
Using our λ−index notation, the rule takes the form

m2
b → m2

b + λM2
b , b = W, Z ,H . (53)

Substituting (53) into (12), we �nd

1

2

∑
λ=±1

LH

(
m2
W + λM2

W , m
2
Z + λM2

Z , m
2
H + λM2

H

)
= LH

(
m2
W , m

2
Z , m

2
H

)
(54)

is invariant. Assume identical scaling

{MW , MZ , MH} = η {mW , mZ , mH} , (55)

then each mass mb ∈ {mW , mZ , mH} is dressed according to

m2
b → m2

b

(
1 + λη2

)
. (56)

Substituting (16) in (15) and applying (53) with M2
W = η2m2

W , one obtains

m2
H → m2

H

(
1 + λη2

)
(57)

suggesting that DCM states of the W - or Z-bosons induce dressed states for the Higgs and vice versa.
Substitution of (15) into (57) reveals that the boson vacuum is shifted v2 → v2 + ∆v2 with

∆v2 = λη2v2 ; (58)

compare (58) with (49).
Vertex factors {(21), (22), (23)}, including the weak mixing angle (10), charge (11), and NC coupling

constants (24) are all stationary under DCM transforms (56). On the other hand, propagators {(25), (26),
(27)} involving massive particles are not stationary under DCM transforms, and the resultant amplitudes
constructed from them are either driven to zero or a stabilizing correction for �nite tree or divergent loop
processes, respectively. While the electrical charge (11) is an invariable according to (176), the couplings{
g2
W , g

2
Z

}
and θW can vary due to �nite on-shell mass shifts

{
δm2

W , δm
2
Z

}
derived from stabilized W - and

Z-boson self-energy corrections discussed in Sec. VIIB; see (201) and (202).
Construction of scattering amplitudes using fermion (25) and boson {(26),(27)} propagators results in

a mixing of fermion and boson masses. The regulation of infrared singularities for soft photon emissions
provides a simple example: for fermion self-energy (FSE) and vertex processes, a small �ctitious mass µ is
introduced in the photon propagator [22]; that is, mb → µ in (26). Fermion and pseudo-boson masses mf

and µ mix in terms of form ln
mf
µ ; for consistency, we de�ne a DCM state

µ→ µ (1 + λη) , (59)

then ln
mf
µ is invariant under (48) and (59). Generally, for massive bosons in FSE or vertex processes,

we require mb → mb (1 + λη). Similarly, when fermion and boson masses mix in boson self-energy (BSE)
processes, we require m2

f → m2
f

(
1 + λη2

)
.

Introduction of DCM states for massive bosons does not break gauge invariance of LEW in (1) since it
constitutes a displacement of the vacuum from the ground state and is therefore consistent with the Higgs
mechanism; moreover, the Lagrangian is stationary under the expectations in (47) and (54).

C. Total Finite Scattering Amplitude

Rules for the total scattering amplitude take their simplest form if dimensional regularization is used to
tame improper integrals; therefore, de�ne the total loop-operator associated with a SE or vertex part by

Ω̂ = Ωcore (M) +Ωdcm (M) , (60)
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where Ωcore accounts for self-interaction e�ects involving a core mass set

M ⊂ Sm = {mf , mW , mZ , mH , µ} , and

Ωdcm (M) = −1

2
lim
η→∞

∑
λ=±1

Ωcore (Mdcm (λ, η)) (61)

enforces stability via interaction of DCM states with an opposing vacuum current as required by (43). From
(48), (56), and consistency conditions discussed near (59),

Mdcm (λ, η) = M ·
[
ηλ ≡

{
1 + λη FSE/vertex√
1 + λη2 BSE

]
(62)

for FSE, vertex, and BSE diagrams in electroweak theory; for any m ∈M, the DCM state is

mdcm (ηλ) = ηλm . (63)

In addition to mass mb or mf , Ωcore depends on external momenta {k, p} for Feynman diagrams in Fig. 4
which may be on- or o�-shell. Blobs in Fig. 4 involve one-particle irreducible (1PI) amputated correlation
functions. For FSE/vertex processes, p = mf +δpos, where δpos is an o�-shell component; the corresponding
DCM state is

pdcm = mf (1 + λη) + δpos FSE/vertex . (64)

For BSE processes, k2 = m2
b + δk2

os, and

k2
dcm = m2

b

(
1 + λη2

)
+ δk2

os BSE ; (65)

of course, a massless photon (b = γ) is naked except for any o�-shell term. For notational simplicity, any
dependence on external momentum parameters has been suppressed during construction of Ωdcm because
{k, p, q} are implicitly dependent on associated core masses.
If an energy cuto� Λ◦ is assumed in lieu of dimensional regularization, then we must include Λ◦ in the

argument set of Ωcore. The cuto� scales in the same way as (63); that is,

Λdcm ≡ ηλΛ◦ . (66)

Scaling rules for the cuto� are required for consistent de�nition of the integrals � they ensure that

Λdcm � mdcm (ηλ)

for arbitrarily large ηλ, synchronize cuto� to Λ◦, and yield a well de�ned limit as η → ∞ in (61). In the
next section, we show that divergent integrals occurring in core and DCM terms are invariant under (63)
and (66); as a result, the net amplitude is �nite after cancellations.
Finally, we seek to apply the foregoing DCM rules to QCD. As with electroweak, all vertex factors are

independent of mass and are therefore DCM invariant. Brie�y, two modi�cations are required: First, the
sign of the core and DCM amplitudes are reversed � this is because free quarks and gluons are con�ned
and can not be experimentally isolated; therefore, apart from hadrons outside the region of con�nement, the
surrounding vacuum is e�ectively the primary observable. Relative to QED, this suggests an interchange of
particles and vacuum and a sign reversal of the stabilized amplitude; thus, a factor

λc = −1 (67)

is introduced for color con�nement. Second, for diagrams involving massless gluons only in the pure gauge
sector, we lack a mass reference � the solution is to introduce a small gluon mass µg via k2 → k2 − µ2

g in
propagators (31) when constructing amplitudes, then (53) is used to de�ne DCM states

m2
dcm = µ2

g + λM2
g

∣∣
µg=0

withM2
g ≡ η2µ2

◦ , (68)

where µ◦ is a unit of mass measure. The rationale for (68) is discussed further in Sec. VIIA.
In contrast to the regulator technique of Pauli and Villars [32], the above method employs physically

meaningful dressed mass levels (albeit virtual only), and we assume that the same principle applies to all
self-energy processes in QFT without introduction of auxiliary constraints.
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IV. DIVERGENT INTEGRALS

Here we develop integration formulae required for evaluation of stability corrections using cuto� and
dimensional regularization. In the p-representation, loop diagrams involve four-dimensional integrals over
momentum space, and the real parts of scattering amplitudes contain integrals of the form [33]

D (∆) =
1

iπ2

∫
d4p

(p2 −∆)
n =

(−1)
n

π2

∫
d4pε

(p2
ε + ∆)

n , (69)

where ∆ depends on the core mass m, momentum parameters external to the loop, and integration variables.
On the right side of (69), a Wick rotation has been performed via a change of variables p = (ip◦ε, ~pε), so that
the integration can be performed in Euclidean space where p2

ε = p◦εp
◦
ε + ~pε · ~pε. Integrals for the divergent

case (n = 2) must be regulated such that they are consistently de�ned for core and dressed core masses. For
the core mass, D is regularized using a cuto� Λ◦ on s = |pε|. In four-dimensional polar coordinates, we have

D (∆,Λ◦) =
1

π2

∫
dΩ

∫ Λ◦

0

ds
s3

[s2 + ∆]
2 . (70)

For DCM states, ∆ depends on mdcm, and the domain of integration in (70) must be scaled according to
(66); consequently, we need to evaluate

Ddcm = D [∆ (mdcm) , Λdcm] .

With a change of variables s = ηλt and taking the limit η →∞, we obtain

Ddcm = D (∆◦,Λ◦) , (71)

where

∆◦ = lim
η→∞

η−2
λ ∆(ηλm) . (72)

For example, the standard divergent integral [33]

D◦ ≡ D
(
∆ = m2,Λ◦

)
= ln

Λ2
◦

m2
− 1 +O

(
m2

Λ2
◦

)
(73)

is manifestly invariant under scaling rules (63) and (66); that is,

D◦ = D
(
m2
dcm,Λdcm

)
. (74)

Note that the average of (32) over DCM states is stationary due to (74); this ensures that the FSE in QED
is �nite as shown in detail in Sec. VB.
In contrast to the cuto� method, dimensional regularization evaluates a Feynman diagram as an analytic

function of space-time dimension d. For n = 2 and d4p→ ddp in (69), D may be evaluated using [34, 35]

D (∆, σ) = π−σΓ (σ) ∆−σ (75)

=
1

σ
− ln ∆− γ +O (σ) ,

where σ = 2− d/2 and γ = 0.577... is Euler's constant. For σ 6= 0, the limit Λ◦ →∞ may be taken since σ
regulates the integral. For DCM states, Ddcm must yield consistent results for both cuto� and dimensional
regularization methods. Considering the requirements used to derive (71) and employing appendix formulae
in [34], we conclude

13



FIG. 4: Generic self-energy and vertex diagrams: (a) BSE, (b) FSE, and (c) vertex.

