Refutation of Fredkin paradox in one variable

From: en.wikipedia.org/wiki/Fredkin%27s_paradox

LET ~ Not; & And; + Or; - Not Or; > Imply, greater than; < Not Imply, less than; @ Not Equivalent;
p, ~p : chosen state, alternative to chosen state.

"The more equally attractive two alternatives seem, the harder it can be to choose between them—no matter that, to the same degree, the choice can only matter less." (1.1)

\[((p>\neg p)\&((p>\neg p)>(p@p)))>((p+\neg p)<((p>\neg p)\&((p>\neg p)>(p@p)))) \]

\begin{array}{ccc}
\text{FTFT} & \text{FTFT} & \text{FTFT} & \text{FTFT} \\
\end{array} \quad (1.2)

Eq. 1.2 as rendered is *not* contradictory, and hence refutes the Fredkin paradox in one variable.