Boundary Matrices and the Marcus-de Oliveira Determinantal Conjecture

Ameet Sharma

ARTICLE HISTORY
Compiled April 21, 2019

ABSTRACT
We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the region in the complex plane covered by the determinants of the sums of two normal matrices with prescribed eigenvalues. Call this region Δ. This paper focuses on boundary matrices of Δ. We prove 2 theorems regarding these boundary matrices. This paper uses ideas from [1].

KEYWORDS
determinantal conjecture, Marcus-de Oliveira, determinants, normal matrices, convex-hull

1. Introduction

Marcus [2] and de Oliveira [3] made the following conjecture. Given two normal matrices A and B with prescribed eigenvalues $a_1, a_2...a_n$ and $b_1, b_2...b_n$ respectively, $\det(A + B)$ lies within the region:

$$\text{co}\{\prod(a_i + b_{\sigma(i)})\}$$

where $\sigma \in S_n$, co denotes the convex hull of the $n!$ points in the complex plane. As described in [1], the problem can be restated as follows. Given two diagonal matrices, $A_0 = diag(a_1, a_2...a_n)$ and $B_0 = diag(b_1, b_2...b_n)$, let:

$$\Delta = \{\det(A_0 + U B_0 U^*) : U \in U(n)\}$$ (1)

where $U(n)$ is the set of $n \times n$ unitary matrices. Then we can write the conjecture as:

CONTACT Ameet Sharma Email: ameet_n_sharma@hotmail.com
Conjecture 1.1 (Marcus-de Oliveira Conjecture).

\[\Delta \subseteq \text{co}\{ \prod (a_i + b_{\sigma(i)}) \} \] \hspace{1cm} (2)

Let

\[M(U) = \text{det}(A_0 + UB_0U^*). \] \hspace{1cm} (3)

The paper is organized as follows. In section 2 we define terms and functions that will be used in the rest of the paper. These definitions are necessary to state our results. In section 3 we state 3 lemmas and 2 theorems that form the bulk of the paper. We state them in the order they are proved.

2. Preparatory definitions

2.1. Terms

For the purposes of this paper we define an ordinary point of a curve as a point on the curve that has the following properties:

- It is not a cusp.
- It is not a point of self-intersection.
- It is not an isolated point.
- The curve has a unique tangent at that point.

Given a unitary matrix \(U \) and square, diagonal matrices \(A_0 \) and \(B_0 \) all of dimension \(n \times n \),

- If \(M(U) \) is a point on \(\partial \Delta \) (the boundary of \(\Delta \)), we call \(M(U) \) a boundary point of \(\Delta \) and we call \(U \) a boundary matrix of \(\Delta \). See eq. \((1)\) and eq. \((3)\).
- We define the B-matrix of \(U \) as \(UB_0U^* \).
- We define the C-matrix of \(U \) as \(A_0 + UB_0U^* \).
- We define the F-matrix of \(U \) as \(C^{-1}A_0 - A_0C^{-1} \) where \(C \) is the C-matrix of \(U \). Note that the F-matrix is only defined when \(C \) is invertible, or equivalently when \(\text{det}(C) = M(U) \neq 0 \). See eq. \((3)\). Also note that since \(A_0 \) is diagonal, the F-matrix is a zero-diagonal matrix. The idea for using the F-matrix comes from [1], Theorem 4, p.27.

Throughout the rest of the paper, we’ll assume \(A_0 \) and \(B_0 \) are defined, even if we don’t explicitly mention them.
2.2. Functions given a unitary matrix U

Given a unitary matrix U with B-matrix B, C-matrix C and F-matrix F. For every skew-hermitian matrix Z, we define the following functions

$$U_Z(t) = (e^{Zt})U$$

(4)

where t is any real number.