Ddcm = D (∆◦, σ) . (76)

For the processes in Fig. 4, the argument ∆ in (75) has the form

∆ (m,µ) = am2 + b`2 + cµ2 , (77)

where m = mb|mf , `
2 = k2 | p2| q2, {a, b, c} depend on Feynman parameters, and c = 0 for BSE pro-

cesses. Applying (72) to (77) taking into account (64) and (65), the momenta go on-shell upon computing
lim
η→∞

η−2
λ `2dcm; that is,

k2 → m2
b BSE

p2 → m2
f FSE

q2 → 0 Vertex
, (78)

which we recognize as on-shell renormalization conditions. For the vertex, the dressed momentum transfer
qdcm = q + λ (P ′M − PM ) is assumed bounded, so lim

η→∞
η−2
λ q2

dcm = 0. As mentioned in Sec. III C, the case

where particle masses internal and external to the blob in Fig. 4 (a) are both zero occurs for BSE processes
in the pure-gauge sector of QCD. For this case, where ∆ = bk2, choose a = 1 and replace m2 → m2

dcm in
(77) using (68), then evaluate

∆◦ = lim
η→∞

η−2
λ ∆ (m = ηλµ◦) = µ2

◦ (79)

with ηλ =
√
λ η. Thus for all m ≥ 0, the net S-matrix amplitude computed from (60) is well de�ned since it

involves a factor

Γ (σ)

∆σ
− Γ (σ)

∆σ
◦

= − ln

∣∣∣∣ ∆

∆◦

∣∣∣∣ . (80)

The second term on the left side of (80) is associated with an opposing vacuum energy required for overall
energy conservation and system stability. In addition to a divergent part, Ωdcm in (61) may include a �nite
part, a constant, that cancels a like term in Ωcore.
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V. QED APPLICATIONS

Let us apply the foregoing theory with integration formulae given above to verify that net amplitudes
for second order radiative corrections in QED are convergent and agree with results obtained via renormal-
ization theory. Cuto� and dimensional regularization approaches are used to illustrate the method. Since
the complete amplitude Ω̂ is distinct from Ωcore, we drop the �core� subscript for unrenormalized (core)
amplitudes to be consistent with notation in the literature.

A. Vacuum polarization

The photon self-energy associated with Fig. 3 (a) results in a propagator modi�cation [30]

D′αβF = Dαβ
F +Dαµ

F

(
iΠ̂µν

)
Dνβ
F ,

where

Π̂µν ≡ Πµν +Πdcm
µν

is a polarization tensor generalized to include the stability (aka DCM) correction, and

Πµν (k, m) = − ie2

(2π)
4

∫
d4p tr [γµSF (p,m)γνSF (p− k,m)]

follows from the Feynman-Dyson rules [5, 22]. In consequence of Lorentz and gauge invariance [7] or by
direct calculation, it factors into

Πµν (k, m) = Π
(
k2, m2

) (
gµνk

2 − kµkν
)
.

As is well known, the contribution from terms kµkν vanishes due to current conservation upon connection
to an external fermion line. For a massless photon, k2 is invariant under a DCM transform, and we need
only focus on the scalar function Π

(
k2,m2

)
.

Since the scattering amplitude is in general a complex analytic function, it follows from Cauchy's formula
that the real and imaginary parts are related by a dispersion relation [36]. The imaginary part is divergence
free and may be obtained by replacing Feynman propagators with cut propagators on the mass shell according
to Cutkosky's cutting rule [37] or, alternatively, via calculation in the Heisenberg representation as shown
in Källén [38]. In particular for vacuum polarization, the real part for the core mass is given by

Π
(
k2, m2

)
=

1

π

∫ 4Λ2
◦

4m2

ds
g
(

4m2

s

)
s− k2

(81)

with imaginary part

g (w) = −α
3

√
1− w (1 + w/2) .

Applying (61) using (63) and (66) and performing a change of variables s =
(
1 + λη2

)
t in (81), we have

Πdcm = −1

2
lim
η→∞

∑
λ=±1

Π
(
k2, m2 + λη2m2

)
(82)

= − 1

2π
lim
η→∞

∑
λ=±1

∫ 4Λ2
◦

4m2

dt
g
(

4m2

t

)
t− (1 + λη2)

−1
k2

.
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Letting η →∞, we see that (82) is equivalent to a subtracted core amplitude evaluated on the light cone

Πdcm = −Π(k2 = 0, m2) .

Combining (81) and (82), we obtain a once-subtracted dispersion relation

Π̂
(
k2
)

= Π
(
k2, m2

)
−Π

(
0, m2

)
(83)

=
k2

π

∫ ∞
4m2

ds
g
(

4m2

s

)
s (s− k2)

in agreement with renormalized QED. From (83), Π̂
(
k2 = 0

)
= 0 epitomizes the free boson stability condition

(51) for a photon. For an in�nite sum of 1PI insertions, the generalized photon propagator is
kgpg =g+gcg+gcgcg+ ... (84)

= − igµν
k2

Ẑ3

(
k2
)
, where

Ẑ3

(
k2
)

=
1

1− Π̂ (k2)
(85)

modi�es the free photon propagator. Alternatively, one can de�ne a running coupling constant

α
(
k2
)

= Ẑ3

(
k2
)
α◦ ; (86)

in this interpretation, the bare
(
α◦ = e2

4π

)
and e�ective couplings are equivalent on the light cone

Ẑ3 (0) = 1 . (87)

In terms of an external current jextµ (x), the observable current is given by

jobsµ (x) = jextµ (x) + δjµ (x) ,

where

δjµ (x) =
1

(2π)
4

∫
d4k eikxjextµ (k)

[
Π(k2, m2)−Π(0, m2)

]
is the induced current. In standard renormalization theory (SRT), the last term in brackets is associated
with a correction to a divergent bare charge (e◦), but here we suggest that the correction is a stability
requirement associated with a vacuum reaction current. The physical and bare charges in SRT are related
by

e2 =

(
Z3 =

1

1−Π (0, m2)

)
e2
◦ ,

where
√
Z3 is the charge renormalization constant.

B. Fermion self-energy

The fermion self-energy operator for a core mass corresponding to the Feynman diagram in Fig. 3 (b) is

pFfyff = −iΣ (p,m) , where
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Σ (p,m) = − e2

(2π)
4

∫
d4k γµ SF (p− k,m) γµ

1

k2 − µ2
. (88)

After standard reduction and dimensional regularization, Σ simpli�es to

Σ (p,m) =
α

2π

{
S1 +

∫ 1

0

dx [2m− �px+ σ (�px−m)] D (∆, σ)

}
, (89)

where D (∆, σ) is given by (75) with

∆ = (1− x)
(
m2 − xp2

)
+ xµ2 .

The integral expression in (89) is equivalent to a form given in [13], while the term

S1 = −1− σ
4 �p

follows from appendix formulae in [33] and represents a surface contribution arising from a term linear in k
during reduction of (88).
Evaluation of Σdcm using (61) reduces to negating (89) and replacing ∆→ ∆◦ according to (76); we obtain

Σdcm (p,m) = − α

2π

{
S1 +

∫ 1

0

dx [2m− �px+ σ (�px−m)] D (∆◦, σ)

}
, (90)

where

∆◦ = m2 (1− x)
2

+ xµ2

follows from (78). Terms involving [(λPM , λM) ; M = ηm] have canceled in the average over DCM levels
yielding a function of the observable mass and momentum only. The net correction, including all three mass
levels in Fig. 3 (b), is given by (cf. [22])

Σ̂ (p) = Σ + Σdcm (91)

=
α

2π

∫ 1

0

dx (2m− �px) ln

[
m2 (1− x)

2
+ xµ2

(m2 − xp2) (1− x) + xµ2

]
,

where the limit σ → 0 has been taken to recover four-dimensional space-time. With a change of variables
x = 1− z, (91) is seen to be identical to the renormalized result given in Bjorken & Drell [39].
The processes in Fig. 3 (b), including iterations in the series

pFpf =F+ffyff+ffyfffyff+ ... , (92)

yields a modi�ed propagator [5, 30]

S′F = SF + SF

(
−iΣ̂ (p)

)
S′F (93)

=
i

�p−m− Σ̂ (p) + iε
,

which has the desired pole at �p = m since (91) vanishes on the mass shell

Σ̂ (p)
∣∣∣
p2=m2

= 0 . (94)
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Using the general expression for the stabilized fermion self-energy (190)

Σ̂ (p) = Σ (p)−Σ (m)− ∂Σ

∂�p

∣∣∣∣
�p=m

(�p−m) (95)

derived in Sec. VIIB 2, we see that

dΣ̂ (p)

d�p

∣∣∣∣∣
�p=m

= 0 ,

and the residue of the pole is i. Note that one can write (93) in the form

pFpf =
i

�p−m+ iε
Ẑ2 (�p) , (96)

where

Ẑ2 ≡

(
1− Σ̂ (�p)

�p−m+ iε

)−1

(97)

is a �nite stabilization parameter modifying the free �eld fermion propagator, and is analogous to the
renormalization constant Z2 in SRT relating the bare and renormalized �elds via ψ◦ =

√
Z2ψ.

Upon identifying

m+
em = Σ (�p = m, µ = 0) , and (98)

m−em = Σdcm (�p = m, µ = 0) , (99)

we see that (94) is equivalent to the stability principle (35). Reverting to cuto� Λ◦ using (69), it follows that
(98) reduces to Feynman's result (32); for derivation, see [33].
In the language of renormalization theory, the bare mass in the propagator [35]

S′F =
i

�p−mbare − Σ + iε

must be renormalized using (37) with (98).

