ABSTRACT

BACKGROUND: Several observational studies investigated the relationship between human papillomavirus (HPV) infection and the risk of prostate cancer (PC) and have suggested conflicting results about this relationship. However, the relationship between HPV infection and PC remains unclear. The aim of the present meta-analysis study is to investigate whether HPV serves as a cause of PC.

METHODS: The PubMed database was searched for suitable articles. Previously published expert review and systematic review were used as an additional source to identify appropriate articles. Articles selected for this meta-analysis should fulfil the following inclusion criteria: (a) no data access barrier (b) PCR DNA based identification of HPV.

RESULTS: The studies analysed were able provide evidence that without being married no (HPV infection of a men/prostate cancer). The X^2 value of the total 20 articles indicated a significant causal relationship between HPV and PC. In other words, if HPV infection of human prostate, then prostate cancer.

CONCLUSION: In conclusion, HPV is the cause of prostate cancer.

KEYWORDS: Human papillomavirus, prostate cancer, causal relationship, causality
INTRODUCTION

Despite great research efforts, the aetiology of prostate cancer is still not known in detail. To date, some risk factors (1) for prostate cancer (PC) are established and limited to certain genetic polymorphisms, family history of prostate cancer, race, age, height, physical activity, BMI, total energy consumption, intakes of calcium, tomato sauce and alpha-linolenic acid and cigarette smoking history while evidence is conflicting (2). Prostate cancer is one of the major causes of disease and mortality among men and a growing concern in global public health. Each year more than 1.6 million cases are diagnosed annually, and the mortality burden has risen to over 360,000 deaths per year (3). Human papillomavirus (HPV) infection is estimated to be one of the most common sexually transmitted infections. In heterosexually active couples, up to a total of 72.9% of their male partners are HPV positive (4). A discovery of an infectious agent as the cause or a cause of prostate cancer would be of great medical importance. Dillner et al. (5) found that (154/164) of all prostate cancer cases or 93.9% have ever been married at enrolment of the study. Badar et al. (6) reported no evidence of human prostate cancer in very young and sexually inactive male children. These data provide some biological support for HPV transmission between sex partners as the route to prostate cancer. Still, most HPV infections are asymptomatic or subclinical and become undetectable over time while more than 100 types of human papillomaviruses (HPVs) have been identified. About ~40 types infect the anogenital region and have been further classified into low-risk types (e.g., 6 and 11) and high-risk types (e.g., 16, 18, 31, and 45). Several expert review published investigated whether HPV infection is a risk factor for PC but opposing reports were stated. Lin et al. (7) published a systematic review paper in 2011 concluded that statistical significance was observed when analysis was limited to HPV DNA 16 infection with respect to PC. However, Hrbacek et al. (8) concluded, however, that there was no evidence to support a relationship between HPV and PC.

Bae (9) investigated whether HPV type 16 infection is a risk factor for PC and published that the data provide evidence of a causal role of HPV-16 infection in prostate carcinogenesis. Yang et al. (10) concluded that HPV infections may contribute to the risk of prostate cancer (11). However, the relationship between human papillomavirus (HPV) infection and prostate cancer (PC) carcinogenesis remains conflicting and has not yet been firmly established. The causal role of HPV infections in prostate cancer is a subject of great controversy.

METHODS AND MATERIALS

Search strategy:
A systematic review of the literature that was published in PUBMED database have carried out. The search terms included "human papillomavirus" and "prostate cancer" and "PCR" and "case control study" et cetera. Additionally, (review) articles were considered as a potential source. Studies with provided inappropriate data information or studies with data access barriers were excluded from the review. At the end 20 PCR based studies with a sample size of N=2128 were review. The data are view by a table (Table 1).

