Introduction

Famously Fermat claimed to have a proof that

$$x^n + y^n = z^n$$

has no solutions in positive integers \((x, y, z)\) for \(n \geq 3\) [1]. The proof he had in mind was too long to fit into the margins of a book he was reading and hence he, as the legend has it, wasn’t able to show the proof. Given that it almost could have fit what might it have been?

Here we give a geometric argument that can almost fit into the white space, the margins of a typical page, of a say a modern undergraduate calculus textbook. The idea almost fits; it’s a single paragraph.

Marginal proof

Let \(A, B,\) and \(C\) be three concentric circles of radii \(\frac{3}{\sqrt{\pi}}, \frac{4}{\sqrt{\pi}},\) and \(\frac{\sqrt[4]{3+4+7}}{\sqrt{\pi}}\), respectively. In this case a fraction of \(C\) gives the sum of the areas of \(A\) and \(B\), but this is only possible when

$$\pi \left( \frac{n}{\sqrt{\pi}} \right)^2 = a^2.$$

That is when the left hand exponent is 2. This follows from the transcendence of \(\pi\).
Conclusion

The proof likely can’t be the one Fermat had in his mind. Fermat (1601-1665) pre-dates Lambert (irrationality of $\pi$) [2] and Lindemann (transcendence of $\pi$) [3] by a century or more.

References