C. Vertex

A second-order correction to a corner (23) involves a replacement ieγµ → ieΓµ, where

Γµ = γµ + Λµ (100)

= γµF1

(
q2
)

+
iσµνqν

2m
F2

(
q2
)
,

and σµν = i
2 [γµ, γν ] are spin matrices. Complete expressions for the form factors F1 and F2 can be found

in [13]. For small q2, the vertex function Λµ for the core mass corresponding to Fig. 3 (c) is given by the
approximation [22]

Λµ (q,m) = γµL+ a(2) iσ
µνqν
2m

+O

(
q2

m2

)
, where (101)

L =
α

4π

(
D◦ +

11

2
− 4 ln

m

µ

)
(102)
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is a divergent constant. Note that L = α
2π r, where r is given by Eq. (23) in [22]. The coe�cient a(2) = α

2π is
the second-order contribution to the anomalous magnetic moment �rst derived by Schwinger [40] and veri�ed
experimentally by Foley & Kusch [41].
Inserting (101) into (61), using (59), and accounting for the invariance of D◦ (74) under scaling rules (63)

and (66), the stability correction is Λµdcm = −γµL, where �nite terms in (101) of order O
(
q
m

)
involving

replacements m→ m (1 + λη) and q → qdcm vanish in the limit η →∞ since qdcm is bounded as we argued
in Sec. IV. Therefore, the total vertex function

Λ̂µ (q) = Λµ + Λµdcm (103)

is convergent, and Λµ satis�es the usual renormalization condition for a vertex

Λ̂µ
∣∣∣
q2=0,�p=�p

′=m
= 0 . (104)

This completes veri�cation that lowest-order S-matrix corrections are �nite without renormalization.

VI. GENERALIZATION TO HIGHER ORDERS

Our next task is to show that stabilized higher-order radiative corrections in QED are �nite and agree
with renormalization. The proof closely follows renormalization arguments in the original references and [33];
therefore, we keep our remarks brief highlighting required modi�cations and di�erences of interpretation.
Irreducible (skeleton) diagrams include second-order self-energy (SE) and vertex (V) parts discussed in

Sec. V plus in�nitely many higher-order primitively divergent V-parts. Using Dyson's expansion method
[30], second-order SE- and V-part operators for the core mass are

Σ = mA− (�p−m)B + Σ̂ , (105)

Π = C + Π̂ , (106)

Λµ = γµL+ Λ̂µ , (107)

where {A, B ,C , L} are logarithmically divergent coe�cients depending onD◦ � speci�cally, A = 3α
4π

(
D◦ + 3

2

)
using (32), and Ward's identity [42] gives B = L from (102). Innocuous �nite terms can depend on the
regularization method used; for example, compare C = −Πdcm = α

3π

(
D◦ + ln4− 2

3

)
from (82) with expres-

sions in [33, 35]. Higher-order primitively divergent V-parts are also of the form (107) since the degree of
divergence [30, 43]

K = 4− 3

2
fe − be

is zero (logarithmic), where fe (be) are the number of external fermion (boson) lines; in this case, L (D◦) is
a power series in α.
To determine the interaction of an electromagnetically dressed core with the polarized vacuum, we apply

(61) with (74) to obtain

Σdcm = − [mA− (�p−m)B] , (108)

Πdcm = −C , (109)

Λµdcm = −γµL , (110)

where the stabilized second-order amplitudes (83), (91), and (103)

Σ̂
(
p2 = m2

)
= 0 (111)

Π̂
(
k2 = 0

)
= 0 (112)

Λ̂µ
(
q2 = 0

)
= 0 (113)
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vanish on the mass shell. Higher-order primitively divergent V-parts also satisfy (113) since dressed stabilized
amplitudes vanish and yield on-shell conditions. In this way, (60) yields unique �nite results

Σ̂ = Σ +Σdcm , (114)

Π̂ = Π +Πdcm , and (115)

Λ̂µ = Λµ + Λµdcm (116)

for all irreducible diagrams; therefore, SE-part insertions

SF → SF + SF

(
−iΣ̂

)
SF , and (117)

Dαβ
F → Dαβ

F +Dαµ
F

(
igµνk

2Π̂
)
Dνβ
F (118)

into lines, and V-part insertions

γµ → γµ + Λ̂µ (119)

into corners of a skeleton diagram yield no additional divergences.
For reducible vertex diagrams, the V-part resolves into a skeleton along with stabilized SE- and V-part

insertions. With replacements (117), (118), and (119) in the skeleton, the vertex operator again reduces
to the form (107), where L → Ls is the skeleton divergence. In general, Ls depends on multiple functions
D◦ corresponding to all possible charged fermion masses arising from photon self-energy insertions which
may in turn contain SE- and V-parts. Since each D◦ is invariant under (74), (113) holds, and (61) yields
Λµs,dcm = −γµLs similarly to (110); therefore, the complete reducible V-part given by (116) is convergent.
For reducible self-energy diagrams, a skeleton with SE insertions is handled in the same way as reducible

vertex diagrams. However, vertex insertions into fermion and photon SE skeletons involve overlapping
divergences that require further analysis [44, 45]. Integration of Ward's identities yields expressions of the
same form as (105) and (106); in this case, the coe�cients {A, B ,C} are all power series in α depending on
D◦, and vertex insertions in SE-parts are convergent upon including stability corrections (108) and (109).
We conclude that in�nite �eld actions excite dressed mass levels uniformly in all connected fermion lines
internal to overlapping loops; for a speci�c example, apply (60) to calculate the real part of the fourth-order
vacuum polarization kernel [46] using the dispersion method given in Sec. VA. Therefore, a diagram with
overlapping divergences is not a special case for implementation of stability corrections.
The complete propagators, replacing fermion and photon lines in a skeleton diagram, follow from Eqs.

(63) and (64) of Dyson [30]; one obtains

S′F (p) =
i

�p−m− Σ̂∗ + iε
, and

D′αβF (k) =
−igαβ

k2
[
1− Π̂∗

]
+ iε

,

where
{
Σ̂∗, Π̂∗

}
are given by sums over all proper SE-parts. Similarly, the most general vertex replacing

a corner in a skeleton diagram is given by a sum over all proper V-parts. Since both core and DCM
contributions are included in each sub-diagram, the complete propagators and vertices are well de�ned
(convergent).

VII. NON-ABELIAN APPLICATIONS

Stabilized radiative corrections are computed for diagrams in Yang-Mills and electroweak theories.

A. Yang-Mills Theory Corrections

In the examples below, we focus on a key subset of one-loop diagrams [47, 48] that occur in the SU(3)
Yang-Mills theory discussed in Sec. II B.

20



FIG. 5: Gluon/quark self-energies and vertex diagrams

For diagrams in Fig. 5, core amplitudes di�er from QED only by group factors and the con�nement factor
λc from (67); therefore, �nite S-matrix amplitudes (60), including stability corrections, are

Π̂ab
1 = λctr

(
t at b

)
Π̂ [QED] , (120)

Σ̂aa = λct
at aΣ̂ [QED] , and (121)

Λ̂a,µ1 = λct
bt at bΛ̂µ [QED] . (122)

Group factors are given by

tr
(
t at b

)
= C (r) δab ,

t at a = C2 (r) ,

t bt at b =

[
C2 (r)− 1

2
C2 (G)

]
t a ,

where C(N) = 1
2 , and C2 (N) = N2−1

2N = 4
3 are normalization and quark color charge factors, respectively.

In addition to the fermion (quark) loop diagram in Fig. 5 (a), gluon SE corrections in Fig. 6 yield [13]

[Fig. 6]core = iTµν
(
k2
)
δabΠ2

(
k2
)
, (123)

Tµν
(
k2
)

= gµνk
2 − kµkν ,

Π2

(
k2
)

= λc
αsC2 (G)

4π

∫ 1

0

dx
Γ (σ)

∆σ

[
(−1 + σ) (1− 2x)

2
+ 2
]
, (124)

where αs = g2
s/4π is the strong coupling constant, ∆ = −k2x (1− x), and x is a Feynman parameter. While

individual gluons are massless to ensure gauge invariance of LYM , systems of gluons depicted in Fig. 6 are
expected to have a non-zero mass de�ned by (50) with self-energy function Σ g

2 ∼ k2Π2. The generation
of such systems must draw energy from the vacuum leaving it with a squared energy de�cit Σvac = −M2

g

such that (51) is satis�ed. Consequently, we need to include a stability correction for an opposing vacuum
response involving DCM states, and for this we need a mass term in ∆. If we appeal to massive Yang-Mills
theories [49], we get unwanted particles and ghosts, and it might seem that we have an impasse. While
gauge invariance demands that mass be acquired via a Higgs mechanism, introduction of DCM states in (29)
yielding

L′YM → LYM −
1

2

∑
λ=±1

[
µ2
g + λM2

g

]
µg=0

(
Aaµ
)2
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FIG. 6: Gluon SE corrections in pure-gauge sector: (a) gluon loop, (b) four-gluon vertex, and (c) ghost
loop.

does not break gauge invariance of LYM since the expectation over DCM states is zero. Therefore, let us
temporarily assign a small mass µg to the gluon, then propagators in the loops are modi�ed

1

p2 − µ2
g

1

(p+ k)
2 − µ2

g

=

∫ 1

0

dx

[P 2 −∆ (µg)]
2 ,

where the usual change of variables P = p+ xk has been made for loop integration parameter p, and

∆ (µg) = µ2
g − k2x (1− x) .