Data analysis: The raw data collected from different studies were re-analysed using the software program Microsoft Excel. Significance testing between some factors and PC was conducted using the condition sine qua non relationship, the condition per quam relationship and the mathematical formula of the causal relationship k. The results are viewed by the Table 1 and Table 2.
RESULTS

Without being married no HPV infection:
Dillner et al. (5) investigated the relationship between several risk factor and concluded that neither smoking (X^2 (SINE) = 6.76978022, k = -0.04812363, p value (k) = 0.30465026) see (Table 2) nor Chlamydia pneumoniae (X^2 (SINE) = 0.5280219, k = 0.0241275, p value (k) = 0.6067913) infection (Table 2), nor Chlamydia psittaci (X^2 (IMP) = 0.0929, k = 0.0003, X^2(k) =0, p-val (k) = 0.9944) infection (Table 2), nor Chlamydia trachomatis (X^2 (IMP) = 2.0445, k=0.0034, X^2(k) = 0.0053, p-val (k) = 0.9421) infection (Table 2) nor being ever married at enrolment (Table 2) is associated with increased risk for prostate cancer. In particular, Dillner et al. (5) investigated the relationship between being ever married at enrolment (Table 2) and the risk for prostate cancer. In contrast to the lines before, in about 442/452 of the sample (97.8 %) Dillner et al. (5) evaluated that without ever being married at enrolment no prostate cancer (X^2 (Sine) = 0.199668142, p val (k) =0.148169487, Table 2). More or less, being married is a necessary condition of prostate cancer. The task of addressing the relationship between sexual behaviour and prostate cancer is heavily influenced by the study of Ghasemian et al. (17). Ghasemian et al. (17) agree with Dillner et al. (5) and found that in 195/196 of the sample (99.5%), without being married no HPV positivity of a male (X^2 (SINE) = 0.00127551, k = 0.467818832, p value (k) = 5.77441E-11), a highly significant result. In other words, according to Ghasemian et al. (17), in Iran as a male it is necessary to be married to become HPV positive. In short, according to Ghasemian et al. (17), without being married no HPV infection of a men.

If HPV DNA then prostate cancer: The studies of Aydin et al. (12), Michopoulou et al. (16), Aghakhani et al. (19), Chen et al. (20), Silvestre et al. (22), Terris et al. (27), Wideroff et al. (28), Moyret-Lalle et al. (29) failed to provide evidence of the absence of independence (Table 2) between human papilloma virus PCR DNA and prostate cancer. Still, combining the results of independent PCR DNA based studies is possible while using the additive property of the chi square distribution. Altogether, the 20 studies reviewed provide highly significant evidence (N = 2128, X^2 critical (IMP) = 31.4104, X^2 calculated (IMP) = 2.98858, X^2(k) = 112.006, p val (k) = 8.4E-15) of a cause effect relationship between HPV and PC. In the same context, it is X^2 critical (IMP) = 31.4104 and greater then X^2 calculated (IMP) = 2.98858 with the consequence that we do accept the Null-hypothesis too, If HPV DNA then PC (32)-(44).

DISCUSSION

Human prostate cancer in sexually inactive male children has not (6) been reported. In contrast to young male children, HPV infection is reported to be highly prevalent in sexually active men. HPV prevalence in men in which multiple anatomic sites or specimens were evaluated varied on the basis of study populations or sampling, geographic location, processing methods, and the anatomic site(s) or specimen(s) sampled, age and racial/ethnic groups and were evaluated up to 72.9% (4). In line with Dillner et al. (5) the study group of Ghasemian et al. (17) provided evidence that without being married no HPV positivity of a men.

The studies considered for a review which investigated the presence of human papillomavirus (HPV) in prostatic tissue have yielded very different detection rates. This discrepancy can be explained by different factors: (a) inappropriate laboratory conditions, (b) contamination by viral DNA, (c) less than optimal oligonucleotide primers utilized for amplification, (d) the search for different and inappropriate segments of the viral HPV genome, (e) paraffin-embedded archival samples often lead to variable and unsatisfactory results, (f) HPV DNA/tumor cells isolation and detection techniques with unique limitations, (g) and many other factors too. The unique limitations and pitfalls of the techniques and tissue-based methods (polymerase chain reaction, immunohistochemistry, and in situ hybridization) used to isolate and characterize HPV or tumor cells is a subtle, but not negligible source of bias.
Besides of the limitations as associated with the HPV detection methods, the studies analysed were able to provide striking evidence of a highly significant causal relationship between HPV and PC (X^2 (Critical k)= 31.4104, X^2 (Calculated k)= 112.006, p value (k)= 8.4E-15 (Table 1)). In the same context, according to the data of the study group of Ghasemian et al. (17), HPV is a necessary condition (Table 3),

A sufficient condition (Table 4)

