Kinetic reevaluation on heavy metal ions adsorption by arrowhead plant (Sagittaria trifolia L.) stalk using deactivation kinetics model

Un-Ju Pak, Chol Sin, Chang-Nam Ri, Ok-Sun Bok
Branch Academy of Biotechnology, State Academy of Sciences, D.P.R. of Korea

ABSTRACT
The heavy metal ions adsorption from aqueous solution by arrowhead plant (Sagittaria trifolia L.) stalk was reevaluated using deactivation kinetics model (DKM). As the result, the reaction orders were newly evaluated and the adsorption rate constants of each component were calculated and compared.

Keywords: Adsorption Kinetics, Heterogeneous Reaction, Deactivation Kinetics Model

Zhang et al. published the paper entitled “The physicochemical characterization, equilibrium, and kinetics of heavy metal ions adsorption from aqueous solution by arrowhead plant (Sagittaria trifolia L.) stalk” [1].

In their adsorption kinetic study, their experimental data were analyzed using pseudo second order kinetic model (PSO) [2], Eq. (1)).

$$\frac{dq}{dt} = k_2(q_e - q)^2$$

(1)-PSO

where \(q\) and \(q_e\) are the grams of solute adsorbed per gram of adsorbent at any time (t) and at equilibrium, respectively, and \(k_2\) is the PSO rate constant of sorption. The PSO was used in many previous studies for adsorption kinetics, the dominance of this model is simple and convenient to use. But the PSO involved the adsorbed amount which is the thermodynamic quantity and assumed reaction order.

Recently, the deficiencies and cause of previous adsorption kinetic models...
were revealed, new adsorption rate equation [3] using deactivation kinetics model (DKM) has been proposed and its validities were verified by kinetic analysis of various experimental data. Also, many of experiment data were kinetically reevaluated by it [4-18].

In this work, the experimental data of [J Food Biochem. 2018;42:e12448] was reevaluated kinetically using DKM.

The DKM [19] (Eq. (2)) is a kinetic model for heterogeneous reaction and used it for the kinetic analysis of H₂S removal over mesoporous LaFeO₃ / MCM-41 sorbent during hot coal gas desulfurization in a fixed-bed reactor. The validity [20] of DKM was verified through kinetic analysis for other experimental data. DKM has not considered the detailed characteristic parameters of the solid sorbent in such a microscopic way as unreacted shrinking core model or random pore model but in a macroscopic way. The change of fractional conversion with time in solid phase was expressed as a deactivation rate, as shown in Eq. (2):

\[
\frac{dX}{dt} = k_d C_A (1 - X)^\alpha
\]

(2) - DKM

where \(X\) is the deactivation degree of adsorbent, i.e. fractional conversion of fresh adsorbent (\(0 \leq X \leq 1\), dimensionless). And \(C_A\) is concentration (\(\mu g \cdot L^{-1}\)) of A component at any time \((t)\), \(k_d\) is a deactivation rate constant of the adsorbent (\(L \cdot \mu g^{-1} \cdot h^{-1}\)), \(\alpha\) is a reaction order of \((1 - X)\). The adsorption kinetic equation used Eq. (2) in batch system is Eq. (3).

\[
\begin{align*}
\frac{dC_A}{dt} &= -k_A C_A (1 - X) \\
\frac{dX}{dt} &= k_d C_A (1 - X)
\end{align*}
\]

(3)

where \(k_A\) is the apparent adsorption rate constant of A adsorbate. Eq. (3) were solved with ODE function of MATLAB, the kinetic parameters were calculated using the nonlinear least-squares fitting of the adsorbate concentration obtained by solving ordinary differential equations (Eq. (3)) to the experimental data. The input data required for the nonlinear optimization were only th
e non-dimensionalized concentrations \((C/C_0)\) of the adsorbates with time and \(X\) were automatically evaluated in the calculation process.