To evaluate the stability contribution, make the replacement (68)

µ2
g →

[
µ2
g + λη2µ2

◦
]
µg=0

in ∆ (µg); then from (79), we have ∆◦ = µ2
◦ , and the stability correction is obtained simply by negating

(124) and replacing

1

∆σ
→ 1

∆σ
◦
.

From (60), the net amplitude

Π̂2

(
k2
)

= −λc
αsC2 (G)

4π

∫ 1

0

dx ln

[
−k2x (1− x)

µ2
◦

] [
− (1− 2x)

2
+ 2
]

(125)

is �nite. If we de�ne a reference mass Ms by

5

3
ln

(
µ2
◦

M2
s

)
≡
∫ 1

0

dx ln [x (1− x)]
[
− (1− 2x)

2
+ 2
]
, then

Π̂2

(
ρs ≡ −

k2

M2
s

)
= −λc

αsC2 (G)

4π

5

3
ln ρs (126)

vanishes at spacelike k2 = −M2
s .

In the stabilized theory, it is invalid to neglect quark masses mf in the calculations since they are required
for de�ning DCM corrections; in contrast, QCD calculations in the usual theory often omit mf in processes
where the momentum transfer q is presumed much larger than physical masses involved in the problem.
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Therefore, following Peskin & Schroeder [13], but assuming m ≡ mf 6= 0, the core amplitude for the
quark/three-gluon vertex shown in Fig. 7 is

Λa,µ2 = λc
g2
sf

abctbtc

(2π)
4

∫
d4k

γν
(
�k +m

)
γρN

µνρ (k, p′, p)

(k2 −m2 + iε)
[
(p′ − k)

2 − µ2 + iε
] [

(p− k)
2 − µ2 + iε

] , (127)

where

Nµνρ (k, p′, p) = gµν (q + p′ − k)
ρ

+ gνρ (2k − p′ − p)µ + gρµ (p− k − q)ν

is the tensor part of the 3-gluon vertex function. Introducing Feynman parameters (x, y, z) for the factors
in the denominator, letting ` = k − px − p′y, dropping terms linear in ` that vanish upon symmetrical
integration, and using the identity fabctbtc = i

2C2 (G) ta, (127) reduces to

Λa,µ2 = iλc
g2
sC2 (G) ta

(2π)
4

∫
dxdydz δ (x+ y + z − 1) Iµ , (128)

where

Iµ = Iµ1 + Iµ2 , (129)

Iµ1 =

∫ Λ◦

d d`
γν�̀γρ (−gµν`ρ + 2gνρ`µ − gρµ`ν)

(` 2 −∆)
3

= −3iπ2Γ (σ)

∆σ
γµ ,

Iµ2 =

∫ Λ◦

d 4`
γν (�px+ �p

′y +m) γρN
µνρ (px+ p′y, p′, p)

(` 2 −∆)
3 , and

∆ = m2z + (px+ p′y)
2 − p2x− p′2y + µ2 (1− z) .

The cuto� is retained in the divergent and �nite parts {Iµ1 , I
µ
2 } as a reminder that for computation of the

stability correction, Λ◦ → ηλΛ◦ followed by a change of variables ` → ηλ`. Now apply (61), (76), and
integration formulae in [13] to obtain

Iµdcm = Iµ1,dcm + Iµ2,dcm , (130)

Iµ1,dcm = 3iπ2Γ (σ)

∆σ
◦
γµ ,

Iµ2,dcm = iπ2m
2

∆◦
z (2− z) (γµ − 4) ,

where from (72)

∆◦ = m2z2 + µ2 (1− z) ,

and we have used

pν (m) = m+ δpνos , and

lim
η→∞

η−1
λ pν (ηλm) = m

for evaluation of Iµ2,dcm. Finally, the stabilized integral is given by

Îµ = Iµ + Iµdcm (131)

= 3iπ2 ln
∆

∆◦
+ finite ,
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and the complete amplitude

Λ̂a,µ2 = iλc
g2
sC2 (G) ta

(2π)
4

∫
dxdydz δ (x+ y + z − 1) Îµ (132)

is �nite without renormalization and only involves physical parameters.
From standard renormalization theory (SRT), the seven diagrams in Figs. 5, 6, and 7 yield a running

coupling constant characterized by a Callan-Symanzik [50, 51] beta function [52, 53]

βQCD (αs) =
∂αs

∂ lnM2
s

= −α
2
s

4π

[
11

3
C2 (G)− 4

3
nfC (r)

]
, (133)

where αs is the renormalized coupling. Compared to QED where βQED (α) = α2

3π with charge screening,
βQCD (αs) < 0 leads to an anti-screening e�ect or asymptotic freedom resulting in a weaker coupling for
high energies. The dependence of αs on momentum transfer q is

αs
(
q2
)

=
αs
(
M2
s

)
1 +

αs(M2
s )

4π

(
11− 2

3nf
)

ln
∣∣∣ q2M2

s

∣∣∣ , (134)

where Ms is usually chosen to be the Z−boson mass. The running of the strong coupling constant in SRT
models experimental data [54] well; therefore, our remaining task is to show that the stabilized theory yields
an e�ective running of the coupling constant in agreement with SRT and experiment. Well known formulae
from SRT are used with stabilized amplitude parameters.
Leading terms of stabilized amplitudes for the asymptotic case of high energy yield an e�ective color charge

gs (ρs) = gs
Ẑ1

Ẑ2

√
Ẑ3

(135)

' gs
[
1 + λc

αs
8π

(
11− 2

3
nf

)
ln ρs

]
, where

Ẑ−1
1 = 1 + Λ̂1 (ρs) + Λ̂2 (ρs) , (136)

Ẑ−1
2 = 1− dΣ̂

d�p

∣∣∣∣∣
ρ=ρs

, and (137)

Ẑ−1
3 = 1−

[
Π̂1 (ρs) + Π̂2 (ρs)

]
(138)

are �nite running stabilization parameters that modify the vertex (30), fermion �eld propagator (25), and
gluon �eld propagator (31), respectively. With nf = 6 the con�nement factor λc = −1 in (135) leads to
asymptotic freedom; note that the need for λc arises from opposing signs of the �rst two terms of (75). For
loops including quarks, asymptotic amplitudes involve spacelike momenta ` in ratios

ρ = − `2

m2
f

� 1 ; `2 ∈
{
k2, p2, q2

}
, (139)

where we have reinstated m = mf . Setting p
2 = q2 = k2, energy ratios ρ in (139) may be approximated by

ln ρ = ln ρs +O (1) (140)

' ln ρs .

With (140), the sum over fermions in Fig. 5(a) becomes trivial. Neglecting O (1) terms, we have

nf∑
f=1

{
[Fig. 5(a)] =

a,µ

kg fcg
b,ν

}
' iTµν

(
k2
)
δab
[
Π̂1 (ρs) ≡ λc

αs
3π
nf C (r) ln ρs

]
, (141)
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[Fig. 5(b)] ' −i
[
Σ̂ (�p, ρs) ≡ λc

αs
4π
C2 (r) (�p− 4mf ) ln ρs

]
, (142)

[Fig. 5(c)] ' igstaγµ
{
Λ̂1 (ρs) ≡ −λc

αs
4π

[
C2 (r)− 1

2
C2 (G)

]
ln ρs

}
, (143)

[Fig. 6] = iTµν
(
k2
)
δab
[
Π̂2 (ρs) ≡ −λc

αsC2 (G)

4π

5

3
ln ρs

]
(144)

from (126), and

[Fig. 7] ' igstaγµ
[
Λ̂2 (ρs) ≡ −λc

αs
4π

3

2
C2 (G) ln ρs

]
. (145)

With the approximation −k2 � m2
f , Π̂1 in (141) follows from (120) using (83). Similarly, Σ̂ in (142) is

obtained from (121) using (91), and Λ̂1 in (143) is derived using (122) with (100) to obtain

Λ̂µ [QED] = F̂1

(
q2
)
γµ + ... ,

where the stabilized form factor

F̂1

(
q2
)

= F1

(
q2
)
− F1 (0)

=
α

2π

∫ 1

0

dxdydz δ (x+ y + z − 1) ln

[
m2
f (1− z)2

m2
f (1− z)2 − q2xy

]
+ ...

' − α

4π
ln

(
ρ = − q2

m2
f

)
= − α

4π
ln ρs +O (1)

follows from (78) and results given in [13] assuming −q2 � m2
f . The stabilization parameters Ẑ1, Ẑ2, and

Ẑ3 are de�ned similarly to their SRT counterparts. Ẑ−1
1 is the coe�cient of igsγ

µta for the sum of proper
vertex diagrams in (30), Fig. 5(c), and Fig. 7

g

}
feD

·
(

1 + Λ̂1 + Λ̂2

)
≡ igsγµtaẐ−1

1 .

Using (137) or (97) and assuming −p2 � m2
f , we have

Ẑ−1
2 = 1− λc

αs
4π
C2 (r) [ln ρ = ln ρs +O (1)] .

For Ẑ3 we employ (85) with Π̂ = Π̂1 + Π̂2 using gluon SE contributions (141) and (144).
An estimate of Ms may be obtained by synchronizing the energy ratios for ρ in (139) across diagrams in

Fig. 5 (a) with that for ρs in (126) for Fig. 6: let k → ` in Fig. 5 (a), and require

`2

m2
f

= ρs ≡
k2

M2
s

. (146)

Noting that Π̂ [QED] is a function of ρ only from (83) and using (146), the sum over fermions is given by

nf∑
f=1

a,µ

`g fcg
b,ν

=

 1

nf

nf∑
f=1

m2
f

M2
s

 ≡ 1

nf
a,µ

kg fcg
b,ν

. (147)
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FIG. 7: Quark/three-gluon vertex.

