THE EARTH-MOON COLLISIONS

Presenting three collisions in detail

ABSTRACT
To verify the likelihood of a new solar system formation hypothesis, research was conducted into a possible low speed, shallow angled collision between an ice-covered Earth and Moon, 4.1 billion years ago. Via a tailored set of indicators, not just one but three collisions were identified beyond a reasonable doubt. All are presented in great photographic and topographic detail in this paper:

On the Moon, the three impact areas are:
- Aitkin basin (4.1 Ga), a double string of major maria (3.5 - 3.9 Ga) and wider Oceanus Procellarum (450 Ma). On Earth, the respective corresponding impact areas are:
- The Arctic, the Canadian Shield and equatorial Gondwana (centred at current Antarctica).

As a result, many issues in geology can now be explained, from the ‘faint young Sun paradox’ to Hadean geology and continental drift.
Table of Contents

CHAPTER 1. PLANET – MOON COLLISIONS IN GENERAL

1.1 Ice layers, collisions and liquid water ... 3
1.2 The framework of collisions indicators ... 4
1.3 Polar scar indicator ... 4
1.4 Earth indicator: Topographics ... 5
1.5 Lunar indicator: Gravity anomalies .. 7
1.6 Lunar indicator: Chemical imprints .. 8
1.7 The three Earth-Moon collisions .. 8

CHAPTER 2. THE HADEAN COLLISION (4.1 GA)

2.1 Primary observations ... 10
2.2 Secondary considerations; ice layer, depleting oceans and terraforming .. 10

CHAPTER 3. THE ARCHEAN COLLISION (3.5 - 3.9 GA)

3.1 The forming of the maria ... 12
3.2 String 2A: The Imbrium impacts ... 12
3.2 String 2B: The Smythii impacts ... 14
3.3 Consequences for Earth and Lunar geology 17

CHAPTER 4. THE ORDOVICIAN COLLISION (450 MA?)

4.1 Oceanus Procellarum ... 20
4.2 Gondwana / Antarctica ... 20
4.3 The circular ridges around Antarctica .. 21
4.4 The impact in detail .. 21
4.5 Centre of impact: Mare Imbrium and West Antarctica 23
4.6 Consequences of the impact ... 23
 - The O-S, P-Tr and Tr-J mass extinctions ... 23
 - The Cambrian explosion ... 23
 The riddle of the big dinosaurs ... 24

CHAPTER 5: A FOURTH IMPACT? MARE ORIENTALE AND MARIANA TRENCH

25

ANNEX 1: CALCULATING THE INITIAL OCEAN LEVELS

26

ANNEX 2: ARISTARCHUS CRATER VS. BIG BEN VOLCANO

27

Author: R. Winnubst
Chapter 1. Planet – Moon collisions in general

There is little research into possible collisions between terrestrial planets and their moons. When related to Earth and our Moon this is even a somewhat sensitive ‘nigo’ area. The consensus paradigm for solar system formation, the ‘Solar Nebular Disk Model’ (SN DM), offers no specific logic as to whether or not this might have happened in the past. In contrast, the recently developed ‘Purging Hypothesis’ for solar system formation suggests that during the Hadean, on at least one occasion, Earth-Moon orbital conditions could have lead to a low-speed, shallow angled planet-moon collision. Since the purging hypothesis has proven to be far more explanatory than SNDM, it is interesting to examine if indeed such a collision did happen in Earth’s case.

1.1 Ice layers, collisions and liquid water

Although not a ‘sine qua non’ condition for the remainder of this paper, it is fitting to describe early conditions according to the purging hypothesis which is a product of recent research using the latest observational footage and novel reversed engineering techniques. A key output of this reversed engineering reconstruction is that our consensus assumption of ‘in-situ’ formation of terrestrial planets inside an accretion disk is logically and physically highly unlikely. In contrast, the most likely option is one where terrestrial spheres (planets and moons alike) all formed at considerable distance from the Sun, migrating inward while typically equipped with outer ice layers of up to 20% of radius, akin to the still intact ice moons of Enceladus, Europe and Ganymede.

Observational support for this ‘ice layer & inward migration’ scenario comes from recent observations at the TRAPPIST-1 system (C. Unterborn, Nature 2018. Illustration far right) where no less then 7 terrestrial exo-planets have been discovered, all of them suspected to have substantial outer water(-ice) layers and to be migrating inward. The logical consequence of inward migration is that terrestrial planet-moon binaries would cause their own self-inflicted ‘later heavy bombardment’ crossing disk debris and occasionally be subject to gravitational slingshots when passing established gaseous planets. This offers the distinct possibility of a shallow planet-moon encounter during which the smaller sphere – our Moon- would run the risk of losing its entire ice envelope, whereas the larger sphere – Earth– would have its ice layer locally damaged causing rotational imbalance which in turn would lead to heat convection between land and ice. At Enceladus (where Saturn's gravity is responsible for similar heat convection) this has lead to the formation of observed sustained sub-ice water oceans. In Earth’s case the consequent inside-out melting of its ice layer would unfold in 4 steps:

1. Heat convection would generate first melts in Earth’s water/methane/ammonia ices just above land, creating warm, dark, UV-free caveats ideal for amino acids to form.
2. With intensified melting, rivers and sediments would dominate the ever more exposed Hadean surface.
3. Next, with increased melting, Earth’s lower ice layer would become unstable, grinding and pulverising the surface. Eventually the entire ice layer would cave in and melt, rendering the surface into the highly pressurised bottom of an all-encompassing Archean ocean in which oxygenic photosynthesis based algae could later form.
4. The ocean levels gradually declined over billions of years mostly entering Earth’s rebounding mantle.

The above chain of events makes sense from a logic stance as it would integrally solve a lot of paradoxes and design issues such as the ‘faint young Sun paradox’, the formation of amino acids, the ‘Late Heavy Bombardment’, the Lunar Aitkin basin and many more. As such an actual Earth-Moon collision gradually became less ‘exotic’ than our consensus education would suggest and the logical next step was to reflect on potential indicators to narrow down suspect areas for such a collision.
1.2 The framework of collisions indicators
When looking for evidence of collisions we refrained from complicated theoretic models or impressive computer simulations which nowadays seems to be sufficient to ‘proof’ anything. In stead we only used undisputed ‘raw’ material such as topographic, gravitational, chemical and visual footage of Moon and Earth. Regarding our Moon, identifying suspect areas was relatively easy. On Earth the situation was much more difficult because of general erosion and recent plate tectonics. Highly sceptical of finding anything, we proceeded to construct a framework of 7 collision indicators using plain logic and studying nearby terrestrial spheres. The seven collision indicators are:

1. Polar features, static (e.g. a wider circular impact rim with a long straight line as ‘first touch’ base)
2. Polar features, dynamic (tectonic plates moving towards poles)
3. Topographic features, static (surface depressions or elevations, circular imprints)
4. Topographic features, dynamic (annual vertical crustal motion)
5. Gravitational anomalies
6. Chemical / radioactive imprints; (dome) volcanism; lack of spin
7. High concentrations of small secondary craters

The next paragraphs go into the rational behind the indicators above, which actually all indeed proved to be valid!

1.3 Polar scar indicator
Polar scars proved to be the dominant indicators. The idea is that if an impact significantly damages part of a rotating (ice)sphere, it will generate rotational imbalance. Gyroscopic forces will next restore balance by moving the damaged area towards one of its rotational poles. In case plate tectonics is enabled, only the plate of the damaged part may migrate to a pole. Either way, physics suggests poles are the ultimate places to look for scars of large impacts.

![Figure 1.3.1 Spheres in general move damaged areas to rotational poles](image)

Note that in general, any solid sphere without tectonics will have great difficulty if it is hit twice. It can handle one damaged area at one pole but a second hit would be impossible to correct as trying to do so would move the first damaged area out of its polar position. The result will be ‘eternal’ gyroscopic swings, heating up the interior perhaps even stirring volcanic activity, until all of its spin is eventually lost with the major impact site residing slightly off its polar position – this is precisely the situation with the Lunar Aitkin Basin impact zone. The ‘polar mechanism’ has an additional effect in case a sphere is hit twice, while tectonics are enabled. Gyroscopic forces would then ultimately move the newly impacted plate – if located at the opposite hemisphere – to the other rotational pole. A prime example is Gondwana / Antarctica as shown later. With the impacted plate arriving at the opposite pole, the planet’s rotational axis will once more become stable.

This theoretical concept of the polar mechanism can be easily verified: on Earth we will show that the two major impacts locations are indeed found at our exact (!) north pole and our exact(!) south pole, the latter a clear example of a plate tectonics correction. Next, when looking at our closest neighbours below, our Moon, Mercury and Mars all have their major impact area’s at their rotational poles as demonstrated in the next figure: The colour blue represents depressed, lower situated area’s in all three cases.