Since the exponential of a skew-hermitian matrix is unitary, $U_Z(t)$ is a function of unitary matrices.

let

$$B_Z(t) = U_Z(t)B_0U_Z^*(t)$$

(5)

let

$$C_Z(t) = A_0 + B_Z(t)$$

We note that $B_Z(0) = B$ and $C_Z(0) = C$.

let

$$R_Z(t) = \det(C_Z(t))$$

(6)

We can see by eq. (1) that $R_Z(t) \subseteq \Delta$.

$R_Z(0) = A_0 + UB_0U^*$

So by eq. (3) we see that $R_Z(0) = M(U)$.

So all the $R_Z(t)$ functions go through $M(U)$ at $t = 0$.

We shall refer to these functions in the rest of the paper with the same notation (for example $R_Z(t)$ for a skew-hermitian matrix Z. $R_{Z_1}(t)$ for a skew-hermitian matrix Z_1). Note that $R_Z(t)$ requires A_0, B_0, U and Z in order to be defined. But we won’t explicitly mention A_0 and B_0. All the results in this paper assume there are two diagonal matrices A_0 and B_0 defined in the background.

2.3. Skew-Hermitian matrices Z^{ab} and $Z^{ab,i}$

Given two integers a,b where $1 \leq a, b \leq n$ and $a \neq b$.

We define the $n \times n$ skew-hermitian matrix Z^{ab} as follows. $Z^{ab}_{ab} = -1$ (the element at the ath row and bth column is -1.) $Z^{ab}_{ba} = 1$ (the element at the bth row and ath column is 1.) And all other elements are 0. Note that $Z^{ab} = -Z^{ba}$.

We define the $n \times n$ skew-hermitian matrix $Z^{ab,i}$ as follows. $Z^{ab,i}_{ab} = i$ and $Z^{ab,i}_{ba} = i$.

3
All other elements are zero. Note that $Z_{ab,i} = Z_{ba,i}$.

It is straightforward to verify that Z_{ab} and $Z_{ab,i}$ are skew-hermitian.

3. Main Results

Lemma 3.1. Given a unitary matrix U with $M(U) \neq 0$. Let F be its F-matrix. Then $R_Z'(0) = M(U) tr(ZF)$ for any skew-hermitian matrix Z.

Lemma 3.2. Given an $n \times n$ zero-diagonal matrix W. Given $tr(Z_{ab}W) = 0$ and $tr(Z_{ab,i}W) = 0$ for all pairs (a,b) where $1 \leq a, b \leq n$ and $a \neq b$. Then W is the zero-matrix.

Lemma 3.3. Given a boundary matrix U with $M(U) \neq 0$ and with F-matrix $F \neq 0$. Given $M(U)$ is an ordinary point of $\partial \Delta$. Let L be the tangent line to $\partial \Delta$ at $M(U)$ with direction vector v. Then for every skew-hermitian matrix Z, $tr(ZF) = cv$ where c is some real number.

Theorem 3.4. Given a boundary matrix U with $M(U) \neq 0$ and with F-matrix $F \neq 0$. Given $M(U)$ is an ordinary point of $\partial \Delta$. Then F can be written uniquely in the form $F = e^{i\theta}H$ where H is a zero-diagonal hermitian matrix and $0 \leq \theta < \pi$.

Theorem 3.5. Given a boundary matrix U with $M(U) \neq 0$ and with F-matrix $F \neq 0$. Given $M(U)$ is an ordinary point of $\partial \Delta$. Let L be the tangent line to Δ at $M(U)$. By the previous theorem we know that $F = e^{i\theta}H$ for some real $0 \leq \theta < \pi$. Then L makes an angle $\arg(M(U)) + \theta + \pi/2$ with the positive real axis.

4. Proof of lemma 3.1

The proof given here uses ideas from [1], Theorem 4, p.26-27. But the proof given here is complete on its own.

Proof. We’re given a unitary matrix U where $M(U) \neq 0$. So its F-matrix is well-defined and we call it F. Let B be its B-matrix, and C be its C-matrix. Given an arbitrary skew-hermitian matrix Z.