The condition in brackets is obtained by factoring

Tµν
(
`2
)

=
m2
f

M2
s

Tµν
(
k2
)

and comparing (147) with (141), then we have

M2
s =

1

nf

nf∑
f=1

m2
f (148)

for the reference mass. Evaluating (148) for quarks gives Ms = 70.65 GeV/c2; compare with Z-boson mass
given in Appendix Table II.
Finally, the beta function is given by

β (g) = 2
∂g

∂ ln ρs
= −g3

(
11− 2

3
nf

)
from which the running coupling constant (134) follows; see [55] for example.

B. Electroweak Corrections

We compute �nite electroweak amplitudes using dimensionally regularized radiative corrections for un-
renormalized (core) functions [12, 56, 57]. Core one-loop SE functions include Σab (ab = γγ, γZ, ZZ, WW )
for bosons, Σf for fermions (f = jσ for family j and doublet index σ = ±), and vertex Λγfµ . For repeated

indices a = b, we abbreviate Σb ≡ Σbb , b = γ, Z, W ; in general formulae applicable to γ − Z mixing, we
admit b = γZ as well for brevity. A subscript �sa� is appended to a stabilized amplitude Σ̂b ≡ Σ̂b

sa when it

is necessary to distinguish it from a corresponding renormalized amplitude Σ̂b
ra.

In Hollik's notation [12], the basic singular function

∆κ =
1

σ
− γ − ln

m2
κ

µ2
◦

+ ln 4π (149)

di�ers from (75) by �nite terms. For consistency, the input momentum to a loop is k with s ≡ k2 for both
bosons and fermions. Abbreviations for squared boson masses

z = m2
Z , w = m2

W , h = m2
H
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are used. In addition to (149), core amplitudes involve �nite functions

B◦ (s,m1,m2) = −
∫ 1

0

dx ln

[
x2s− x

(
s+m2

1 −m2
2

)
+m2

1 − iε
m1m2

]
, (150)

F (s,m1,m2) = −1 +
m2

1 +m2
2

m2
1 −m2

2

ln
m1

m2
+B◦ (s,m1,m2) , (151)

B1 (s,m1,m2) = −1

4
+

m2
1

m2
1 −m2

2

ln
m1

m2
+
m2

2 −m2
1 − s

2s
F (s,m1,m2) , (152)

and singular expressions

B◦ (s,m1,m2) =
1

2
(∆m1

+∆m2
) +B◦ (s,m1,m2) , and (153)

B1 (s,m1,m2) = −1

2

(
∆m2

+
1

2

)
+B1 (s,m1,m2) . (154)

Scalar one-loop integrals, including (150), are de�ned in [58].

1. Boson SE corrections

For these corrections, it is useful to expand the core boson SE

Σb (s) = Σb
(
m2
b

)
+

∞∑
n=1

∂nΣb

∂sn

∣∣∣∣
s=m2

b

(
s−m2

b

)n
. (155)

From core amplitudes below, it can be seen by inspection and dimensional analysis that averages of Σb
(
m2
b

)
and ∂Σb

∂s

∣∣∣
s=m2

b

over DCM states in (61) are invariant similarly to (54) � this may be shown in detail by

applying (62) for the mass set {mκ} ∀κεIm, where

Im ≡ {f, l, W, Z ,H,+,−}

is a complete set of mass indices occurring in (169), (173), (178), and (180); the DCM transform is{
m2
κ

}
→
{
m2
κ

}
·
(
1 + λη2

)
. (156)

On the mass shell, the self-energy function has the general form

Σb
(
m2
b

)
=
∑
κ

αbκm
2
κ ,

where αbκ are dimensionless coe�cients which may depend on invariant mass ratios. Therefore, under (156)

Σb
(
m2
b

)
→
(
1 + λη2

)
Σb
(
m2
b

)
,

and the average over DCM states〈
Σb
(
m2
b

)〉
dcm

=
1

2

∑
λ=±1

(
1 + λη2

)
Σb
(
m2
b

)
(157)

= Σb
(
m2
b

)
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is stationary. Since the derivative ∂Σb

∂s

∣∣∣
s=m2

b

is dimensionless, it is invariant under (156); in particular,

partials

F ′ (s,m1,m2) =
∂F (s,m1,m2)

∂s
(158)

occurring in ∂Σb

∂s

∣∣∣
s=m2

b

transform as

F ′
(
m2
b ,m1,m2

)
→
(
1 + λη2

)−1
F ′
(
m2
b ,m1,m2

)
,

and terms of form g = m2F ′
(
m2
b ,m1,m2

)
are again invariant under (156). Finally, higher order derivatives

are either zero outright, or

∂nΣb

∂sn

∣∣∣∣
s=m2

b

∼
(
m2
b

)1−n → O
(
η2(1−n)

)
(159)

vanishes under (156) as η →∞ for n ≥ 2. Therefore, (61) yields

Σb
dcm (s) = −Σb

(
m2
b

)
− ∂Σb

∂s

∣∣∣∣
s=m2

b

(
s−m2

b

)
. (160)

Since the o�-shell factor
(
s−m2

b = δk2
os

)
is invariant under (156), the entire expression (160) is stationary

under an average over DCM states similarly to (157). The net stabilized amplitude

Σ̂b (s) = Σb (s) +Σb
dcm (s) (161)

from (60) satis�es

Σ̂b
(
m2
b

)
= 0 , and (162)

∂Σ̂b (s)

∂s

∣∣∣∣∣
s=m2

b

= 0 . (163)

Taking the real part of (162) and (163) yields Denner's alternative renormalization conditions [59] to those
given in [12]. For stabilized amplitude (161), (162) and (163) yield a propagator residue of unity so there is
no need for external wave function corrections as in the on-shell renormalization scheme proposed by Ross
and Taylor [60]; however, inclusion of ∆r corrections discussed in Sec. VIIB 4 leads to �nite wave �eld
corrections. Splitting o� singular terms (149), the core boson SE can be expressed in the form

Σb (s) =
∑
κ

[
αbκs∆κ + βbκm

2
κ∆κ

]
+ Σbfinite (s) , (164)

where the sum over κ is ∀κεIm, and
{
αbκ, β

b
κ

}
are constant coe�cients. Singular terms involving

{
s∆κ, m

2
κ∆κ

}
in Σbdcm cancel those in Σb, and (161) reduces to

Σ̂b (s) = Σb
finite (s)−Σb

finite

(
m2
b

)
−
∂Σb

finite

∂s

∣∣∣∣∣
s=m2

b

(
s−m2

b

)
. (165)

For a free boson, the squared mass shift

δm2
b ≡ Re

[
Σb
finite

(
m2
b

)]
(166)

represents the residual boson self-energy of the core after divergent parts of the vacuum response inΣb
dcm

(
m2
b

)
have canceled those in (164). For later reference, the polarization function is

Π̂b (s) =
Σ̂b (s)

s−m2
b

=
Σb (s)−Σb

(
m2
b

)
s−m2

b

− ∂Σb

∂s

∣∣∣∣
s=m2

b

. (167)
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Neglecting ∆r corrections [31], mixing angle functions cw = cos θW (10) and sw = sin θW , and neutral
current constants (24) are invariant under (56). See (181) and (182) for inclusion of ∆r.
Application of (161) to photon SE corrections shown in Fig. 8 yields

Σ̂γ (s) = Σγ (s) + Σγdcm (s) (168)

=
α

4π

4

3

∑
f

Q2
f

[(
s+ 2m2

f

)
F (s,mf ,mf )− s

3

]

− (3s+ 4w)F (s,mW ,mW ) +
2

3
s

 ,

Σγ (s) =
α

4π

4

3

∑
f

Q2
f

[
s∆f +

(
s+ 2m2

f

)
F (s,mf ,mf )− s

3

]
(169)

− 3s∆W − (3s+ 4w)F (s,mW ,mW )

 ,

Σγdcm (s) = −Σγ (0)− ∂Σγ

∂s

∣∣∣∣
s=0

s , (170)

where

Σγ (0) = 0 ,

∂Σγ

∂s

∣∣∣∣
s=0

=
α

4π

4

3

∑
f

Q2
f∆f − 3∆W −

2

3

 ,

and the sum over fermions includes color for the case of quarks. Both Σ̂γ (s) and Π̂γ (s) vanish in the
Thomson limit s→ 0, and physically meaningful corrections in (168) are due to incomplete cancellation for
s = k2 6= 0. Singular terms in Σγdcm exactly cancel those in Σγ for all s, and there remains a term

[Σγ
dcm]

finite
=
(
δαfinite ≡

α

6π

)
s (171)

in the vacuum response, where δαfinite is the �nite part of renormalization constant δZγ2 in the usual theory.
For γ − Z mixing corrections also represented in Fig. 8, we have

Σ̂γZ (s) = ΣγZ + ΣγZdcm (172)

=
α

4π

−4

3

∑
f

Qfvf

[(
s+ 2m2

f

)
F (s,mf ,mf )− s

3

]

+
1

cwsw

[(
3c2w +

1

6

)
s+

(
4c2w +

4

3

)
w

]
F (s,mW ,mW )− s

6cwsw

(
4c2w +

4

3

) ,

ΣγZ (s) =
α

4π

−4

3

∑
f

Qfvf

[
s∆f +

(
s+ 2m2

f

)
F (s,mf ,mf )− s

3

]
(173)

+
1

cwsw

[(
3c2w +

1

6

)
s+ 2w

]
∆W

+
1

cwsw

[(
3c2w +

1

6

)
s+

(
4c2w +

4

3

)
w

]
F (s,mW ,mW ) +

s

9cwsw

 ,
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FIG. 8: Photon self-energy and photon�Z mixing diagrams.