![Figure 1.3.2 Examples of spheres moving impact sites to poles.](image)
• **Earth – Moon**
 The impact sites of the 2 largest collisions are found at exactly (!) Earth’s poles as will be demonstrated shortly. The Moon’s dominant impact area is near its south pole.

• **Mercury – Venus (hypoetical)**
 At Mercury we see a situation identical to our Moon; a major impact area at – again ! - its north pole impact basin (see above). A minor impact at Caloris basin which could not be corrected, arguably causing the loss of spin similar to the Lunar situation. Venus would be its suspected impactor with corresponding impact areas at Aphrodite Terra and Ishtar Terra. The hypothesised collision may also have caused Venus’ retrograde rotation. By means of exception, on Venus the extended stretched scar of Aphrodite Terra (vs. Mercury north pole!) was apparently best compensated by an equatorial position.

• **Mars – Martian Moon (now asteroid belt, hypothetical)**
 The Martian surface shows a devastating impact at – again! - its north polar basin (see above) and a minor impact at Hellas Planitia basin. The larger Martian moon likely responsible for the polar basin impact (400-500km in diameter at least) may later have disintegrated due to resulting rotational imbalance, forming the asteroid belt.

1.4 Earth indicator: Topographies

The typical static topographic features of interest include:

1. A large circular impact rim feature and a depressed OR elevated central feature.
2. A long straight line at the base of such a circular feature, indicative of a shallow (very) wide-body impact.
3. In case at least one of the spheres had a substantial ice layer at the time of impact, linear breaking ice shelves could pierce the crust, typically causing a long straight crustal fracture line at the centre of impact.

Vertical crust motion map

The annual vertical crust motion map above, was another important Earth impact indicator. The usual geologic explanation of this chart is that during ice ages, ice masses would invade from the poles, their weight depressing the region while blocking any rebound. As the ice recedes, the surface next rebounds at an increased rate. This explanation is NOT plausible: Ice masses surely do temporarily block crustal rebound, causing increased post-glacial rebound. However, it is unlikely that they would have produced the very local and very circular rebounding surface depressions. If glaciers typically produce such imprints, they would be ‘trench’ like, not circular. But even if glaciers typically produce circular imprints, why are there only a hand full on Earth? and why not in Siberia? In all, it is far more likely that the depressed circular area’s already existed prior to recent ice ages, rebounding already long before the recent ice age blocked their rebound. As such, ancient wide-body impacts would be a viable alternative explanation and the the vertical crust motion map above would then indicate 3 suspect impact area’s:

1. A multi-pivot (?) impact zone at Canada NW, Hudson Bay / Nastapoka Arc, Gulf of St Lawrence, Foxe basin
2. A related (?) impact at the northern Baltic sea.
3. Antarctica, left and right of the Antarctic peninsula; The related (?) Wilkes land gravitational anomaly at Antarctica is inserted bottom right, suggesting a potential first impact entry point (?)
Looking for more indicators, it was suggested that any impact may have caused the launch of surface debris, re-impacting as a secondary minor ‘meteor like’ impacts. As such we looked for area’s of concentrated meteor impacts which would logically need to correlate to the vertical crustal motion map. Several surprising findings occurred:

1. **Strong correlation**
 First of all; As shown above, there appears to be a strikingly strong correlation with the previous map on vertical crustal motion, not just in the north but also in the south, since Australia, Africa and South America were all part of greater Gondwana until 200 Ma. Most obvious is the Bothnian Bay lighting up on both charts! The logical next step was to look at the ages of the geographic concentrated meteor impacts. These ought to be identical if indeed we are looking at debris impacting. Research learned that the concentrated craters are all not older then 500-400Ma yet they surprisingly they vary in age. This variation rules out that the concentrated impacts would be the result of debris re-impacting after a major impact, so this original working hypothesis is invalid. But if not caused by re-impacting debris, then why would there be concentrations and why is there the obvious correlation with the vertical crustal motion map on the previous page?

2. **Regional impact uplift effects**
 It took quite some time to crack this riddle. In the end only one logic explanation remained that can combine this geographic but not time wise correlation between the rising circular imprints and their concentrated crater impacts:
 - The entire globe would for long have been submerged until ca. 540 Ma, the area of first amphibious land life.
 - The ancient (lunar?) impact areas would originally be depressed yet would gradually lift, becoming the **first areas to emerge out of the ocean** and thus be subject to more - and older- meteorite impacts than the rest of the still submerged continental crust.
 Detailed geologic study revealed indeed water inside mantle rock can be come supercritical upon such impacts, causing macroscopic fragmentation of mantle rock. This in turn leads to water attracting capillary effects inside the impact-fragmented mantle rock causing post impact expansion / uplift effects. In a not so far off comparison, it is similar to developing a bump on one’s head after hitting a wall. We will elaborate on page 19.

3. **Lunar meteorite finds at Antarctica**
 There is a slightly more indirect but still fascinating fact about Lunar meteorites found in specifically Antarctica: The website of the University of Washington cites this as follows: ‘...In the lingo of meteoritics, all Lunar meteorites have been “finds not fall”. In other words, no Lunar meteorite has been observed as a meteor. This is a curious fact as there are fewer Martian meteorites than Lunar meteorites yet several of the Martian meteorites have been observed to fall (Chassigny, Shergotty, Nakhla, Tissint, Zagami)…’
 Assuming the rules of statistics apply universally, this suggests the Antarctic Lunar meteorites simply never fell, in which case...they would be sediments. Though no major prove yet, the entire idea of a collision started to gradually become less ‘absurd’ than our shared education would suggest. It was time to look for anomalies on our Moon:
1.5 Lunar indicator: Gravity anomalies

On the moon, the famous dark maria stand out. General consensus is that they are caused by ancient volcanic eruptions preceded by impacts of large asteroids. Though impacts seem a valid option, it is not likely asteroids or meteors were the impactors, given the one-sided concentration of the maria, their non-circular shape and relative wide gravity anomalies. The visual spectrum to the left does not reveal much further clues, yet the detailed gravity maps above of the 2011 GRAIL mission clearly indicate three separate impact candidates:

1. Aitkin Basin. First and foremost, Aitkin basin, which is hardly visible in the visual spectrum, revealed itself as the remnant of a wide body impact occurring at ca. 4.1 Ga and is now generally considered to be just that. Earth is its likely impactor yet this option is hardly ever mentioned. Arguably the idea is that such a violent collision would have left more structural damage to both spheres. However, such reasoning is based upon the implicit and unproven assumption that both Earth and Moon at 4.1 Ga should be more or less similar to their current appearances. Quite in contrast –and in line with the purging hypothesis- both spheres at 4.1 Ga would have had a substantial ice layer, quite capable of absorbing the brunt of the impact energy. This also solves the mystery why this biggest ever lunar impact caused hardly any visual damage to the Moon’s surface, while each and every minor impact afterwards caused substantial visual damage (!!). If indeed the Moon once had an outer ice layer, this would be the moment it lost it entirely.

2. The major maria. When looking at the surface gravity map above, it is easy to see the 7 major ‘gravity anomaly’ maria are all connected by two imaginary trajectories, crossing at Mare Moscovienne, forming a PERFECT non-euclidean triangle!! This would be the textbook remains of a shallow multi-pivot delta impact with a large body. Again, Earth would be the prime suspect, since a multi-zone impact is consistent with the buoyancy effects one may expect from Earth’s formidable water layer once its ice layer melted. In the previous paragraph we saw the Canadian Shield hosts a string of suspect impact zones. As such it did not take long to confirm that the suspect areas of Canada NW, Hudson Bay, Nastapoka Arc and gulf of St Lawrence are the exact in-line mirrored imprints of Mare Imbrium, Serenitatis, Crisium and Moscovienne. Eventually all 4+3 reversed imprints were retrieved on Earth with correct 1. size, 2 shape, 3. position and 4. orientation. In chapter 3 all stunning details are provided.

3. The wider Oceanus Procellarum area. Since both strings of maria stretch well beyond Oceanus Procellarum, the Oceanus Procellarum area itself should be treated as a separate, overlapping and more framed impact suspect. To further illustrate: To the right we see the NASA PIA 18822 study of the Gravity Gradient Frame of Procellarum indicating a gravitational anomaly in the crust. Adjacent we see the Moon in false colours, showing the same frame as a rusty surface feature, best visible at Mare Frigoris to the North. The ‘rusty’ overlap at mare Serenitatis suggests this impact is the youngest impact candidate. As shown later in chapter 4, this NASA study –for which NASA claims it has no clear explanation- has a perfect inversed correlation with the widening circular scars or ‘mid ocean ridges’ on the ocean floor around Antarctica. With Mare Imbrium and Serenitatis situated within the ‘rusty’ area, we also get the prediction these two prominent maria would again leave their imprints on Earth! If so, looking at the crustal motion map on the previous page there is only one option for a possible corresponding double Earth impact site: left and right of the Antarctic peninsula. The reader is invited to check this very detailed mapping prediction of these specific Earth / Lunar areas with his/her own eyes at chapter 4.
1.6 Lunar indicator: Chemical imprints
Finally, we studied some chemical composition maps for details. The idea is that any impact between Moon and Earth would superheat the water trapped in between both spheres. At those pressures and temperatures, water becomes supercritical; a physical state in which it can dissolve even rock but not the heaviest elements in it (Iron, Titanium, Thorium, Uranium). As such, it would erode and dissolve the entire rocky surface at the impact zone of both spheres and logically leave behind exceptionally high concentrations of metal oxides whereas the rocks were spread over the entire Lunar surface as regolith. On the map to the right, the iron oxide distribution seems to confirm the wider Oceanus Procellarum area is indeed related to a wide-body impact. (Clementine map of Lunar iron oxide concentrations). Also it indicates a clear linear impact base at its left and a slightly 'rolling' skew to the right upon unfolding. Inversed, this predicts a left rotating impact, which is exactly what we’ll see when mapping it on Antarctica in chapter 4.