Notably, the evidence is growing and the pathogenetic link between HPV and PC is convincing, the conclusion is inescapable. Human prostate cancer is a sexually transmitted disease and an infection with an oncogenic HPV is the cause (Table 5) of prostate cancer. Counseling men to increase sexual abstinence or to practice or use safer sex methods among heterosexually active adolescents is to date of strategic importance in reducing risk of prostate cancer. On the long run, the development of an n-valent HPV vaccine is necessary and any barriers to HPV vaccination to men are scientifically not justified. In particular, human papillomavirus oncogenes represent an excellent target for cancer immunotherapy. There is an urgent need to develop something like a therapeutic (HPV DNA) vaccine against prostate cancer.

CONCLUSION

Human papillomavirus is the cause of human prostate cancer.

Table 3: The Study of Ghasemian et al. (17)

<table>
<thead>
<tr>
<th>HPV (DNA)</th>
<th>Prostate cancer </th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>159</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>167</td>
<td>196</td>
<td></td>
</tr>
</tbody>
</table>

p (SINE) = 0.87755102

p (IMP) = 0.9592

X^2 (SINE) = 2.81760204

X^2 (IMP) = 0.287

k = 0.17764904

p val (k) = 0.01287941

Table 4: The study of Ghasemian et al. (17)

<table>
<thead>
<tr>
<th>HPV (DNA)</th>
<th>Prostate cancer </th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>24</td>
<td>159</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29</td>
<td>167</td>
<td>196</td>
<td></td>
</tr>
</tbody>
</table>

p (SINE ^ IMP) = 0.83673469

p (SINE ^ IMP) = 3.10459184

k = 0.17764904

p val (k) = 0.01287941
REFERENCES

Table 1: The data of the studies analysed.