The parameters of PSO estimated by Zhang et al., 2018 and kinetic parameters calculated by Eq. (3) were shown in Table. Activation energies and frequency factors were calculated from the rate constants with temperature and the Arrhenius equation. The values calculated by Eq. (1) were used as the experimental data for Eq. (3).

Table. Kinetic parameters reevaluated using DKM.

<table>
<thead>
<tr>
<th>ion</th>
<th>Co (mg/L)</th>
<th>PSO (k_2\times10^{-4}) (g mg(^{-1}) min(^{-1}))</th>
<th>(q_e\times10^{2}) (mg g(^{-1}))</th>
<th>PSO (R^2)</th>
<th>DKM beta=1.5 (k_A) (min(^{-1}))</th>
<th>DKM beta=1.5 (k_d) (L mg(^{-1}) min(^{-1}))</th>
<th>DKM beta=1.5 (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(II),</td>
<td>50</td>
<td>0.70</td>
<td>19.4</td>
<td>0.999</td>
<td>0.1313</td>
<td>0.3021</td>
<td>0.9989</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.65</td>
<td>28.2</td>
<td>0.999</td>
<td>0.3521</td>
<td>1.2185</td>
<td>0.9996</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>3.16</td>
<td>27.3</td>
<td>0.998</td>
<td>0.3840</td>
<td>2.0899</td>
<td>1.0000</td>
</tr>
<tr>
<td>Pb(II),</td>
<td>100</td>
<td>18.8</td>
<td>45.9</td>
<td>0.998</td>
<td>0.0924</td>
<td>0.1582</td>
<td>0.9994</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>27.6</td>
<td>64.9</td>
<td>1.000</td>
<td>0.2025</td>
<td>0.4086</td>
<td>0.9985</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td>39.7</td>
<td>76.9</td>
<td>0.999</td>
<td>0.1949</td>
<td>0.7387</td>
<td>0.9996</td>
</tr>
<tr>
<td>Cr(III)</td>
<td>80</td>
<td>0.01</td>
<td>5.98</td>
<td>0.999</td>
<td>0.0009</td>
<td>0.0114</td>
<td>1.0000</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.09</td>
<td>11.5</td>
<td>0.999</td>
<td>0.0252</td>
<td>0.2151</td>
<td>0.9999</td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>1.17</td>
<td>23.5</td>
<td>0.999</td>
<td>0.9779</td>
<td>6.1651</td>
<td>0.9999</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\frac{dC_A}{dt} &= -k_A C_A (1 - X) \\
\frac{dX}{dt} &= k_d C_A (1 - X)^{1.5}
\end{align*}
\]

The concentration of adsorbates and deactivation of adsorbent calculated by Eq. (4) were shown in Fig. a-f. As shown in Figures, the experimental data agree well with the curves.

Kinetic conclusions can be obtained like above using DKM and these conclusions can’t be obtained using PSO which assumes reaction order and contains the adsorption amount. Authors think that it may be more necessary to use DKM than pseudo order models including the adsorption amount in adsorp
tion kinetic studies.

(a) Biosorption of Pb(II) on APS

(b) Biosorption of Cr(III) on APS

(c) Biosorption of Cd(II) on APS

(d) Biosorption of Pb(II) on APS

(e) Biosorption of Cr(III) on APS

(f) Biosorption of Cd(II) on APS
References

5. Y.S. Hong, Kinetic re-evaluation on “Comparative adsorption of Pb(II), Cu(II) and Cd(II) on chitosan saturated montmorillonite: Kinetic, thermodynamic and equilibrium studies”, Applied Clay Sci., https://doi.org/10.1016/j.clay.2018.01.030

10. Y.S. Hong, Evaluation of activation energies on F- adsorption by hydrous ZrO2 decorated polyaniline nanofibres [J. Colloid Interf. Sci. 508

19. Y.S. Hong, Z. F. Zhang, Z. P. Cai, X. H. Zhao and B. S. Liu,