1.7 The three Earth-Moon collisions
Below the numbers of all collisions are inserted, with their counterparts on Earth and Moon.

Referring to the impact numbers above: We propose to coin the three impacts as follows

1. **The Arctic or ‘Hadean’ impact, ca. 4.1 Ga.** The ‘mother of all impacts’ between Earth’s current North Pole (Gakkel Ridge to Canada basin) and the Lunar Aitken basin near the current Lunar South Pole.
2. a. **The Canadian Shield (‘Archean’) impact 3.5-3.9 Ga String 1.**
 This involves: a. Mare Imbrium = Canada North-West, b. Mare Serenitatis = Hudson Bay South, c. Mare Crisium = Hudson Bay East (Nastapoka arc) and d. Mare Moscovienne = Gulf of St Lawrence.
2. b. **The Canadian Shield (‘Archean’) impact 3.5-3.9 Ga String 2.**
 This involves: Mare Smythii = Gulf of Bothnia, b. Mare Nectaris = Aegir Ridge c. Mare Humorum=Greenland.
 Both strings belong together, forming a 7-zone delta pivot impact. Due to tectonics, part of the string 2 impacts later migrated to the east on Earth.
3. **The Gondwana/Antarctica (‘Ordovician’) impact ca. 450 Ma?** This impact has a bent trajectory and occurred between the Moon’s Oceanus Procellarum / Imbrium/ Serenitatis region (NASA study PIA 18822) and Earth’s equatorial Gondwana, centred at current Antarctica. On Earth, the borders of this nearly squared impact area are the spreading mid oceanic ridges around Antarctica. During this collision, Mare Imbrium and Mare Serenitatis impacted right and left of the Antarctic peninsula, forming it as such.
4. **Mare Orientale** shares comparable features with Mariana Trench and a large impact area at the border of Idaho / Utah, U.S.A. We will address what could be behind this trinity in relation to the growth of the Pacific. The Mare Orientale impact likely belongs to the Gondwana impact, as it is located centred and in front of Oceanus Procellarum.

The next chapters will display in amazing visual detail each of the above 3 collisions: When looking at the baffling matching geographic imprints, one should keep in mind that all locations were predicted and next found using these indicators. As such, there is not just visual but also logical / physical evidence for each identified imprint.
Chapter 2. The Hadean Collision (4.1 Ga)

The Lunar Aitken basin is highly visible on the topographic and surface gravity map. This huge area is generally recognised as the oldest impact basin on the Moon with age estimates varying from 4.0 to 4.3 Ga. It is thought to be forged by a very low impact speed (10 km/s) with a huge body. Reference: "...constraining the size of the South Pole-Aitken impact, Potter, Collins et.al.".

Aitken basin is located near the Lunar south pole so that is a major indicator. It is a large depressed circular area, with a linear 1700-km base at the lower right side of Aitken basin, all again consistent with a wide-body impact. In addition, there are elevated iron levels. These are enough factors to look for a matching feature on Earth. Theory predicts the best place to look for is at Earth’s poles. And indeed, a matching impact zone on Earth is found at exactly our North pole; The 1700 km (!) straight impact line of Amundsen Basin / Gakkel ridge. Though slightly eroded by tectonics and the later rotation of Greenland, the detailed mapping is still recognisable as analysed below. Lunar images are presented in their mirrored (inversed) image to allow for easier comparisons with Earth features.

![Image](image_url)

Figure 2.1; Earth polar region and Moon topographic south pole region; Source Clementine Topographic map, Lunar Planetary Institute
2.1 Primary observations

1. In general: notice the similar forces inflicted on the edges of both circles; On the moon we see huge compressing forces (in red) form mountains around the impact zone, just like on Earth.

2. The entry points for both spheres are at the straight white lines indicated by the red arrows. On Earth, the primary entry is the Eurasian continent at the Barentz-Kara sea margin, reaching the ocean floor at current Gakkel ridge. Its near perfect straight line might indicate a huge ice shell piercing the crust at Gakkel ridge.

3. An identical secondary line - most likely scraped landmass from the Gakkel ridge area - forms Lomonosov ridge. At the Greenland-end of Lomonosov ridge we can see this ridge appears snapped during impact and pushed away towards Canada so that Lomonosov and Gakkel Ridge now slightly angle at about 10 degrees. This double impact feature seems to be reflected on the Lunar picture as well.

4. Next we see a less deep imprint creating the Chukchi Plateau and Mendeleev Ridge. At the corresponding Lunar impact area, we see this reflected by a square which is blue in stead of purple, indicating a less deep imprint.

5. Next we see the impact ending at Canada Basin. The original impact forces on both surfaces must have been tremendous as even to this date, both areas are still way below their surrounding surface, on the Moon even 6 km.

6. On the Moon, on top we see a surface pressure divide between the two red area's indicated by a white triangle. On Earth there is an exact copy of this divide in pressure, forming the Bering sea and Bering straight between current Russia and Alaska. Notice also the angle of this divide on Earth grows disproportionally larger towards the south, compared to the Lunar situation, indicating the seafloor on Earth has dilated substantially at the Pacific ever since.

7. Looking at the bottom-left part of the Lunar Aitkin Picture, we see a stretched red feature, horizontally aligned with a hollow centre, attached to the lunar area that would correspond with Quebec on Earth. We see no such feature on current day Earth. However, studying tectonics, this is the location where Greenland would be, while still connected horizontally, to the North American continent. Notice how Greenland's rotated arc-shaped South-East coast perfectly aligns with the impact circle. Also, Greenland land-wise is actually hollow at its centre as the superimposed picture shows, just as the Lunar situation predicts.

8. Related to this; Within Earth's red dotted wider impact circle we see a stark dissonant with the Lunar situation: parts of Northern Canada and Greenland appear crushed, fragmented and are located inside the original impact circle. The lunar picture suggests this would not be the original Earth situation upon forming the arctic region at 4.1Ga, which independently predicts a second major event must have happened at the Canadian Shield afterwards causing this scattering of NW Canada and the detachment of Greenland. This is highly consistent with the independent indicators of chapter 1 already pointing at the Canadian Shield. Thus, an actual Moon-Earth overlay match in this region, would give decisive and undeniable 3-fold support both impacts did happen!

9. Zooming out, the Lunar picture suggests that a half circle, from Greenland to Bering Street and the Lena river in Russia is original and related arcic landmass, forged at 4.1 Ga. This suggests:
 a. Unlike many 'scientific' tectonic animations, almost no tectonic movement occurred ever since in this half-circle region. In addition; the Arctic seafloor is to be seen as depressed continental crust, not seafloor.
 b. All of Earth's landmass west from the Lena river would originally not be located this high up north on Earth. Again this is correct. This is a separate landmass, the Eurasian plate, only joining at the Lena at 300 Ma.

2.2 Secondary considerations; ice layer, depleting oceans and terraforming

All of the above make a very compelling case for an actual Earth - Moon collision. As a follow-up question one may wonder if this also indicates Earth indeed had a 1200+ km outer ice layer at time of impact (see calculations at Annex 1)

If so, most of this water would have gone sub-surface, suggesting fluid water - unlike ice - is not a stable outer layer.

The highly compressed Archean upper mantle would absorb any water coming in via cracks or subduction, reducing surface water pressure overhead, which in turn allows it to rebound further, absorbing more water. As a side effect, the top continental crust upon which the ice layer once rested would at some point stretch, break and next spread as separate continents along the expanding upper mantle. Such a mantle-rebounding/ ocean-depleting process is in line with the two water consuming processes generally acknowledged in geology:

1. Water saturated ocean floor does enter the mantle via subduction and arguably hardly any of this surface water returns to the surface. In stead it is 1) stored as water inside pockets under the convex continental crust or 2) stored as hydroxide or otherwise inside rocks (Serpentine, Ringwoodite) or 3) takes part in other chemical reactions. Regardless its ultimate form, the water influx facilitates pushing up the convex continental crusts from below, as the upper mantle gradually rebounds.