ΣγZdcm = −ΣγZ (0)− ∂ΣγZ

∂s

∣∣∣∣
s=0

s , (174)

where

ΣγZ (0) =
α

4π

{
2w

cwsw
∆W

}
,

∂ΣγZ

∂s

∣∣∣∣
s=0

=
α

4π

−4

3

∑
f

Qfvf∆f +
1

cwsw

[(
3c2w +

1

6

)
∆W +

1

6

(
4c2w +

4

3

)
+

1

9

] ,

and ΣγZ (0) 6= 0 is due to non-Abelian boson loops in Fig. 8. For both photon SE and γ − Z mixing
corrections, we used the approximation [12]

F (s,m,m) ' s

6m2

for small s� m2, then the partials in (160) yield terms of the form m2F ′ (s,m,m) = 1
6 . Reverting to (155),

the expansion of F (s,m,m) about s = 0 yields higher-order terms m2O
([

s
m2

]2)
in Σb for b = γ, γZ which

vanish when dressed according to (156) in agreement with (159).
Renormalization starts with a bare charge e◦, and the correction [56]

δe
(
Πγ , ΣγZ

)
= e◦

[
δZγ1 −

3

2
δZγ2

]
(175)

= e◦

[
1

2
Πγ (0)− sw

cw

ΣγZ (0)

m2
Z

]
renormalizes the charge e = e◦ + δe, where

δZγ1 = −Πγ (0)− sw
cw

ΣγZ (0)

m2
Z

, and

δZγ2 = −Πγ (0)
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are the charge and photon �eld renormalization constants, respectively. In the usual theory, arguments on
the left in (175) are core functions

{
Πγ , ΣγZ

}
; however, in the stabilized theory, we utilize the complete

amplitudes (168) and (172) to obtain

δe
(

Π̂γ , Σ̂γZ
)

= 0 . (176)

Therefore, e = e◦, and there is no charge renormalization. Any redistribution of vacuum charge which shifts
the energy is just a natural consequence of the stability requirement: Charge e acts on the vacuum |0〉 → |0p〉,
and the polarized vacuum |0p〉 acts back on e shifting its energy as illustrated in Fig. 1.

For the remaining amplitudes, we list only the net and core since DCM expressions, although lengthy, are
easily evaluated using analytic expressions for partials (158) derived from (150), (151), and integral tables.
For Z-boson self-energy corrections shown in Fig. 9, we have

Σ̂Z (s) = ΣZ (s)− ΣZ (z)− ∂ΣZ

∂s

∣∣∣∣
s=z

(s− z) , (177)

where

ΣZ (s) =
α

4π

4

3

∑
l=e,µ,τ

2a2
l s

[
∆l +

5

3
− ln

(
− s

m2
l

− iε
)]

(178)

+
4

3

∑
f 6=ν

[(
v2
f + a2

f

) (
s∆f +

(
s+ 2m2

f

)
F (s,mf ,mf )− s

3

)
− 3

8c2ws
2
w

m2
f (∆f + F (s,mf ,mf ))

]
+

[(
3− 19

6s2
w

+
1

6c2w

)
s+

(
4 +

1

c2w
− 1

s2
w

)
m2
Z

]
∆W

+
[(
−c4w (40s+ 80w) +

(
c2w − s2

w

)2
(8w + s) + 12w

)
F (s,mW ,mW )

+

(
10z − 2h+ s+

(h− z)2

s

)
F (s,mH ,mZ)− 2h ln

h

w
− 2z ln

z

w

+ (10z − 2h+ s)

(
1− h+ z

h− z
ln
mH

mZ
− ln

mHmZ

w

)

+
2

3
s
(

1 +
(
c2w − s2

w

)2 − 4c2w

)] 1

12c2ws
2
w

 .

The �rst sum in (178) includes leptons (l) only, and the second excludes neutrinos (ν).

For W-boson self-energy corrections shown in Fig. 10,

Σ̂W (s) = ΣW (s)− ΣW (w)− ∂ΣW

∂s

∣∣∣∣
s=w

(s− w) , (179)
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FIG. 9: Z-boson self-energy.

where

ΣW (s) =
α

4π

1

s2
w

1

3

∑
l=e,µ,τ

[(
s− 3

2
m2
l

)
∆l +

(
s− m2

l

2
− m4

l

2s

)
F (s, 0,ml) +

2

3
s− m2

l

2

]
(180)

+
∑

q−doublets

1

3

[
∆+

2

(
s− 5

2
m2

+ +
m2
−

2

)
+
∆−
2

(
s− 5

2
m2
− −

m2
+

2

)

+

(
s−

m2
+ +m2

−
2

−
(
m2

+ −m2
−
)2

2s

)
F (s,m+,m−)

−
(
s−

m2
+ +m2

−
2

)(
1−

m2
+ +m2

−
m2

+ −m2
−

ln
m+

m−

)
− s

3

]
−
[

19

2
s+ 3w

(
1− s2

w

c2w

)]
∆W

3

+

[
s4
wz −

c2w
3

(
7z + 7w + 10s− 2

(z − w)
2

s

)
− 1

6

(
w + z − s

2
− (z − w)

2

2s

)]
F (s,mZ ,mW )

+
s2
w

3

(
−4w − 10s+

2w2

s

)
F (s, 0,mW ) +

1

6

(
5w − h+

s

2
+

(h− w)
2

2s

)
F (s,mH ,mW )

+

[
c2w
3

(7z + 7w + 10s− 4 (z − w))− s4
wz +

1

6

(
2w − s

2

)] 3z

z − w
ln
z

w

−
(

2

3
w +

s

12

)
h

h− w
ln
h

w
− c2w

3

(
7z + 7w +

32

3
s

)
+ s4

wz

+
1

6

(
5

3
s+ 4w − z − h

)
− s2

w

3

(
4w +

32

3
s

) ,

and m+ and m− are masses for upper and lower components of a quark doublet, respectively.
Self-energies for diagrams with b = {γZ, Z, W} require adjustments{

Σ̂b (s)→ Σ̂b (s) +
(
s−m2

b

)
∆rb , b = W,Z

}
, and (181)
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FIG. 10: W-boson self-energy.

Σ̂γZ (s)→ Σ̂γZ (s) + s∆rγZ (182)

for ∆r corrections [31] which account for variations of {gW , gZ} with respect to mW and mZ ; we have{
∆rγZ , ∆rZ , ∆rW

}
=

{
− cw
sw
,
c2w − s2

w

s2
w

,
c2w
s2
w

}(
δm2

Z

m2
Z

− δm2
W

m2
W

)
, (183)

wherein �nite-on-shell-mass shifts from (166) are

δm2
Z = Re

[
ΣZ
finite

(
m2
Z

)]
, and (184)

δm2
W = Re

[
ΣW
finite

(
m2
W

)]
. (185)

In Sec. VIIB 4, we derive ∆rb using stability arguments. Values for squared mass ratios
{
δm2

Z

m2
Z
,
δm2

W

m2
W

}
and

∆r are given in Appendix Table II.
Net amplitudes in (168), (172), (177), and (179) for boson self-energies are �nite and satisfy required mass

shell conditions (162) and (163) for b = {γ, γZ, Z, W}. Amplitude Σ̂γ agrees with the result given in Hollik

[12]; however,
{

Σ̂γZ , Σ̂Z , Σ̂W
}
including ∆r corrections di�er from Hollik's results in two respects:

a) a small �nite charge renormalization α
6π = 3.87× 10−4 from (171) is absent in

{
Σ̂Z , Σ̂W

}
, and

b) they include polarization derivative shifts in (167) � �nite parts are given in Appendix Table II.

As regards item a), inclusion of any charge renormalization would be inconsistent with the stability approach
and result (176) in particular. For item b), �nite parts di�er depending on the renormalization scheme,

and
{

Σ̂γZ , Σ̂Z , Σ̂W
}
are consistent with the scheme given in [59]; moreover, all four boson self-energies are

uni�ed under the same formula (161). Numerical results for boson polarization functions are given in the
Appendix.
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2. Fermion SE corrections

For fermion self-energy corrections, we again expand the core amplitude

Σf (k) = Σf (mf ) +
∂Σf

∂�k

∣∣∣∣
�k=mf

(
�k −mf

)
+H.O.T. . (186)

From (62), the DCM transform is

{mκ} → {mκ} · (1 + λη) , (187)

where the mass set {mκ} ⊂ {mf , mW , mZ , µ} corresponds to terms in (192). Upon applying (61) to (186)

and noting that
{
Bi

(
m2
f ,m1,m2

)
; i = 0, 1

}
occurring in (192) are invariant under (187) applied to all mass

arguments, we obtain

Σf
dcm (k)

∣∣∣
�k=mf

= −Σf (mf ) . (188)

From arguments similar to those for boson self-energies above, �k−mf and its dimensionless coe�cient (�rst
partial) in (186) are also invariant under (187). The �rst partial involves derivatives of B◦ (153) and B1

(154). Finally, higher-order terms in (186) vanish under (187); therefore, the DCM amplitude is

Σf
dcm (k) = −Σf (mf )− ∂Σf

∂�k

∣∣∣∣
�k=mf

(
�k −mf

)
; (189)

compare with (160). The net amplitude

Σ̂f (k) = Σf (k) +Σf
dcm (k) (190)

satis�es the expected mass shell condition

Σ̂f (k)
∣∣∣
�k=mf

= 0 . (191)

For the corrections shown in Fig. 11, the core amplitude [56] is

Σf (k) = �kΣfV
(
k2
)

+ �kγ5ΣfA
(
k2
)

+mfΣfS
(
k2
)
, (192)

where

ΣfV = − α

4π

{
Q2
f

[
2B1

(
k2;mf , µ

)
+ 1
]

+
(
v2
f + a2

f

) [
2B1

(
k2;mf ,mZ

)
+ 1
]

+
1

4s2
w

[
2B1

(
k2;mf ,mW

)
+ 1
]}

,

ΣfA = − α

4π

{
2vfaf

[
2B1

(
k2;mf ,mZ

)
+ 1
]
− 1

4s2
w

[
2B1

(
k2;mf ′ ,mW

)
+ 1
]}

, and

ΣfS = − α

4π

{
Q2
f

[
4B◦

(
k2;mf , µ

)
− 2
]

+
(
v2
iσ − a2

iσ

) [
4B◦

(
k2;mf ,mZ

)
− 2
]}

.