We can use Jacobi’s formula [1] on eq. (6) to find $R'_Z(t)$

$$R'_Z(t) = tr(det(C_Z(t))C_Z^{-1}(t)C'_Z(t)) \tag{7}$$

$$R'_Z(0) = tr(det(C_Z(0))C_Z^{-1}(0)C'_Z(0))$$

We can substitute C for $C_Z(0)$.

$$R'_Z(0) = tr(det(C)C^{-1}C'_Z(0))$$
\[R'_Z(0) = \det(C) \text{tr}(C^{-1} C'_Z(0)) \]

We know that \(C'_Z(t) = B'_Z(t) \) so

\[R'_Z(0) = \det(C) \text{tr}(C^{-1} B'_Z(0)) \]

By section 2.1 and eq. (3) we know that \(\det(C) = M(U) \)

\[R'_Z(0) = M(U) \text{tr}(C^{-1} B'_Z(0)) \quad (8) \]

Using eq. (5),

\[B'_Z(t) = \frac{dU_Z(t)}{dt} B_0 U^*_Z(t) + U_Z(t) B_0 \frac{dU^*_Z(t)}{dt} \quad (9) \]

Using eq. (4),

\[\frac{dU_Z(t)}{dt} = Ze^{Zt}U \]

\[U^*_Z(t) = (U^*)e^{-Zt} \]

\[\frac{dU^*_Z(t)}{dt} = -(U^*)Ze^{-Zt} \]

Substitute these and eq. (4) into eq. (9)

\[B'_Z(t) = Ze^{Zt}U B_0 (U^*)e^{-Zt} - (e^{Zt})U B_0 (U^*)Ze^{-Zt} \]

\[B'_Z(0) = ZU B_0 U^* - U B_0 (U^*)Z \]

Using the definition of the C-matrix in section 2.1

\[B'_Z(0) = Z(C - A_0) - (C - A_0)Z \]

\[C^{-1} B'_Z(0) = C^{-1} ZC - C^{-1} ZA_0 - Z + C^{-1} A_0 Z \]

\[\text{tr}(C^{-1} B'_Z(0)) = \text{tr}(C^{-1} ZC) - \text{tr}(C^{-1} ZA_0) - \text{tr}(Z) + \text{tr}(C^{-1} A_0 Z) \]

The first and third terms cancel since similar matrices have the same trace.

\[\text{tr}(C^{-1} B'_Z(0)) = -\text{tr}(C^{-1} ZA_0) + \text{tr}(C^{-1} A_0 Z). \]

Using the idea that \(\text{tr}(XY) = \text{tr}(YX) \)

\[\text{tr}(C^{-1} B'_Z(0)) = -\text{tr}(ZA_0 C^{-1}) + \text{tr}(ZC^{-1} A_0) \]

\[\text{tr}(C^{-1} B'_Z(0)) = \text{tr}(Z(C^{-1} A_0 - A_0 C^{-1})) \]

\[\text{tr}(C^{-1} B'_Z(0)) = \text{tr}(ZF) \]

Substitute this into eq. (8) to get

\[R'_Z(0) = M(U) \text{tr}(ZF) \quad (10) \]
This proves lemma 3.1. □

5. Proof of lemma 3.2

Proof. Given an \(n \times n \) zero-diagonal matrix \(W \). Given that for every pair \((a,b)\) where \(1 \leq a, b \leq n \) and \(a \neq b \),
\[
\text{tr}(Z^{ab}W) = 0.
\]
\[
\text{tr}(Z^{ab,i}W) = 0
\]
(See section 2.3 for definitions of \(Z^{ab} \) and \(Z^{ab,i} \)).

by direct computation we see that
\[
\text{tr}(Z^{ab}W) = W_{ab} - W_{ba} = 0
\]
\[
\text{tr}(Z^{ab,i}W) = (W_{ab} + W_{ba})i = 0
\]
Solving these, we get that \(W_{ab} = 0 \) and \(W_{ba} = 0 \). So all the off-diagonal elements of \(W \) are zero. Hence \(W \) is the zero-matrix. □

6. Proof of lemma 3.3

Proof. Given a boundary matrix \(U \) with \(M(U) \neq 0 \) and with \(F \)-matrix \(F \neq 0 \). Given \(M(U) \) is an ordinary point of \(\partial \Delta \). Let \(L \) be the tangent line to \(\partial \Delta \) at \(M(U) \). Let \(v \) be the direction vector of the line \(L \). Note that \(v \) is just a non-zero complex number.