2. At the volcanic mid ocean ridges, water is currently used to ‘frantically’ quench magma, producing new low-density pillow lava, effectively expanding the ocean floor from above even if some is later sub ducted at a slow rate. There is a potential third water related process: Earth’s core of liquid iron and liquid nickel is hot enough to also have a next layer of pure liquid silicon. Any oxygen (or water) coming in contact with this layer immediately engages into (wet or dry!) silicon oxidation a highly expansive process with the oxide growing to +54% its original size. Latest
research indeed hint as residual pure silicon; (Silicon is found to be the missing element at Earth’s core Jan 2017, Prof Eiji Ohtani at Tohoku University Northern Japan). It would cause Earth to physically expand inside-out with the mid oceanic ridges producing new seafloor to keep up. Subduction would provide the needed influx of new oxygen atoms, ironically sustaining Earth’s expansion, whereas it has always been used to ‘prove’ the theory of plate tectonics as the main driver for continental drift.

These three surface water consuming processes combined, would explain Earth could gradually transform from a 1200km+ ocean world, to a planet with a rebounding, swollen and less dense upper mantle leaving only shallow oceans on top of it. This ‘terraforming’ process is quite in line with physics as well:

1. It would largely be a mass and volume neutral process since only the location of surface water changes.
2. The upper mantle’s density would drop considerably compared to the lower mantle density. This is consistent with today’s upper mantle density dropping to nearly 60% the density of the lower mantle.
3. Earth’s mass distribution would change; As its outer layer is no longer 1200 km of light ice, Earth’s inertia would increase, leading to slower rotation. Again this is consistent with our current day of nearly 24 hours, as opposed to an estimated shorter than 5 hours at inception.
4. Interestingly, all current continental crust combined would fit together on a approx. 30% smaller sphere. Current ocean floor would not have existed back then, but formed later via ‘mid oceanic ridges’ to compensate expansion.

Testing the 30% mantle expansion thesis
The expansion hypothesis is not new. It was long considered an alternative to tectonics, but the suggested ‘mass increase’ could never be substantiated in practice or in theory. However, the new element of a deep Archean ocean solves this. Moreover, for the first time, the Arctic impact gives us a chance to put it to the test: If the Hadean sphere was indeed 30% smaller, it should show up at Earth’s current Arctic impact circle since it encompasses all meridians:

1. Referring to the Hadean impact comparison on the previous page, the diameter of the dotted wider impact circle on the Moon at the South Pole / Aitken (‘SPA’) region is 2600 km, whereas
2. On Earth this circle is now about 3300km, the distance between north Alaska and Longyearbyen on Spitsbergen. Thus, on Earth it is now 1·3350 / 2600 or 29% wider. This would suggest an upper mantle radius of 4970 km at 4.1 Ga, with an extra ice layer of some 1430 km (combined 6400 km). This may seem impossible, yet keep in mind NASA gauges that Ganymede –barely larger than our Moon- may have a layer of up to 700 km of water ice. Also, since we earlier concluded the Arctic half circle is one of the most stable regions, its widening would have logically occurred at the Atlantic side of the circle. Again, this seems consistent with the Arctic picture in the middle, below. In addition, even considering some slow rate subduction, it appears the bulk of this expansion happened over the last 250 million years! Notice also the huge blue (old) spot on the seafloor east of Mariana Trench. We will get back to this area in the final chapter.

Figure 2.2. Patterns of seafloor spreading in the Pacific (left), Arctic (centre), and Atlantic oceans (right); U.S. Dept. of Commerce/NOAA

Data on mantle expansion
All of this would mean current sophisticated technology should be able to detect substantial mantle rise. Remarkably the first data ever gathered scientifically on a grand scale regarding mantle expansion, was immediately subject of a huge controversy. From 1976 to 1993 data was collected form a network of over 600 VLBI stations on Earth and arguably the outcome was an average growth of Earth’s outer mantle of no less than 18 mm per year.

This is consistent with the excessive seafloor spreading which started some 250-200 million years ago as the previous picture showed. It was however not consistent with the upcoming theory of plate tectonics which suggested a static Earth. Consequently, the findings were reportedly next corrected:

Space Geodetic Network:
‘….Calculations based on the established global observational network to 1993 gave a mean “value of up-down (radial) motions of over 18 mm/year”, this was considered extremely high when compared to expected de-glacial rates. It was "expected that most VLBI stations will have up-down motions of only a few mm/year” and it was then recommended that the vertical motion be “restricted to zero, because this is closer to the true situation than the average of 18 mm/year.....”.

-Robauldo & Harrison (1993)-

If indeed such corrections take place -as Earth expansion proponents claim- this is for sure morally questionable....
Chapter 3. The Archean Collision (3.5 - 3.9 Ga)

After describing the Hadean collision, the next features of interest are the major Lunar maria, which are all positioned at Earth’s facing side. In this chapter it will be shown all seven major maria can be mapped onto the Canadian shield as predicted in chapter one. The Oceanus Procellarum area is not part of this collision and will be addressed in the next chapter.

3.1 The forming of the maria
General consensus is that Lunar maria are related to impacting asteroids or meteors, their basins later flooded with lava from the Lunar interior. The radiometric ages of maria rim material range from 3.16 to 4.2 Ga, but most are dated around 3.9 Ga. The ages of the lava basalts range from 3 to 3.5 Ga (source Wikipedia). As such, it is generally believed the major maria to the right (2a and 2b) would have formed somewhere between 3.5-3.9 Ga.

There are however severe problems with the consensus view of individual meteor impacts casing the maria; Meteorites impacting is not consistent with the fact that only the Earth-facing side has maria. A serial meteorite like Shoemaker-Levy 9 could be involved, yet than again the maria do not have typical meteor impact features at all; Most are highly irregularly shaped and their surface gravity distribution is relative wide. But there is an even stranger anomaly, never mentioned in studies: All seven ‘surface gravity anomaly’ maria above are actually are aligned along two virtual trajectories, suggesting a multi-zone impact with a wide-body object.

Taking this option a step further, we notice both trajectories 2a and 2b actually converge at Mare Moscoviense. If taken at face-value, this could mean they form a combined seven-zone delta impact where the Moon would have banked left and right during an impact converging or diverging at Mare Moscoviense.

Earth at 3.5-3.9 Ga, would have had an outer water layer still in access of 2200 km (see Annex 1) being quite able to exert substantial surface tension and buoyancy effects consistent with the ‘bumpy’ impact trajectories as depicted above. Logically and physically this seems the only viable option: To confirm, we will need to retrieve the exact inversed copies of this 7-fold maria delta impact on Earth where each of the inversed imprints must have the correct 1) size 2) shape 3) relative position and 4) relative orientation. We will start with the dominant 2a string.

3.2 String 2a: The imbrium impacts
First of all, at the respective impact zones on Earth we would expect the impact zone to be shallow with the upper surface just ‘gone’, without leaving typical impact ejecta traces one would normally expect. The reason is that upon impact any water trapped between both surfaces would be subject to extreme pressure and temperature reaching supercritical levels. In this physical state water can fragment and dissolve surface rock, but not the heavier metals in it (Fe, Ti, Th, U) explaining their high oxide concentrations near impact zones.

Earlier we explained why we can use the Earth vertical crustal motion map and the EDEIS crater impact map to identify any suspect corresponding Earth impact zones, something which is not intuitive given the consensus interpretation of these maps. Focussing on the dominant 2a string maria, the vertical crustal motion map suggests Canada NW and Nastapoka arc at Hudson Bay are the prime suspects for finding counterparts. On the next page the 4 inversed maria are projected on each of their their PREDICTED location at the Canadian Shield! Any random match would already be incredible yet keep in mind these corresponding Earth spots are PREDICTED!!!
The distance between Mare Crisium and Serenetatis on the Moon is slightly larger compared to the distance between Hudson bay East and Hudson bay West. This is consistent with later tectonic movement on Earth of Hudson Bay East. Also, distances may very slightly due to the Moon veering off between two impacts. Since Mare Moscoviene is not visible on the Lunar picture its relative distance from Crisium was projected onto Nastapoka arc (Hudson Bay East) leading to the gulf of St. Lawrence as the suspect imprint for Moscoviene. Their baffling comparison is below:

Moon, Mare Moscoviene 277 km
(inversed and rotated)
Gravity anomaly chart, source: Grail mission

Earth, Gulf of St Lawrence 280 km
(Bathymetry ocean floor)

What is so incredible is that all four (five) Earth imprints not only match their Lunar counterparts in 1) shape 2) size, but also in 3) relative position and 4) relative orientation (!!). As such, it is statistically impossible that these are not the combined counter imprints of the corresponding four Lunar maria.
3.2 String 2b: The Smythii impacts

To upgrade the confirmed 4-fold impact to the suggested 7-fold delta impact structure, we must next find the inversed imprints of string 2b (Smythii, Nectaris and Humorum) at their projected Earth locations, just north of the 2a series. This is not easy, since the 2b series fractured Earth’s surface and are likely now found on migrated tectonic plates, due to these very impacts. This suggested disposing of impact energy, is highly consistent with the fact that all 2b mare have less gravitational anomalies imprinted on the moon (see Lunar surface gravity map) then the 2a series.