<table>
<thead>
<tr>
<th>No.</th>
<th>Study Id</th>
<th>Year</th>
<th>Country</th>
<th>N</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>p(IMP)</th>
<th>X²(IMP)</th>
<th>k</th>
<th>X²(k)</th>
<th>p-val (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aydin et al. (12)</td>
<td>2017</td>
<td>Turkey</td>
<td>96</td>
<td>1</td>
<td>0</td>
<td>59</td>
<td>36</td>
<td>1.0000</td>
<td>0.0026</td>
<td>0.0795</td>
<td>0.6063</td>
<td>0.4362</td>
</tr>
<tr>
<td>2</td>
<td>Atashafroz et al. (13)</td>
<td>2016</td>
<td>Iran</td>
<td>200</td>
<td>20</td>
<td>8</td>
<td>80</td>
<td>92</td>
<td>0.9600</td>
<td>0.2813</td>
<td>0.1729</td>
<td>5.9801</td>
<td>0.0145</td>
</tr>
<tr>
<td>3</td>
<td>Huan et al. (14)</td>
<td>2016</td>
<td>China</td>
<td>148</td>
<td>17</td>
<td>0</td>
<td>58</td>
<td>73</td>
<td>1.0000</td>
<td>0.0017</td>
<td>0.3554</td>
<td>18.693</td>
<td>0.0000</td>
</tr>
<tr>
<td>4</td>
<td>Singh et al. (15)</td>
<td>2015</td>
<td>India</td>
<td>150</td>
<td>30</td>
<td>3</td>
<td>65</td>
<td>52</td>
<td>0.9800</td>
<td>0.0417</td>
<td>0.3039</td>
<td>13.853</td>
<td>0.0002</td>
</tr>
<tr>
<td>5</td>
<td>Michopoulou et al. (16)</td>
<td>2014</td>
<td>Greece</td>
<td>80</td>
<td>8</td>
<td>1</td>
<td>42</td>
<td>29</td>
<td>0.9875</td>
<td>0.0031</td>
<td>0.1941</td>
<td>3.0130</td>
<td>0.0826</td>
</tr>
<tr>
<td>6</td>
<td>Ghasemian et al. (17)</td>
<td>2013</td>
<td>Iran</td>
<td>196</td>
<td>5</td>
<td>8</td>
<td>24</td>
<td>159</td>
<td>0.9592</td>
<td>0.2870</td>
<td>0.1776</td>
<td>6.1856</td>
<td>0.0129</td>
</tr>
<tr>
<td>7</td>
<td>Mokhtari et al. (18)</td>
<td>2013</td>
<td>Iran</td>
<td>208</td>
<td>13</td>
<td>8</td>
<td>91</td>
<td>91</td>
<td>0.9615</td>
<td>0.2704</td>
<td>0.0798</td>
<td>1.3242</td>
<td>0.2498</td>
</tr>
<tr>
<td>8</td>
<td>Aghakhani et al. (19)</td>
<td>2011</td>
<td>Iran</td>
<td>208</td>
<td>13</td>
<td>8</td>
<td>91</td>
<td>91</td>
<td>0.9615</td>
<td>0.2704</td>
<td>0.0798</td>
<td>1.3242</td>
<td>0.2498</td>
</tr>
<tr>
<td>9</td>
<td>Chen et al. (20)</td>
<td>2011</td>
<td>Australia</td>
<td>62</td>
<td>7</td>
<td>3</td>
<td>44</td>
<td>8</td>
<td>0.9516</td>
<td>0.1008</td>
<td>0.1407</td>
<td>0.2679</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Martinez-Fierro et al. (21)</td>
<td>2010</td>
<td>Mexico</td>
<td>130</td>
<td>11</td>
<td>4</td>
<td>44</td>
<td>71</td>
<td>0.9692</td>
<td>0.0942</td>
<td>0.2268</td>
<td>6.6871</td>
<td>0.0097</td>
</tr>
<tr>
<td>11</td>
<td>Silvestre et al. (22)</td>
<td>2009</td>
<td>Brazil</td>
<td>71</td>
<td>2</td>
<td>0</td>
<td>63</td>
<td>6</td>
<td>1.0000</td>
<td>0.0035</td>
<td>0.0517</td>
<td>0.1900</td>
<td>0.6629</td>
</tr>
<tr>
<td>12</td>
<td>Leiros et al. (23)</td>
<td>2005</td>
<td>Argentina</td>
<td>71</td>
<td>17</td>
<td>0</td>
<td>24</td>
<td>30</td>
<td>1.0000</td>
<td>0.0035</td>
<td>0.4800</td>
<td>16.35</td>
<td>0.0001</td>
</tr>
<tr>
<td>13</td>
<td>Carozzi et al. (24)</td>
<td>2004</td>
<td>Italy</td>
<td>51</td>
<td>14</td>
<td>5</td>
<td>12</td>
<td>20</td>
<td>0.9020</td>
<td>0.3971</td>
<td>0.3500</td>
<td>6.2460</td>
<td>0.0124</td>
</tr>
<tr>
<td>14</td>
<td>Kuczynski et al. (25)</td>
<td>2000</td>
<td>Germany</td>
<td>84</td>
<td>10</td>
<td>1</td>
<td>37</td>
<td>36</td>
<td>0.9881</td>
<td>0.0030</td>
<td>0.2733</td>
<td>6.2758</td>
<td>0.0122</td>
</tr>
<tr>
<td>15</td>
<td>Serth et al. (26)</td>
<td>1999</td>
<td>Germany</td>
<td>84</td>
<td>10</td>
<td>1</td>
<td>37</td>
<td>36</td>
<td>0.9881</td>
<td>0.0030</td>
<td>0.2733</td>
<td>6.2758</td>
<td>0.0122</td>
</tr>
<tr>
<td>16</td>
<td>Terris et al. (27)</td>
<td>1997</td>
<td>USA</td>
<td>90</td>
<td>10</td>
<td>5</td>
<td>43</td>
<td>32</td>
<td>0.9444</td>
<td>0.2250</td>
<td>0.0707</td>
<td>0.4498</td>
<td>0.5024</td>
</tr>
<tr>
<td>17</td>
<td>Wideroff et al. (28)</td>
<td>1996</td>
<td>USA</td>
<td>98</td>
<td>7</td>
<td>4</td>
<td>49</td>
<td>38</td>
<td>0.9592</td>
<td>0.1250</td>
<td>0.0467</td>
<td>0.2133</td>
<td>0.6442</td>
</tr>
<tr>
<td>18</td>
<td>Moyret-Lalle et al. (29)</td>
<td>1995</td>
<td>France</td>
<td>51</td>
<td>14</td>
<td>8</td>
<td>13</td>
<td>16</td>
<td>0.8431</td>
<td>1.1029</td>
<td>0.1866</td>
<td>1.7764</td>
<td>0.1826</td>
</tr>
<tr>
<td>19</td>
<td>Ibrahim et al. (30)</td>
<td>1992</td>
<td>USA</td>
<td>60</td>
<td>6</td>
<td>2</td>
<td>18</td>
<td>34</td>
<td>0.9677</td>
<td>0.0375</td>
<td>0.2802</td>
<td>4.7115</td>
<td>0.0300</td>
</tr>
<tr>
<td>20</td>
<td>Anwar et al. (31)</td>
<td>1992</td>
<td>Japan</td>
<td>78</td>
<td>28</td>
<td>0</td>
<td>40</td>
<td>10</td>
<td>1.0000</td>
<td>0.0032</td>
<td>0.2870</td>
<td>6.4235</td>
<td>0.0113</td>
</tr>
</tbody>
</table>