Let \(Z \) be a skew-hermitian matrix. By lemma 3.1 we know that \(R'_Z(0) = M(U)\text{tr}(ZF) \).

Since \(R_Z(t) \subseteq \Delta \) and \(R_Z(0) = M(U) \), we know that \(R'_Z(0) = kv \) for some real number \(k \). (since \(L \) is the unique tangent to \(\partial \Delta \) at \(M(U) \), then it must the tangent to every curve that lies in \(\Delta \), goes through \(M(U) \) and has a well-defined derivative at \(M(U) \)).

So, \(M(U)\text{tr}(ZF) = kv \)
\[
\text{tr}(ZF) = (k \frac{1}{M(U)})v
\]
□

7. Proof of theorem 3.4

Proof. Given a boundary matrix \(U \) with \(M(U) \neq 0 \) and with \(F \)-matrix \(F \neq 0 \). Given \(M(U) \) is an ordinary point of \(\partial \Delta \).

We pick an arbitrary pair \((a,b)\) such that \(1 \leq a, b \leq n \) and \(a \neq b \)
We have two skew-hermitian matrices \(Z^{ab} \) and \(Z^{ab,i} \) defined as per section 2.3
By direct computation we see that
\[
\text{tr}(Z^{ab}F) = F_{ab} - F_{ba}
\]
\[
\text{tr}(Z^{ab,i}F) = (F_{ab} + F_{ba})i
\]

Suppose $F_{ab} = F_{ab,r} + i F_{ab,i}$. (note that these are not tensors. $F_{ab,r}$ is just the real component of F_{ab} and $F_{ab,i}$ is just the imaginary component.) We can substitute this in to get

\[
\text{tr}(Z^{ab}F) = (F_{ab,r} - F_{ba,r}) + i(F_{ab,i} - F_{ba,i}) \tag{11}
\]
\[
\text{tr}(Z^{ab,i}F) = (-F_{ab,i} - F_{ba,i}) + i(F_{ab,r} + F_{ba,r}) \tag{12}
\]

We know by lemma [3.3] that these are collinear vectors in the complex plane.

So we know that

\[
(F_{ab,i} - F_{ba,i})(-F_{ab,i} - F_{ba,i}) = (F_{ab,r} + F_{ba,r})(F_{ab,r} - F_{ba,r})
\]

We can simplify this to get:

\[
F_{ab,r}^2 + F_{ab,i}^2 = F_{ba,r}^2 + F_{ba,i}^2
\]

We can write:

\[
F_{ab} = |F_{ab}| \angle \theta_{ab}
\]
\[
F_{ba} = |F_{ab}| \angle \theta_{ba}
\]

Note that we are given that $F \neq 0$. Note that we already know by section [2.1] that F is zero-diagonal.

We will divide the possible values of F into multiple cases. First we split all cases into two. The first is when only one pair of elements of the F-matrix, F_{ab} and F_{ba} is nonzero. The second case is when multiple pairs of elements of the F-matrix are nonzero. We shall further subdivide the second case using the fact that all $\text{tr}(ZF)$ values are collinear. We can divide these cases into 3 possibilities: 1. All nonzero $\text{tr}(ZF)$ values are imaginary. 2. All nonzero $\text{tr}(ZF)$ values are real. 3. All nonzero $\text{tr}(ZF)$ values are not real or imaginary. (note that since F is nonzero, we don’t have to deal with the possibility that $\text{tr}(ZF)$ is 0 for all skew-hermitian matrices Z. see lemma [3.2].)

So we have 4 cases to deal with.