To start off, the inversed Lunar situation to the right provides the original location and orientation of expected impacts. In white letters we see the seven pivot maria with gravity anomalies. At the Procellarum side, the view gets distorted by material of this more recent 3rd impact, arguably also involving M. Tranquillitatis and M. Fecunditatis.

a) Mare Smythii

On Earth, starting from the Gulf of St Lawrence (Mare Moscovienne), we should see from east to west the inversed imprints of Mare Smythii, Nectaris and Humorum. Earth’s vertical crustal motion map below immediately presents an issue: The Baltic sea (gulf of Bothnia), is the eastern most candidate and should be inversed mare Smythii. Looking at the Lunar position of Smythii relative to Moscovienne and Crisium, this means the Scandinavian plate would have been positioned over Quebec at 3.5 Ga (near the red dot nr.1 below). Notice there is indeed a red area near red dot nr 1. which has a ‘ghost shape’ similar to the gulf of Bothnia. From all this we get a first tentative idea that the entire Scandinavian plate would originally be adjacent and partially on top (forming the crust) of Canada rotated 90 degrees. Losing its crust may have exposed or formed the old cratons at Canada.

Studying plate tectonic studies by Prof. C. Scotese (right) suggests the idea of Scandinavia being positioned much closer to Canada is rather likely. Notice however this Scotese projection is only from 240 Ma. (Scotese youtube presentation; https://youtu.be/TDHxQimmRGc)

What would be distinctively different at 3.5Ga compared to 250 Ma is the orientation of Greenland. The picture of the Arctic collision at page 8 shows Greenland rotated 90 degrees as its current South East coast was at the artic impact circle. The shoreline of Norway would then have been attached to the current west coast of Greenland at 3.5 Ga. To ‘prove’ all this we must first establish the predicted match between inverted mare Smythii and gulf of Bothnia:
As demonstrated to the right, the shape of inverted mare Smythii, is indeed a near perfect copy of the Gulf of Bothnia. The match was not easy to establish as one has to go back some 20,000 years to find a higher water mark (400 km in diameter) confirming the land around the Gulf is actually shaped as this mare. Again one should realise this is not a random place on Earth, matching a random Lunar Mare. It is a pinpointed location, upfront predicted by the maps where only one inverted mare should fit verifying the 7-fold impact.

Next, looking at the orientation of Smythii on the Lunar map of the previous page, we must rotate the current Scandinavian plate at least 45 degrees clockwise to get its correct angle 3.5 Ga years ago. This gives us the map to the right showing Greenland and Scandinavia in their offset positions. Notice how the bathymetry of Norway sub-Lofoten allows for the inclusion of Iceland. This detail is of course rather speculative...As discussed earlier; Iceland is estimated to be very young, but only by measuring the age of its top-layer. Although it is quite popular in geology to simply suggest the underlying layers are then equally old – at least in case of continental crust- this is quite presumptuous. Effectively one only can be sure when drilling this deep, which is never done, nor feasible...

B, Mare Nectaris
Although the original idea was that Mare Nectaris could be the inverse of Foxe basin, this later appeared to be an incorrect assessment. Mare Nectaris is located too far east of Foxe basin to be its counterpart. As became evident soon enough, Foxe basin is however related to the inverted mare Vaporum as can be seen on the earlier picture of the Imbrium impact series.

The Mare Nectaris imprint on Earth can be found by first defining the location vector relative to mare Smythii on the Moon and next projecting this vector onto the gulf of Bothnia. As displayed to the right this points to an area east of Iceland. Best matching in location and shape is Aegir Ridge/Norway basin. Inversed mare Nectaris is shown to the right and indeed the projection on Earth looks acceptable, displaying the southwest 'winglet' of inverted Nectaris. The location is all the more plausible since it represents a continental crustal fragment in an otherwise expanding sea floor area (picture far right).

Iceland, it would appear, would first have moved east as part of Norway, and next pulled back by the mid ocean ridge like a rubber band to become a separate island on top of it.
C. Mare Humorum

Mare Smythii was located on the Scandinavian plate, which later moved to the east. Mare Nectaris was at the border (Aegir ridge) of the Scandinavian plate. As such one can expect mare Humorum to be on the North American plate. In the top right of the picture below we see the Lunar distances of Humorum relative to Imbrium (1300km) and the southern most tip of Serenetatis (2750 km). Projecting the same distance vectors onto the Canadian Shield we get to the Lunar map predicted location for inversed mare Humorum on Earth: It should be at NW Greenland as shown below.

To the right the fantastic 5th confirmation: inversed Mare Humorum exactly matches the predicted Greenland location. Notice that again we have a match in 1. size 2. shape 3. location and 4. Orientation. Again statistically impossible to be a false positive,

As an extra; What makes this impact series remarkable is the suggested upright position of Greenland (semi transparent above) after the Hadean impact and thus prior to the Archean impact. There are two options:
1. Either the rotation of Greenland happened gradually in the millions of years between the two impacts OR
2. This happened during the Archean impact itself. If one assumes that Imbrium was key to detaching Greenland, then the entire Greenland rotation must have happened between the Imbrium and Humorum impact, suggesting a full rotation within 3 minutes (1800 km). With an impact speed of 10km/s it would have travelled in parallel to the Moon, suggesting the Moon could even have ’surf’d’ the final distance on southern Greenland itself before fixating it onto its current location and veering off.

If correct, it would mean an immense plate acceleration, which combined with its inertia would lead to land being folded like a harmonica or crumple zone, which is basically what fjords are. It would explain why specifically Greenland and Norway have them. In the next chapter it will be shown Chili and New Zealand’s southern island were faced with the same ordeal. And precisely here we also see fjords. Although this 3 minute movement sounds outlandish, one would prefer this scenario precisely because of the fjords. It would for sure be a good way to dispose of the enormous impact energy.

Together with Smythii and Nectaris, this Humorum impact makes three additional matches in the Canadian region. The impacts are somewhat less in quality as they are positioned on moving and scattered tectonic plates. Nevertheless, with all of them retrieved, it seems irrefutable to conclude the confirmed 4(5)-fold impact is in fact part of a 7-fold delta shaped impact at the Canadian Shield.
3.3 Consequences for Earth and Lunar geology

With the two predicted and next extensively documented Moon-Earth collisions, it would appear that trusting our eyes, we have no choice but to accept these Lunar impacts did happen. Geology will have to come to grips with this and accept their profound influence. With it, comes the acceptance that Earth did have a substantial ice and ocean layer once and that losing this water layer to sub-surface locations is its key geological process. We have no problem suggesting this process for Mars or Venus, yet when it comes to Earth we emotionally do not like to consider we could be in the midst or even 'end' of the same process. There are some related issues which now need to be re-considered:

1. **Revision of plate tectonics as leading paradigm for continental drift**

 General consensus is that all landmass on Earth consists of floating tectonic plates that over billions of years bump, rotate, merge and morph seemingly erratically all over the place. The Aitkin-Arctic impact comparison suggests however this is not true for the northern hemisphere. The Arctic area has not changed much since the impact of 4.1 Ga. The changes involve a recent 30% expansion of seafloor at the mid-Atlantic ocean ridge and the anomaly of the fractured parts of Canada NW and the clockwise rotation of Greenland. Next, the Canadian Shield impact showed that also mainland Canada has not changed much since 3.7 Ga. From this we must conclude that continents, by default, are more or less fixed to the mantle and that only along the widening mid ocean ridges major breakups occur. The notable exceptions are the plates of Greenland and Scandinavia, both of which are directly impacted by the Moon. It would appear only impacted plates are prone to later ‘come lose’ from the mantle and migrate and rotate more freely. We are however talking in the context of a more fluid Archean ocean floor when suggesting plates ‘come lose’, ‘float’ and ‘rotate’. Below a suggested potential explanation is given as to why impacted plates could ultimately literally float on top of the ocean after an impact!

