Refutation of the Löwenheim–Skolem theorem

We assume the apparatus and method of Meth8/VL4, with the designated proof value of \top. The 16-valued proof table is row-major and horizontal.

LET p, q, r, s: κ lc_kappa, M, N, σ lc_sigma;
\sim Not; $\&$ And; $+$ Or; $>$ Imply, greater than; $<$ Not Imply, less than;
$=$ Equivalent; \Diamond Not Equivalent; $\#$ necessity, for every; $\%$ possibility, for one;
$(p@p)$ 0, zero; $(s>(p@p)) |\sigma|; (q>(p@p)) |M|; (r>(p@p)) |N|; $\neg(p<q) (p\geq q)$.

From: en.wikipedia.org/wiki/Löwenheim–Skolem_theorem

In its general form, the Löwenheim–Skolem theorem states that for every signature σ, every infinite σ-structure M, and every infinite cardinal number $\kappa \geq |\sigma|$, (1.1)

$\#(s&((s&q)&(~(p<(s>(p@p))))))$; $\text{FF} \text{FF} \text{FF} \text{FF}$ (1.2)

there is a σ-structure N (2.1)

$\% (s&r)$; $\text{CC} \text{CC} \text{CC} \text{TT}$ (2.2)

such that $|N| = \kappa$ and

if $\kappa < |M|$ then N is an elementary substructure of M; [and/or]
if $\kappa > |M|$ then N is an elementary extension of M. (3.1)

$(((r>(p@p))=p)\&(>((q>(p@p))>(q<r))) [\&,+] ((p>(q>(p@p))>(q>r))))$; $\text{FT} \text{FT} \text{TF} \text{FT} \text{TF}$ (3.2)

Eqs. 1.1 implies 2.1. (4.1)

$\#(s&((s&q)&(~(p<(s>(p@p))))))>\% (s&r)$; $\text{TT} \text{TT} \text{TT} \text{TT}$ (4.2)

Eqs. (1.1 implies 2.1) implies 3.2. (5.1)

$(\#(s&((s&q)&(~(p<(s>(p@p))))))>\% (s&r)) >$
$(\text{FT} \text{FT} \text{TF} \text{FT} \text{TF} \text{TF})$ (5.2)

Eq. 1.2 as rendered is not tautologous, and not contradictory.

Eq. 4.1 is not tautologous due to one \Diamond falsity value.

Eq. 4.2 is not tautologous, and the same result table as Eq. 3.2.

This means the Löwenheim–Skolem theorem is refuted.