Substituting the vector
(
Vcore = �kΣfV

)
, axial

(
Acore = �kγ5ΣfA

)
, and scalar

(
Score = mfΣfS

)
parts of (192)

into (189) , we obtain

Σfdcm (k) = Vdcm (k) +Adcm (k) + Sdcm (k) , (193)
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where

Vdcm = −�kΣfV
(
m2
)
− 2m2

f

∂Σf
V

∂k2

∣∣∣∣∣
k2=m2

f

(
�k −mf

)
,

Adcm = γ5�kΣ
f
A

(
m2
f

)
, and

Sdcm = −mfΣfS
(
m2
)
− 2m2

f

∂Σf
S

∂k2

∣∣∣∣∣
k2=m2

f

(
�k −mf

)
.

The identity

∂Σf
J

∂�k
= 2�k

∂Σf
J

∂k2

has been used to evaluate derivatives for J = {V, A, S}. For the derivative of Acore, we have replaced

�kγ5 = −γ5�k so �k stands to the right as required by (189); one �nds

∂

∂�k

[
−γ5�kΣ

f
A

]
= −γ5Σ

f
A ,

where the symmetrized expression for the derivative

∂

∂�k

[
γ5Σ

f
A

]
=

1

2

∂

∂�k

[
γ5Σ

f
A +Σf

Aγ5

]
=
∂Σf

A

∂k2

(
γ5�k + �kγ5

)
= 0

has also been employed. Collecting terms, the net amplitude (190) reduces to

Σ̂f (k) = �kΣ̂V
(
k2
)

+ �kγ5Σ̂A
(
k2
)

+mf Σ̂S
(
k2
)
, (194)

where

Σ̂V
(
k2
)

= Σf
V

(
k2
)
−Σf

V

(
m2
f

)
− 2m2

f

∂Σf
V S

∂k2

∣∣∣∣∣
k2=m2

f

,

Σ̂A
(
k2
)

= Σf
A

(
k2
)
−Σf

A

(
m2
f

)
,

Σ̂S
(
k2
)

= Σf
S

(
k2
)
−Σf

S

(
m2
f

)
+ 2m2

f

∂Σf
V S

∂k2

∣∣∣∣∣
k2=m2

f

,

and Σf
V S = Σf

V +Σf
S . Using formulae in [12, 56], the renormalization constants are

δZV = −Σf
V

(
m2
f

)
− 2m2

f

∂Σf
V S

∂k2

∣∣∣∣∣
k2=m2

f

,

δZA = Σf
A

(
m2
f

)
,

δmf = mfΣ
f
S

(
m2
f

)
,

and it can be seen that the result (194) agrees precisely with that obtained from renormalization. Numerical
results for fermion self-energy functions for an electron are given in Appendix Fig. 17.

3. Vertex corrections

Consider the vertex corrections shown in Fig. 12; in the small fermion mass limit [57], only vector and
axial vector terms contribute, and the core amplitude is

Λγfµ
(
k2,mf

)
= γµΛ

γf
V

(
k2,mf

)
− γµγ5Λ

γf
A

(
k2,mf

)
, (195)
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FIG. 11: Fermion self-energy.

FIG. 12: Vertex corrections.

where k2 = (p′ − p)2
. The functions

ΛγfV,A
(
k2,mf

)
= ΛγfV,A (0,mf ) + F γfV,A

(
k2

m2
f

)
(196)

involve singular parts at k2 = 0 and �nite form factors F γfV,A which vanish at k2 = 0. Detailed expressions

for the functions are given in [12]. Applying (61) and (62), the form factors F γfV,A

(
k2

m2
f

)
in (196) vanish as

η →∞ in mf (η) = mf (1 + λη); therefore, the DCM vertex is

[
Λγfµ

]
dcm

= −
[
γµΛ

γf
V (0,mf )− γµγ5Λ

γf
A (0,mf )

]
, (197)

and the net vertex amplitude (60) reduces to the expected result from renormalization

Λ̂γfµ = γµF
γf
V

(
k2

m2
f

)
− γµγ5F

γf
A

(
k2

m2
f

)
. (198)
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4. Wave �eld renormalization and ∆r corrections

In the stabilized theory, ∆r factors for {W, Z} follow easily from the constancy of the electrical charge;
squaring (11), taking variations

δe2 = δg2
W s

2
w + g2

W δs
2
w = 0 (199)

= δg2
Bc

2
w + g2

Bδc
2
w = 0 , (200)

and using (10), the quadratic coupling deltas are

δg2
W = −g2

W

[
∆rW ≡ c2w

s2
w

(
δm2

Z

m2
Z

− δm2
W

m2
W

)]
, (201)

δg2
Z = δg2

W + δg2
B (202)

= −g2
Z

[
∆rZ ≡ c2w − s2

w

s2
w

(
δm2

Z

m2
Z

− δm2
W

m2
W

)]
,

where

δg2
B = g2

B

(
δm2

Z

m2
Z

− δm2
W

m2
W

)
.

A similar correction for γ−Z mixing may be derived in the manner of [31] by varying the coupling constants
in the Lagrangian term

Lm
Z (gW , gB) =

v2

2

(
gWW

3
µ + gBBµ

)2
taking care to vary only the factors {gW , gB} of the baseline �elds

{
W 3
µ , Bµ

}
. Upon taking the variation

δLm
Z (gW , gB) =

∂Lm
Z

∂gW
δgW +

∂Lm
Z

∂gB
δgB

using (9) to re-express in terms of {Zµ, Aµ}, and considering only terms involving ZµA
µ, one obtains

δLm
γZ =

1

2
δm2

γZZµA
µ ,

where

δm2
γZ = −m2

Z

[
∆rγZ ≡ − cw

sw

(
δm2

Z

m2
Z

− δm2
W

m2
W

)]
.

Using (14) and de�ning δm2
γZ ≡ 1

4δg
2
γZv

2, we have

δg2
γZ = −g2

Z∆rγZ . (203)

Therefore, we expect free �eld propagator modi�cations of the form

1

k2 −m2
b

→ 1−∆rb

k2 −m2
b

, b = W, Z

resulting in small departures of the propagator residue from unity. To nail down the propagator modi�cation
for γ − Z mixing, one tries an average

1

2

(
δZZγ
k2

+
δZγZ

k2 −m2
Z

)
and uses the renormalization method reviewed below to relate the coe�cients {δZZγ , δZγZ} to ∆rγZ .
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Standard renormalization theory (SRT) introduces mass and wave �eld renormalization constants to con-
struct �nite S-matrix elements and Green's functions. Boson self-energy and γ − Z mixing propagators
are

Db
µν (k) = −igµν

{
1

k2 −m2
b

− 1

k2 −m2
b

[
Σ̂b
ra

(
k2, Σb

)] 1

k2 −m2
b

+ ...

}
, b = γ, W, Z (204)

=
−igµν

k2 −m2
b + Σ̂b

ra (k2, Σb)
, and

DγZ
µν (k) = igµν

{
1

2

(
δZZγ
k2

+
δZγZ

k2 −m2
Z

)
+

1

k2
ΣγZ

(
k2
) 1

k2 −m2
Z

}
(205)

= igµν
1

k2

[
Σ̂γZ
ra

(
k2, ΣγZ

)] 1

k2 −m2
Z

,

where (204) includes iterations with b ≡ bb, and the renormalized amplitudes are given by [12, 61]

Σ̂γ
ra

(
k2, Πγ

)
= Σγ

(
k2
)

+ k2δZγ ≡ k2
[
Πγ
(
k2
)

+ δZγ
]
, (206)

Σ̂γZ
ra

(
k2, ΣγZ

)
= ΣγZ

(
k2
)

+
1

2

[
δZγZk

2 + δZZγ
(
k2 −m2

Z

)]
, (207)

Σ̂Z
ra

(
k2, ΣZ

)
= ΣZ

(
k2
)
− δM2

Z + δZZ
(
k2 −m2

Z

)
, and (208)

Σ̂W
ra

(
k2, ΣW

)
= ΣW

(
k2
)
− δM2

W + δZW
(
k2 −m2

W

)
, (209)

where δZZ and δZW are displacements of the �eld renormalization constants

Zb = 1 + δZb , b = Z,W

from unity. From �eld renormalization relations

W◦µ =

[
Z

1/2
W ' 1 +

1

2
δZW

]
Wµ ,

B◦µ =

[
Z

1/2
B ' 1 +

1

2
δZB

]
Bµ ,

and (9), the physical �elds satisfy[
Z◦µ
A◦µ

]
=

[
1 + 1

2δZZ
1
2δZZγ

1
2δZγZ 1 + 1

2δZγ

] [
Zµ
Aµ

]
,

where the subscript ”◦” denotes bare, as opposed to renormalized quantities, and the renormalization con-
stants satisfy [60] [

δZZ
δZγ

]
=

[
c2w s2

w

s2
w c2w

] [
δZW
δZB

]
,

δZZγ = −swcw (δZW − δZB)−∆rγZ , and

δZγZ = −swcw (δZW − δZB) + ∆rγZ .