 Lunar impacts and silicon oxidation of Earth

 1. Pressurized water slowly penetrates damaged crust and enters the –partly-unbound silicon layer below, starting wet silicon oxidation.
 2. Wet silicon oxidation creates new crust (craton) under the damaged crust. The process is highly expansionary as the oxide always grows to >54% of original silicon volume.
 4. As the diameter of the craton grows, the relative crustal upward lift of hydrogen increases to the 3rd power whereas the max of the crust above it increases only to the 2nd power.
 5. Ultimately, the sides of the patch crack and a large chunk of crust above craton detaches forming a rotating floating crustal plate (Scandinavia) which may even surface before falling back to the ocean floor elsewhere.
 6. Craton seals off further water intrusion.
 7. Ultimately, as Earth slowly expands, global crustrips at several places at mid oceanic ridges, creating new ocean floor which is partly subducted.
 8. The subduction of water saturated ocean floor provides a continuous influx of new oxygen atoms ensuring precipitable, wet or dry silicon oxidation until either all silicon at the core is reduced (oxidized) or all surface water is consumed. Venus and Mars are arguably beyond this point.
 9. Earth’s mantle thus expands via opening of mid ocean ridges causing continental drift. Plate tectonics as such is more cosmetic; it is not the driver of continental drift.

2. **Reconsideration of Lunar basin age and formation**

 Although the age assessments of Lunar basalts and analyses of Apollo mission rock material may be technically correct, it is questionable as to exactly what they represent in terms of Lunar ‘geology’ and what, if anything, this says about a potential impact date. Assuming the impacts are Earth related, ‘syntax errors’ in reasoning are easily made:

 1. Any Earth-Moon impact will deposit some amount of Earth material onto the Lunar surface which could very well cause ‘tainted’ rock samples or wrong age determinations.
 2. If Earth related, supercritical water may at times (e.g. Procellarum) only have excavated the basins, exposing and partly meta-morphing 3.5-3.9 billion years old basalts typically existing at these Lunar depths.
 3. With the later mare Procellarum impact, there may be additional ‘contamination’ of age determination.
 4. Basalt age determination on the basis of crater counts would also be unusable. An Earth impact would leave behind substantial debris at Earth’s orbit, causing extreme annual meteor shower impacts (like the Perseid and Leonid meteor showers) in the years afterwards. This would bias any age measurement upwards.

With respect to Mare basin formation, the community for long was convinced the mare basins are mainly the result of volcanic activity, following impacts. It is however more likely they are the result of more or less isolated deep impact melts, gradually solidifying:
To illustrate the weak case for ‘volcanism’ one may look at Mare Moscoviiense to the right. Being furthest away from Procellarum, it would represent a reliable post-impact situation. It does not show a caldera or concentric rings of lava inflows that one might expect when comparing to lava basins on Earth. Instead, the basin looks quite patchy and eroded to its right, appearing more like a viscous silicate swamp that dried up eventually. One may also notice all maria basins are substantially lower than their surroundings and show a cascaded rim feature. Another atypical element for volcanic origin is the production of ‘hollow’ seismic data:

From Wikipedia:
Between 1972 and 1977, seismometers installed on the Moon by the Apollo missions recorded moonquakes. The Moon was described as “ringing like a bell” during some of those quakes, specifically the shallow ones. This phrase was brought to popular attention in March 1970, in an article in Popular Science. When Apollo 12 deliberately crashed the Ascent Stage of its Lunar Module onto the Moon’s surface, it was claimed that the Moon rang like a bell for an hour, leading to arguments that it must be hollow like a bell. Lunar seismology experiments since then have shown that the lunar body has shallow moonquakes that act differently from quakes on Earth, due to differences in texture, type and density of the planetary strata, but there is no evidence of any large empty space inside the body.

Although currently a subdued issue, at the time the ‘hollow’ seismic data from the Lunar maria was sensational news leading to wild speculations and conspiracy theories. Of course suggesting a total hollow Moon is nonsense, but the scientific community went so far as to completely deny and bury any indication of any void, which would be hard to explain in case of volcanism. Nevertheless, the ‘void’ observational data can be perfectly explained with impact melts:

![Formation of mare basins, lava tubes and ghost craters](image)

This process of cooling impact melts explains many ‘unexplained’ issues. For instance, it can explain how circular ejecta like the Maunder formation around mare Orientale could form by the postponed collapse of a primary impact basin. This leads to the odd situation that parts of the outer basin are OLDER than the circular ejecta around it. As such it would have nothing to do with ‘volcanism’. Notice also the ease with which the mysterious ‘lava tubes’ can now be explained. They are not ‘tubes’ but mere punch holes in the deepest part of the basins which are all void underneath...

3. Reconsideration of Earth lower crust / mantle age
With respect to age gauging on Earth: Given the lower crust and upper mantle dynamics of Earth one would expect geologists to be very, very careful when gauging the age of a deep structures (e.g. plateau or rift) solely by measuring the age of the top surface. Since mankind never got to drill a whole deeper than some 11 km, we can never say with certainty the age of what lies beneath even as much as 500 meters deep in most cases. We just can’t know! If anywhere, we could extrapolate age determination at new ocean floor, NOT continental crust. Gakkel ridge e.g. most likely was a Hadean ‘dent’ but since 250 million years ago this burst, producing new seafloor the entire original structure was now bombardeed to be this age as well (!). This is not unlike saying that because the Hawaiian island of Kilauea had a volcanic eruption in 2018, this archipelago would only be a few months old...One can’t judge a book by its cover.
4. **Reconsideration of our orbital relation with our Moon**

Accepting the impacts, there is also the strong likelihood of profound changes in the orbital relation between Earth and Moon throughout their combined history. Prior to the latest collision our Moon may have had a highly elliptical orbit with a perigee much closer than today. Prior to that, e.g. after the first collision, our moon might even have been a sister planet orbiting at a similar speed and distance from the Sun yet at a different inclination, not unlike the current Mercury-Venus situation. These may be relevant considerations when analysing our shared history.

5. **Mantle expansion**

(Special) mantle expansion is the suggested local influence due to Lunar impacts. If the mantle contains water at the time of impact, this would lead to macroscopic fracturing of its rock via supercritical water conditions. Source: Supercritical Water/Rock Interactions and Generation of Artificial Geothermal Reservoirs in Deep-Seated High Temperature Rock Masses Toshiyuki Hashida, Toru Takahashi

Over hundreds of millions of years, the resulting capillary effect would attract water from the surroundings and cause the originally depressed area to expand in all directions, making it eventually rise above it surroundings. This in turn makes Lunar impacted areas the first to be – permanently- lifted high above the oceanic surface and as a result be prone to the most and oldest meteor impacts (EDEIS map below).

Next, with global ocean floor expanding and water levels receding, the now ‘exposed’ lifted continents would ‘sag in’ due to gravity and become more levelled with their surroundings. In this sagging process the lifted continents would ‘give back’ most of their artificially attracted water. This water may end up in the oceans or in (elevated) inner seas.

According to annex 1, global oceans could quite easily still have been 350 km deep during the Perm explaining the low gravity of the scarce ‘big dinosaur’ land topping it. Only this scarcity of above sea level land can explain the concentration of old craters (in blue, to the left) at the Lunar impacted area’s.

251 Ma would mark the time of the first continental crust rupture at Mariana and Antarctica producing the first typical granite ‘seafloor’. Prior to 251 Ma, there would only have been basaltic ‘continental crust’ upon which the deep oceans rested. Though to some extend subducted, this ocean floor widening process is still ongoing and will not stop until all water has gone sub-surface in the not so distant future... The adding of leap seconds reflects this process as Earth’s inertia rises accordingly.
Chapter 4. The Ordovician collision (450 Ma?)

The large Oceanus Procellarum area on the Moon is the final candidate for yet another impact. On Earth, the indicators point at Antarctica as suspect. Since we already have the Arctic impact at our rotational pole, Antarctica could only be another impact if it’s continental plate (‘Gondwana’) would move towards the south pole after its impact, allowing the Arctic area to stay at the north pole, precisely as described in the first chapter.

4.1 Oceanus Procellarum

After the first collision, the Moon moved impacted Aitken basin to its South pole. The second collision could not be corrected, resulting in uncontrollable rotational imbalance until all spin was lost. Any third impact would therefore likely overlap the second, which appears to indeed have happened. Oceanus Procellarum most obvious impact indicator is its ca. 1500 km straight impact line at its left base (the red dotted line in the inverted figure below).

Additional indicators are the presence of iron (figure far right), KREEP material and dome volcanism. In addition, the NASA superimposed surface gravity gradient frame (in the middle), indicates a ‘rolling’ impact involving each of the four red sides of the NASA gravity gradient square. The false colour picture in the middle confirms the NASA study, as a rust-like dust marks the same frame, best visible at Mare Frigoris to the North. The dust overlaps at Mare Imbrium and Mare Serenetatis, hinting this is indeed the youngest impact. The volcanic basalts of Frigoris are dated at 3,77 Ga, as superimposed KREEP material (figure in the middle) and surface gravity gradient frame (in the middle) as superimposed by NASA source: PIA18822.