Case 1: $|F_{ab}|$ is non-zero for only one pair $\{a, b\}$ where $a \neq b$

In this case,

\[
H = e^{-(\theta_{ab} + \theta_{ba})/2}F
\]

is a hermitian matrix, and we’re finished.
Case 2: $|F_{ab}|$ is non-zero for multiple pairs $\{a, b\}$ where $a \neq b$. For any skew-hermitian Z, when $\text{tr}(ZF)$ is non-zero, it is imaginary.

If $|F_{ab}| \neq 0$, then by eq. (11) and eq. (12), $\theta_{ab} = -\theta_{ba}$. This holds for all distinct pairs $\{a, b\}$, so our F-matrix is already hermitian, and we’re done.

Case 3: $|F_{ab}|$ is non-zero for multiple pairs $\{a, b\}$ where $a \neq b$. For any skew-hermitian Z, when $\text{tr}(ZF)$ is non-zero, it is real.

If $|F_{ab}| \neq 0$, then by eq. (11) and eq. (12), $\theta_{ab} = \pi - \theta_{ba}$. This holds for all distinct pairs $\{a, b\}$

$$H = e^{-\left(\frac{\pi}{2}\right)}F$$

is hermitian and we’re done.

Case 4: $|F_{ab}|$ is non-zero for multiple pairs $\{a, b\}$ where $a \neq b$. For any skew-hermitian matrix Z, when $\text{tr}(ZF)$ is non-zero, it isn’t real or imaginary.

Suppose $|F_{ab}| \neq 0$ and $|F_{cd}| \neq 0$

if $\text{tr}(Z^{ab}F) \neq 0$, then

slope of $\text{tr}(Z^{ab}F) = \frac{\sin(\theta_{ab})-\sin(\theta_{ba})}{\cos(\theta_{ab})-\cos(\theta_{ba})} = -\cot\left(\frac{\theta_{ab}+\theta_{ba}}{2}\right)$

if $\text{tr}(Z^{ab,i}F) \neq 0$:

slope of $\text{tr}(Z^{ab,i}F) = \frac{\cos(\theta_{ab})+\cos(\theta_{ba})}{-\sin(\theta_{ab})-\sin(\theta_{ba})} = -\cot\left(\frac{\theta_{ab}+\theta_{ba}}{2}\right)$

We know that since $|F_{ab}| \neq 0$, at least one of $\text{tr}(Z^{ab}F)$ or $\text{tr}(Z^{ab,i}F)$ is non-zero.

similarly,

if $\text{tr}(Z^{cd}F) \neq 0$, then

slope of $\text{tr}(Z^{cd}F) = -\cot\left(\frac{\theta_{cd}+\theta_{dc}}{2}\right)$

if $\text{tr}(Z^{cd,i}F) \neq 0$:

slope of $\text{tr}(Z^{cd,i}F) = -\cot\left(\frac{\theta_{cd}+\theta_{dc}}{2}\right)$

We know that since $|F_{cd}| \neq 0$, at least one of $\text{tr}(Z^{cd}F)$ or $\text{tr}(Z^{cd,i}F)$ is non-zero.

So we have:

$$\cot\left(\frac{\theta_{ab}+\theta_{ba}}{2}\right) = \cot\left(\frac{\theta_{cd}+\theta_{dc}}{2}\right) \text{ (lemma 3.3)}$$

therefore:

$$\frac{\theta_{ab}+\theta_{ba}}{2} = \frac{\theta_{cd}+\theta_{dc}}{2} + n\pi \text{ for some integer } n.$$

We can freely adjust θ_{cd} by $-2n\pi$. It makes no difference since $|F_{cd}|\angle\theta_{cd} = |F_{cd}|\angle(\theta_{cd} - 2n\pi)$

So after the adjustment we have:

$$\frac{\theta_{ab}+\theta_{ba}}{2} = \frac{\theta_{cd}+\theta_{dc}}{2}.$$

We make the same adjustment for any pair $\{c, d\} \neq \{a, b\}$ where $|F_{cd}| \neq 0$

We set $\beta = \frac{\theta_{ab}+\theta_{ba}}{2}$.