Ordinarily Σb ≡ Σb
core in (206)-(209); however, with the stabilized amplitudes at our disposal, we are free

to replace Σb with Σ̂b
sa = Σ̂b from (165) to determine all renormalization constants. Applying mass shell

renormalization (stability) conditions

Π̂γ
ra

(
0, Π̂γ

sa

)
= 0 ,

Σ̂γZ
ra

(
0, Σ̂γZ

sa

)
= 0 ,

Σ̂Z
ra

(
m2
Z , Σ̂

Z
sa

)
= 0 , and

Σ̂W
ra

(
m2
W , Σ̂

W
sa

)
= 0 ,
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Table I: Renormalization constants

Σb δM2
b , b = Z,W δZγ δZZγ δZγZ δZW δZZ

Stability Σ̂b
sa 0 0 0 2∆rγZ ∆rW ∆rZ

SRT Σb
core Re

[
Σb

(
m2
b

)]
−Πγ (0) 2ΣγZ(0)

m2
Z

2ΣγZ(0)

m2
Z

+ 2∆rγZ −Πγ (0) + ∆rW + cw
sw

2ΣγZ(0)

m2
Z

−Πγ (0) + ∆rZ +
c2w−s2w
swcw

2ΣγZ(0)

m2
Z

only �nite wave �eld corrections for ∆r shown in Table I are non-zero; SRT results are included for compari-
son. Referring to (205), the stability result δZZγ = 0 means that the photon propagator has no Z-component

δZZγ
k2

= 0 ;

consequently, there is no direct coupling between the photon and a neutral current JNC for γ − Z mixing
� not even an in�nite one. On the other hand, an electromagnetic current couples to JNC via the Z with
amplitude

1

2
δZγZ = ∆rγZ

as originally suggested by (203).

5. Muon Decay and ∆r corrections

In the Born approximation, the muon decay amplitude corresponds to a Feynman diagram
µ−fFνµ

W− }fν̄e

De−

in the Standard Model. The resulting decay rate [12]

Γ◦µ =
α2

384π

m5
µ

s4
wm

4
W

(
1− 8m2

e

m2
µ

)
when reconciled with the Fermi contact model prediction

ΓFµ =
G2
Fm

5
µ

192π3

(
1− 8m2

e

m2
µ

)
,

yields the Fermi constant in lowest order

G◦F =
πα√

2s2
wm

2
W

. (210)

With higher-order QED corrections [62, 63],

1

τµ
=
G2
Fm

5
µ

192π3
f

(
m2
e

m2
µ

)
(1 + ∆QED)

de�nes GF in terms of the precisely measured muon lifetime τµ, where

f (x) = 1− 8x− 12x2 lnx+ 8x3 − x4 , and

∆QED =
α

2π

(
25

4
− π2

)
+O

(
α2
)
.
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In addition to the one-loop correction shown in ∆QED, O
(
α2
)
corrections for two-loops are also known [64�

66]. These QED corrections involve several renormalization schemes; however, the corresponding stabilized
QED corrections are �nite without renormalization as shown in Sections V-VI. Stability corrections for
vacuum polarization involve a subtraction of the form (83) at k2 = 0 and are therefore equivalent to the
on-shell renormalization scheme. For other renormalization schemes; for example, the modi�ed minimal
subtraction MS, ∆QED involves a coupling constant renormalization. Ritbergen [64] gives a prescription

α (mµ) =
α

1− α
3π ln

m2
µ

m2
e

+O
(
α3
)

(211)

relating the MS coupling constant α (mµ) to the on-shell value α = 1/137.035999139(31) [15]. However,
from foregoing results (87) and (176), the prescription (211) does not represent an intrinsic renormalization
of electrical charge in the stabilized theory.
Electroweak corrections to the muon lifetime involve ∆r corrections to the Fermi constant [12, 31, 67]

GF = G◦F [1 + ∆r] , (212)

where after renormalization

∆r = −∆rW − δm2
W

m2
W

+
Σ̂w (0)

m2
W

+ ∆r[vertex, box] with (213)

∆r[vertex, box] =
α

4πs2
w

(
6 +

7− 4s2
w

2s2
w

ln c2w

)
.

From a stability perspective, the �rst two terms of (213) are due to �nite mass shifts (184) and (185); taking
into account (176), variation of (210) yields

δG◦F = −G◦F
[
∆rW +

δm2
W

m2
W

]
. (214)

In standard renormalization theory, bare parameters {α◦, s◦w, m◦w} replace those in (210), and the expression
for ∆r includes a charge renormalization term δα◦ which is subsequently incorporated into a renormalized
coupling.

VIII. CONCLUDING REMARKS

In this paper, we developed a model for a stable electrical charge wherein a hidden interaction between
the electromagnetically dressed charge and an opposing vacuum current o�sets the positive electromagnetic
�eld energy. The model was generalized to apply to all Standard Model interactions by de�ning stability
conditions for fermion and boson self-energy processes which result in intermediate dressed core mass states
of in�nitesimally short duration for radiative corrections. Concise rules for constructing S-matrix corrections
for the dressed core were developed and applied to resolve divergence issues in Abelian QED and non-Abelian
QCD and electroweak theories. The stabilized amplitudes, including core and dressed core contributions,
are �nite and agree with renormalized QFT for all cases considered.
Since mass and charge were maintained as observed fundamental constants throughout in both the La-

grangian and subsequent radiative corrections, there is no mass or charge renormalization in this approach.
Fundamentally, the electromagnetic and strong coupling constants {α, αs} are independent of the energy
scale, and QFT is scale-invariant. For a collection of diagrams, however, renormalization methods remain
essential for deriving an e�ective running coupling constant [68, 69] with an energy scale signature consistent
with QCD's prediction of asymptotic freedom [47, 48] and its excellent agreement with experimental results
[54].
In conclusion, we remark that the stability approach is simpler compared to renormalization and o�ers

several other advantages:

1. stabilized amplitudes are uniquely determined in contrast to multiple renormalization schemes,
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2. no separation of left- and right-handed fermion �elds in electroweak theory is required, and

3. only �nite wave �eld corrections for ∆r are non-zero for electroweak corrections
{

Σ̂γZ , Σ̂Z , Σ̂W
}
.

Overall, our results suggest that elementary electromagnetic and color charges are rock-solid constants, and
any energy dependence of predictions arising from radiative corrections is better attributed to modi�cations
to the �eld propagation and vertex functions rather than fundamental physical constants. Finally, we believe
that it more accurately characterizes the physics involved in radiative processes since it includes the vacuum
reaction (61) that stabilizes the system.
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APPENDIX: NUMERICAL RESULTS

Values for ∆r are tabulated in Table II using sin2 (θW ) = 0.23122(4) and other physical constants [15].

Table II: Numerical results for ∆r and derivative shifts.

b = γ γZ Z W

mb

(
GeV/c2

)
0 {0, mZ} 91.1876 80.379

δm2
b

m2
b

� � -0.1061 -0.0920

∆rb 0 0.0258 -0.0329 -0.0470
∂Σb

∂s

(
m2
b

)∣∣∣
finite

− α
6π

0.001165 -0.1142 -0.1252

Real parts of boson polarization functions (167) are plotted in Figs. 13-16. Stability pro�les use ampli-
tudes (161) or, equivalently, (165) exclusive of ∆r. Results in Fig. 13 agree with those in Fig. 8 of [56]
notwithstanding updated physical constants [15]; QED results are added for comparison using an analytic
result for (83) given in [70]. For numerical evaluation of photon SE and γ−Z mixing pro�les shown in Figs.

13 and 14, the stability value at s = 0 is not represented; but analytically, Π̂γ (0) = Π̂γZ (0) = 0 from (167).
Di�erences between ”Stability + ∆r” pro�les shown in Figs. 14-16 and Figs. 9-11 of [56] are due to

1. ∆r impacts arising from updates to the core functions for
{
ΣZ , ΣW

}
in [12] relative to [56],

2. derivative shifts in Table II, and

3. updated physical constants including a Higgs mass measurement 125.18± 0.16GeV/c2 [15].

Analytic expressions for F (s,m1,m2) given in [56] and its partials (158) were veri�ed against numerical

integration results for all mass arguments m1 and m2 over the range 0 <
√
|k2| < 200GeV .

Electron self-energy function pro�les
{

Σ̂V , Σ̂A, Σ̂S

}
shown in Fig. 17 agree with those in Fig. 18a of [56].
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FIG. 13: Stabilized electroweak photon polarization is compared with QED for electron, muon, and tau.
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FIG. 14: Stabilized photon�Z mixing pro�les with/without adjustments for ∆r.
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FIG. 15: Stabilized Z-boson polarization pro�les with/without adjustments for ∆r.
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FIG. 16: Stabilized W-boson polarization pro�les with/without adjustments for ∆r.
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