4.2 Gondwana / Antarctica.

The indicators are clear:

1. Earth’s vertical crust motion map, clearly shows an imprint left and right of the Antarctic peninsula.
2. A movement of equatorial supercontinent Gondwana to the south pole, from 450 Ma to 300 Ma (https://youtu.be/qjCC1bq_A and figure 4.3a next page) are consistent with the described polar mechanism.
3. Antarctica is currently situated at exactly the South pole and has been there for a very long time.
4. Circular impact scars: The widening oceanic ridges around Antarctica, displaying a linear base at S-E Indian Ridge.
5. There is a gravity anomaly suggesting a primary impact spot: the infamous Wilkes Land gravity anomaly (to the right). This near 500 km wide sub-ice crater is thought to be the result of an impact less than 500 Ma (Wikipedia).

There are secondary arguments why this impact might be dated at 450 Ma: The first great extinction on Earth, the Ordovician-Silurian extinction is dated at 445 Ma. Also, the impacted Antarctica area would gradually lift due to special mantle expansion, which would push it up to sea level somewhere between 450 Ma and now. At that moment...
Antarctica would no longer generate rotational imbalance and could leave the south pole. Indeed from 280 Ma to 80 Ma Antarctica did leave the south pole (Scotese-paleogeography) before once more becoming the steady anchor at the south pole at 80 Ma, this time in its lifted position. Before describing the impact in detail we will shortly address Antarctica’s migration, uplift and consequent breakup of Gondwana.

4.3 The circular ridges around Antarctica

Due to the water attracting capillary effects inside the impacted mantle rock (special mantle expansion) Antarctica was back at sea level at 280 Ma, and became lifted afterwards. Near 200 Ma (Tr-J extinction) the central uplift became so great that non-impacted crust around Antarctica detached due to gravity and fell down below. This created the first ridges that logically produced new seafloor to their north and south dividing the original continental crust. The problem however is that the Antarctic ridges are circular: As there is no subduction at the Antarctic continent, the ridges started pushing themselves away from Antarctica, thus pushing the continents to their north away at double speed as can be seen above. However, this means south of these ridges, we are now faced with a local circular expansion of the crust and Earth’s crust had to therefore compensate to retain its sphere-shape. Subduction was not sufficient and Earth had to open the Pacific, Atlantic and Indian ocean ridges vertically above the horizontal Antarctic circular expansion. These vertical oceanic ridges logically get smaller towards the north pole since there is no circular expansion there. The seafloor expansion of these vertical ridges appears random, yet it can be demonstrated they are carefully opened in such a way that everywhere on the globe the same ‘great circle’ (circumference) is maintained. Summarized: If all this is correct, we should

1. see the ocean ridges around Antarctica inversely imprinted on the Moon (reflecting NASA PIA 18822 study).
2. see them on a much smaller Lunar scale because we just argued that the ridges have pushed themselves away circularly on Earth since the time of impact! Since arguably on a global scale not all of the new ocean floor is subducted at the same rate it is created, the mantle itself would slightly have grown ever since, consistent with the slow down of our rotation (day duration).

4.4 The impact in detail

At the next page we present this impact in great detail. The Antarctic ridges perfectly match the Moon’s mirrored visual and gravity gradient map and do so on the suggested smaller scale! At the inverted Lunar picture, the impact starts with the straight impact line (yellow arrow) of Oceanus Procellarum. On Earth the impact starts with the corresponding straight line of the South East Indian Ridge just below current Australia. Next the Moon appears to move its weight to the right via stages 2 and 3, where it appears to lift, rotate and move left again at stage 3. Notice how this rotation circle at stage 3 is also visible on Earth’s seafloor. The Moon continues along stages 3 to 7, forming the Atlantic Indian ridge and then leans left again, where the impact continues with the combined climax imprint of the Moon’s Mare Imbrium and Mare Serenitatis on Earth. Squeezed between the two rims of these giant maria, the landmass of Antarctica’s peninsula is formed, consistent with the earlier presented vertical crust movement map, defining the future split between South America and Africa. Next we see the moon delivering a tremendous torque on the saturated ocean floor and end its trajectory as it shortly touches under New Zealand (stage 11) on its exit.
Using Google Earth, the ocean floor around Antarctica, currently has a distance between stage 1 and stage 7 of about 8800 km. The lunar equivalent measures a distance of 3400 km between stage 1 and stage 7. This means that since the day of impact, Earth’s Antarctic seafloor has grown about 8800-3400=5400 km relative to the time of impact. In order to maintain its sphere form, Earth must enlarge all great circles accordingly by opening the lateral ridges of the Pacific, Atlantic and Indian ocean. This effect alone is well within the earlier measured 29% total global mantle expansion. Notice the 5400km precisely equals the second Pacific displacement as presented in the next Chapter, indicating this is not somehow corrected by subduction but instead indicative of a synchronised global mantle expansion phenomenon.

4.5 Centre of impact: Mare Imbrium and West Antarctica

Now let’s focus on the match between the original landmass of Antarctica and the Moon. At the very centre of the impact, underneath Antarctica’s ice cap, we can see how this landmass corresponds to the impactor, being Mare Imbrium. The landmass on Earth is scattered but is reconstructed at the picture to the right.

Looking closely at the maps above we see the nice echo of Plato crater on Earth at the little yellow arrow under ‘C’. Next, the highly lit thorium spot of Aristillus crater (between c. and f.) seems to correspond with Vinson Massif, the highest point of Antarctica, from where the Antarctica Peninsula appears to have split off. Earlier we looked at the resemblance between Aristarchus crater and Big Ben Volcano, Heard Island (see annex 2). Since Aristarchus age is estimated at 450 Ma (!), this again suggests the impact might have happened around that time.

4.6 Consequences of the impact

Although the precise time of this impact may be uncertain, it is safe to say 450 Ma is the time where the consequences of the impact started to manifest themselves as Gondwana abruptly started to move south. In addition:

- **The O-S, P-Tr and Tr-J mass extinctions**
450 Ma is the time of the first great mass extinction: The Ordovician-Silurian extinction. Massive amounts of CO2 and N2 are released into the atmosphere. The related rupture and creation of the oceanic ridges at Mariana (251 Ma) and Antarctica (200 Ma) very well explain the other great extinctions (P-Tr and Tr-J).

- **The Cambrian explosion**
The worldwide explosion of first land-life at 540 Ma can also be explained in case of a 450 Ma Lunar impact: at 550 Ma, the approaching Moon, orbiting at a highly elliptical orbit with a perigee much closer than today, would start to cause tremendous tidal effects on Earth’s oceans causing the highest yet submerged continental crusts to emerge twice a day, once a month. Gradually sea-based life would become exposed to land twice a day. First for a few seconds, then minutes and then hours as the moon got ever closer over a period of 100 million years. As such this would perfectly explain the gradual Darwinian ‘involuntary’ adoption of sea life to amphibious land-life. The exuberance of first land-based would end at 450 Ma with the moon finally impacting.
The riddle of the big dinosaurs

Until now it was not clear how the largest dinosaurs could have evolved to become so big - inconsistent with their bone structure - and why after the Jurassic era this was no longer possible. In all gravity would appear to have been less. In all that is discussed we indeed have several factors leading to a substantial lesser net gravitational pull:

1. The once a month closer proximity of the moon, causing a noticeable counter pull;
2. The faster Earth rotation back than counteracted Earth’s gravitational pull, especially near the equator.
3. The elevated (originally Lunar impacted) land would be surrounded by rather deep oceans reaching to 200 km depth still. Since water has little mass, this creates a relative big distance to the centre of Earth’s mass, leading to a squared lower gravitational pull for anything living upon land.

Combined these factors would explain why the late Jurassic eventually no longer supported big life forms: The Moon got further away, Earth’s rotation slowed down, the dino habitat was no longer at the equator and the continents levelled with ocean floor.

Consistent with the suggested uplift effects of Lunar impact regions, the geographic location of the remains of the largest dinosaur - the Brontosaurus - is limited to the US mid-west, which is remarkable precise considering the next chapter.

As a final remarkable aspect: one we can generalise a typical water saturated mantle impact by:

1. Signs of massive torque stress on the circular surface of impact around a rotational pole
2. An elevated icy centre inside the circular area due to the water attracting capillary effect of fractured mantle rock
3. A circular scar around the impacted plate, indicating surrounding crust broke off from the centre, and fell down forming the (once) spreading ridges pushing themselves away form the centre.

Following this general description, the picture to the right would suggest Antarctica was not the first continent in our solar system to have experienced this (Mars, Planum Boreum, North Pole):
Chapter 5: A fourth impact? Mare Orientale and Mariana Trench

The global seafloor, in the ‘ring of fire’ area, has a very weird circular seafloor patch just west of current Philippines. This region boosts the Mariana Trench, the deepest sea floor spot on Earth. This spot has striking similarities with the Moon’s last big unaccounted mare: Mare Orientale depicted on the bottom of the images to the right. The wider impact area on Earth is 3500 km compared to Mare Orientale measuring only 900 km widest. If this is indeed Lunar related, then we can only compare this impact with the previous Antarctica impact, showing a similar frantic circular seafloor expansion on Earth. Since Mare Orientale is located exactly in front and centre of Oceanus Procellarum, this increases the likelihood of it indeed being part of the Antarctic impact as a ‘first touch impact’.