8
let $H = e^{-i\beta}F$

For some pair (x,y) where $x \neq y$ and $|H_{xy}| \neq 0$,

$H_{xy} = |H_{xy}| \angle \alpha_{xy}$

$\alpha_{xy} = -\left(\frac{\theta_{xy} + \theta_{yx}}{2}\right) + \theta_{xy}$

$\alpha_{yx} = -\left(\frac{\theta_{yx} + \theta_{xy}}{2}\right) + \theta_{yx}$

But because of our adjustments,

$\frac{\theta_{xy} + \theta_{yx}}{2} = \frac{\theta_{yx} + \theta_{xy}}{2}$

Plugging this into the above two formulas we have

$\alpha_{xy} = \frac{\theta_{yx} - \theta_{xy}}{2}$

$\alpha_{yx} = -\left(\frac{\theta_{yx} - \theta_{xy}}{2}\right)$

Therefore H is zero-diagonal, with transpositional elements of equal magnitude and opposite arguments. Therefore H is hermitian.

So in all 4 cases we can write $F = e^{i\beta}H$ for some hermitian matrix H and some real β. But we’ve not arrived at a unique representation for F yet.

Suppose

$F = e^{i\beta_1}H_1 = e^{i\beta_2}H_2$

$e^{i(\beta_1 - \beta_2)}H_1 = H_2$

$e^{i(\beta_1 - \beta_2)}H_1 = H_2 = H_2^* = e^{i(\beta_2 - \beta_1)}H_1^* = e^{i(\beta_2 - \beta_1)}H_1$

So

$(e^{i(\beta_1 - \beta_2)} - e^{i(\beta_2 - \beta_1)})H_1 = 0$

Since $F \neq 0$, we know $H_1 \neq 0$ so

$e^{i(\beta_1 - \beta_2)} - e^{i(\beta_2 - \beta_1)} = 0$

Then

$\beta_1 - \beta_2 = \beta_2 - \beta_1 + 2k\pi$, for any integer k

$\beta_1 = \beta_2 + k\pi$

So if we restrict all β to $0 \leq \beta < \pi$, we have a unique representation since k is forced to 0.

This completes our proof of theorem 3.4.
8. Proof of theorem 3.5

Given a boundary matrix U with $M(U) \neq 0$ and F-matrix $F \neq 0$. Given $M(U)$ is an ordinary point of $\partial \Delta$. Let L be the tangent line to $\partial \Delta$ at $M(U)$.

Proof. By theorem 3.4 we know that

$$F = e^{i\theta} H$$

(13)

for some real $0 \leq \theta < \pi$ and some zero-diagonal hermitian matrix H.

We can substitute eq. (13) into eq. (11) and eq. (12) and simplify to get:

$$\text{tr}(Z^{ab} F) = 2H_{ab, i} e^{i(\theta + \pi/2)}$$

(14)

$$\text{tr}(Z^{a,b,i} F) = 2H_{ab, r} e^{i(\theta + \pi/2)}$$

(15)

By lemma 3.2 we know that at least one of the above equations is nonzero for some pair (a,b). So then using lemma 3.1 we know that $R'_Z(0) = M(U) \text{tr}(ZF) \neq 0$ for some skew-hermitian matrix Z.

So by eq. (14) and eq. (15) we see that for some skew-hermitian matrix Z, $\text{tr}(ZF)$ forms an angle of $(\theta + \pi/2)$ or $(\theta + 3\pi/2)$ with the positive real axis (depending on whether the coefficient is negative or not). Therefore $R'_Z(0)$ forms an angle $\arg(M(U)) + \theta + \pi/2$ or $\arg(M(U)) + \theta + 3\pi/2$ with the positive real axis.

Therefore the line L forms an angle $\arg(M(U)) + \theta + \pi/2$ with the positive real axis (since this is a line as opposed to a vector, a rotation of π makes no difference).

This completes our proof of theorem 3.5.

References