Total 2128 233 62 870 963 0.9709 2.9886 112,096

\[
\begin{align*}
\text{Alpha} &= 0.05000 \\
\text{Alpha} &= 0.05 \\
\text{Degrees of freedom (D. f.)} &= 20 \\
\text{D. f.} &= 20 \\
X^2 (\text{Critical IMP}) &= 31.4104 \\
X^2 (\text{Critical k}) &= 31.4104 \\
X^2 (\text{Calculated IMP}) &= 2.98858 \\
X^2 (\text{Calculated k}) &= 112,096 \\
p-value (k) &= 8,4E-15
\end{align*}
\]
Table 2: Risk factors and prostate cancer.

<table>
<thead>
<tr>
<th>Study Id</th>
<th>Year</th>
<th>Risk factor / Condition</th>
<th>Country</th>
<th>N</th>
<th>a1</th>
<th>b1</th>
<th>c1</th>
<th>d1</th>
<th>p value</th>
<th>X²</th>
<th>k</th>
<th>X(k)</th>
<th>p val (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dillner et al. (5)</td>
<td>1998</td>
<td>Smoking</td>
<td>USA</td>
<td>455</td>
<td>109</td>
<td>205</td>
<td>56</td>
<td>85</td>
<td>0.87692</td>
<td>6.769780</td>
<td>0.04812363</td>
<td>1.053727</td>
<td>0.3046502</td>
</tr>
<tr>
<td>Dillner et al. (5)</td>
<td>1998</td>
<td>Chlamydia pneumoniae</td>
<td>USA</td>
<td>455</td>
<td>149</td>
<td>266</td>
<td>16</td>
<td>24</td>
<td>0.96483</td>
<td>0.528021</td>
<td>0.02412758</td>
<td>0.264873</td>
<td>0.6067913</td>
</tr>
<tr>
<td>Dillner et al. (5)</td>
<td>1998</td>
<td>Chlamydia trachomatis</td>
<td>USA</td>
<td>455</td>
<td>18</td>
<td>31</td>
<td>147</td>
<td>259</td>
<td>0.9319</td>
<td>2.0445</td>
<td>0.0034</td>
<td>0.0053</td>
<td>0.9421</td>
</tr>
<tr>
<td>Dillner et al. (5)</td>
<td>1998</td>
<td>Chlamydia psittaci</td>
<td>USA</td>
<td>455</td>
<td>4</td>
<td>7</td>
<td>161</td>
<td>283</td>
<td>0.9846</td>
<td>0.0929</td>
<td>0.0003</td>
<td>0</td>
<td>0.9944</td>
</tr>
<tr>
<td>Ghasemian et al. (17)</td>
<td>2013</td>
<td>Married at enrolment</td>
<td>USA</td>
<td>452</td>
<td>154</td>
<td>259</td>
<td>10</td>
<td>29</td>
<td>0.97787</td>
<td>0.199668</td>
<td>0.06801541</td>
<td>2.090995</td>
<td>0.1481694</td>
</tr>
<tr>
<td>Ghasemian et al. (17)</td>
<td>2013</td>
<td>Married</td>
<td>Iran</td>
<td>196</td>
<td>12</td>
<td>29</td>
<td>1</td>
<td>154</td>
<td>0.99489</td>
<td>0.001275</td>
<td>0.46781883</td>
<td>42.89547</td>
<td>5.77E-11</td>
</tr>
</tbody>
</table>