To keep it short, there is a ‘copy’ of this impact at the middle of the Pacific (B, below) and another copy at the border of the state of Idaho / Utah (below right) in the U.S. What might have happened is that impacted crust itself was at Idaho, which at the time would be located above current Mariana Trench, indicating a much smaller Pacific. Just like Antarctica later, the centre of the impact was lifted due to special mantle expansion. However, unlike Antarctica, it was to some extent subducted to its east side (Mariana Trench) causing a huge tilt. Logically, due to lateral gravitational forces, the elevated centre detached diagonally, sliding off the Mariana location to the East (251Ma, P-Tr extinction?), first to the middle of the Pacific (B), and next from 66 Ma onward (K-Pj extinction?) towards the current location of the US (C) adding 5400km of new ocean floor, catching up with Antarctica’s perpendicular seafloor expansion (also adding 5400 km!). This two-step move would explain the fast opening of the Pacific (below left). It also explains the light crust of Mariana and rock layer unconformities in the US. In closing, both Antarctica and the Pacific spread together form the driver behind the world wide ocean floor expansion, which is only partly subducted. As a point of interest: Notice the ‘Lunar impact glide path’ from Alaska downwards at the US Array picture below right. This footage displays the local rock expansion at 300 miles below surface! Notice also Greenland highlighted! As a final remark: If indeed Mare Orientale corresponds to the suspected impact area of mid-west USA, then judging from the lunar location, Gondwana would at the time of impact have to be linked to current California, connecting at Australia.

[Diagrams and images for visual representation of the concept]
ANNEX 1; Calculating the initial ocean levels

Approach 1: Atomic mass of oxygen
The purging hypothesis suggests the correct (and observed) process for the formation of all terrestrial spheres out of jet-heated magmatic knots (‘Herbig Haro’ objects). As such, water was formed on a Earth in great quantities right at the beginning as proton Earth's outer oxygen layer reacted with the hot diatomic hydrogen to form water vapour. On a smaller scale nitrogen and carbon would form ammonia and methane. On the inner boundry, the oxygen layer would have reacted with sulphur, magnesium and mostly silicon. Current indications (Source: Wikipedia) are that oxygen atoms account for 30-40% of Earth’s total mass.

Assuming most of the oxygen was unbound at origin, then the hydrogen layer would react with the elements of the lower layer and the other half to the elements of the upper layer (actually it would be more like 60-40% since the outer layer surface is larger). Then the oxygen in the upper layer would still have to first deal with the upper (thin) layers of carbon and nitrogen before being exposed to hydrogen. In all we could thus assume half of half or 25% of all oxygen could have formed water so the water mass would account for 25% x 30% = 7.5% of Earth’s mass. We then get:

- Volume water density water = 7.5% Volume Earth×density Earth
- As the density of water is 1g/cm³ and the density of Earth is 5.5g/cm³ (Source: Wikipedia), the water volume would be: 7.5%×5.5×42%
- of Earth’s total volume, forming the outer layer. Next, putting the radius of Earth at 1 and the radius of the inner non-water core at ‘r’, then the height of the outer water layer is (1-r).

Volume non-water core sphere / Volume Earth = 59% or: (a^3)/1 = 59% or a=0.59×4/3 = 0.86, leaving (1-a) or 0.16 of the radius of Earth for the outer water layer. If we take the radius of Earth at 6500 km which is quite conservative as later collisions will have brushed away considerable volume, we get 0.16 x 6500 = 1040 km of water for the outer layer. Compensating for the 60-40% upper-lower layer relation it would be ca. 1248 km

Approach 2: Diamond forming pressure

Quoting Wikipedia:

- In contrast, eclogitic diamonds contain organic carbon from organic detritus that has been pushed down from the surface of the Earth's crust through subduction (see plate tectonics) before transforming into diamond.
- Diamonds that have come to the Earth's surface are generally quite old, ranging from under 1 billion to 3.3 billion years old.
- The conditions for diamond formation to happen in the lithospheric mantle occur at considerable depths corresponding to the requirements of temperature and pressure. These depths are estimated between 140 and 300 kilometres (87 and 188 mi) though occasionally diamonds have crystallized at depths about 300 km (190 mi)...'

<table>
<thead>
<tr>
<th>Depth</th>
<th>Component Layer</th>
<th>Density g/cm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-60</td>
<td>Lithosphere</td>
<td></td>
</tr>
<tr>
<td>0-35</td>
<td>Crust</td>
<td>2.2-2.9</td>
</tr>
<tr>
<td>35-60</td>
<td>Upper mantle</td>
<td>3.4-4.4</td>
</tr>
<tr>
<td>35-2890</td>
<td>Mantle</td>
<td>3.4-5.6</td>
</tr>
<tr>
<td>100-700</td>
<td>Asthenosphere</td>
<td></td>
</tr>
<tr>
<td>2890-5100</td>
<td>Outer core</td>
<td>9.9-12.2</td>
</tr>
<tr>
<td>5100-6378</td>
<td>Inner core</td>
<td>12.8-13.1</td>
</tr>
</tbody>
</table>

Wikipedia here implicitly assumes that the enormous pressures needed for diamond forming could only be found inside the Earth’s mantle at depths up to 300km. We are assuming however that:

1. It is not likely eclogitic (-organic) diamonds would form inside the mantle. Also it is questionable subduction was active during that time
2. Earth was covered by a very shallow ocean, which in itself would be quite capable of producing comparable pressures.

Thus, it is more likely eclogitic (bio-based carbon) diamond was formed from floating living sea surface material (algae) which after dying sank to the bottom of the ocean floor, where it would be pressurized into diamond. The needed pressure on the seafloor should then correspond with lithosphere depths from 140 to 300 km. Since mantle material (rock) on average has about 4 x the density of water (see table above), our corresponding sea level depth would then be: 4 x 140 to 300 meters = 560 to 1200 km. Since we are assuming slowly depleting ocean levels this would mean ocean levels of 1200 km at 3.2 billion y.a. and 560 km at 1 billion y.a., This would imply an average depletion rate of 2.78 mm/year, likely corresponding to a similar mantle expansion rate. Since 4.5 Ga is 1.2 Ga from 3.3 Ga, the depletion rate of 2.78 mm/year would imply a 334 km higher level compared to 3.3 Ga, resulting at 1534 km water levels at Earth’s inception at 4.5 Ga.

Another interesting prediction is that diamond is really a very common material and would be present everywhere around the globe, albeit at considerable depths.

Approach 3: Impact ratio of Lunar Aitkin basin and Earth’s arctic circle

Referring to page 8, the diameter of the dotted wider impact circle on the Moon at Aitken is 2600 km whereas on Earth it is about 3350km, the distance between north Alaska and Longyearbyen on Svalbard / Spitsbergen. On Earth it is 3350 / 2600 = 2.5 times wider, suggesting a general mantle expansion of up to 29% or 1430 km on Earth over the past 4 billion years and a lowering of the oceans of the same size. Interestingly, 1430 km at 4.1 Ga means a 230km higher level than at 3.3 Ga (approach 2). With 2,78 mm/y this altitude difference corresponds to 827.3 Million year age difference. This would have the Arctic impact occurring at 3.3Ga+ 0.827Ga = 4.1 Ga, which is remarkably consistent.

Of course such calculations come with tremendous uncertainties and assumptions, yet it is hopeful three completely independent methods came up with comparable numbers.
ANNEX 2: Aristarchus Crater vs. Big Ben Volcano
Aristarchus (Moon, inverted) = Big Ben Volcano, Heard Island (Earth)

Below: Big Ben volcano, Heard Island. To the right: Aristarchus crater (mirrored) on the Moon. Based upon impact coordinates these two features might be each others counter part and they are! The vertical ribbons on Heard Island indicated 1,2,3 are exactly mirrored at Aristarchus steepest side. Next Compton Glacier is visible as a distortion at Aristarchus. Most strikingly Deacock glacier, a messy depressed part of the Big Ben is also the depressed part of Aristarchus crater rim. Next at the aerial picture we see the missing half circle of Big Ben’s top cone, facing the steepest part of the mountain. At Aristarchus we see the missing half circle of Big Ben’s top cone, buried up side down at the centre of Aristarchus crater also facing the steepest part of its crater. Next, notice the perfectly matching features a and b as well as the western ‘Lagoons of Heard Island’ at f.g.h. The Big Ben Volcano rim indication is about 2x smaller than Aristarchus crater. This is likely due to the 6 times heavier gravity on Earth, causing the initial viscous magma-made mountain of Big Ben to cave in at the top and sag at the bottom, keeping its form but loosing its size (see explanation of Lunar dome volcanism below). A comparison can be made at several high Thorium mirrored spots, most notably The Moon’s Aristarchus crater vs. Vinson massif, Antarctica.