A New Sieve for the Twin Primes
and how the number of twin primes is related to the number of primes

by

H.L. Mitchell

Department of mathematics CUNY-The City College
160 Convent avenue New York, NY 10031 USA
e-mail: hlmitchell88@yahoo.com
Abstract. We introduce a sieve for the number of twin primes less than n by sieving through the set \(\{ k \in \mathbb{Z}^+ \mid 6k < n \} \). We derive formula accordingly using the Euler product and the Brun Sieve.

We then use the Prime Number Theorem and Mertens’ Theorem.

The main results are:

1) A sieve for the twin primes similar to the sieve of Eratosthenes for primes involving only the values of k, the indices of the multiples of 6, ranging over $k = p, 5 \leq p < \sqrt{n}$. It shows the uniform distribution of the pairs $(6k-1, 6k+1)$ that are not twin primes and the decreasing frequency of multiples of p as p increases.

2) A formula for the approximate number of twin primes less than N in terms of the number of primes less than n.

3) The asymptotic formula for the number of twin primes less than n verifying the Hardy Littlewood Conjecture.

2010 Mathematics Subject Classification: 11A07; 11A41; 11N05; 11N25; 11N36

Keywords and phrases: Primes, Twin Primes, Congruence, Sieve methods
1. Introduction

The twin primes have been studied by a number of mathematicians over the past 3 centuries and thus far it is not known whether there exist infinitely many of them.

Hardy and Littlewood proposed their famous conjecture in 1923 giving a formula for the number of twin primes less than a given integer \(n \).

We introduce a sieve for the twin primes less than \(n \) similar to the sieve of Eratosthenes for primes. It is applied twice to the set of all natural numbers \(k \) such that \(k < 6n \) and the range for the primes is \(p = 5 \) to \(p < \sqrt{n} \).

We consider the set of all pairs \((6k - 1, 6k + 1)\) which are less than \(n \) and delete the values of \(k \) such that \(6k-1 \) is composite. This leaves us with the pairs for which \(6k-1 \) is prime. From these we delete the values of \(k \) such that \(6k+1 \) is composite and that leaves us with the twin primes less than \(N \).

Using the Euler product formula, The Brun Sieve, The Prime number theorem and Mertens’ 3rd Theorem, we derive a formula for the approximation of \(\pi_2(n) \) in terms of \(\pi(n) \) (the number of primes less than \(n \)) and the asymptotic formula for \(\pi_2(n) \) to verify the Hardy Littlewood Conjecture.
2. Deriving the formula and some Set Theory

All the twin primes except \{3, 5\} are of the form \{6k –1, 6k+1\}

Let \(T = \{(6k–1, 6k+1) \mid k = 1, 2, 3\ldots \} \)

Let \(u_k = 6k – 1 \) and let \(v_k = 6k + 1 \)

And define \(t_k = (u_k, v_k) \)

Listed below are the first few members of the set \(T \). (the composite numbers are underlined)

\(k \equiv \pm 1 \mod 5 \Rightarrow t_k \) contains a multiple of 5 and is therefore not a pair of twin primes.

Let \(S_p = \{ t_k \mid t_k \) contains a multiple of prime \(p \} \)

\(T_p = T \setminus S_p = \{ t_k \mid t_k \) does not contain a multiple of prime \(p \} \)

\(S_5 = \{ t_4, t_6, t_9, t_{11}, t_{14}, t_{16}, t_{19} \ldots \} = \{(23, 25), (35, 37), (53, 55), (65, 67)\ldots \} \)

\(T_5 = \{ t_1, t_2, t_3, t_5, t_7, t_8, t_{10}, t_{12} \ldots \} \)

The values of \(k \) in \(S_5 = \{4, 6, 9, 11, 14, 16, 19, 21\ldots \} = \{k \in \mathbb{Z}^+ \mid k \equiv \pm 1 \mod 5 \} \)

The values of \(k \) in \(T_5 = \{1, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 20, 22, 23, 25, 27, 28, 30\ldots \} \)

\(k \equiv \pm 1 \mod 7 \Rightarrow t_k \) contains a multiple of 7

The values of \(k \) in \(S_7 = \{6, 8, 13, 15, 20, 22, 27, 29, 36, 38\ldots \} = \{k \in \mathbb{Z}^+ \mid k \equiv \pm 1 \mod 7 \} \)

The values of \(k \) in \(T_7 = \{1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 16, 17, 18, 19 \ldots \} \)

Since \(6(2) – 1 = 11 \), \(k \equiv \pm 2 \mod 11 \Rightarrow t_k \) contains a multiple of 11

The values of \(k \) in \(S_{11} = \{9, 13, 20, 24, 31, 35, 42, 46\ldots \} = \{k \in \mathbb{Z}^+ \mid k \equiv \pm 2 \mod 11 \} \)

The values of \(k \) in \(T_{11} = \{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25\ldots \} \)

If \(p \) is prime and \(p = 6a \pm 1 \), \(t_k \) contains a multiple of \(p \Leftrightarrow k \equiv \pm a \mod p \)
Let \mathcal{P} be the set of all primes.

Let $T_w = \{ t_k = (u_k, v_k) \mid u_k \in \mathcal{P} \text{ and } v_k \in \mathcal{P}, k \in \mathbb{Z}^+ \}$

$T_w = T \setminus \bigcup_{p \geq 5} S_p$; by De Morgan’s Law $T_w = \bigcap_{p \geq 5} T_p$

Lemma 1:

Define k_p as the value of k for primes $p = 6k + 1$ or $p = 6k - 1$.

and T_w as the set of all twin prime pairs.

Given a large integer N and $6k + 1 < N$,

$t_k \notin T_w \iff k \equiv \pm k_p \pmod{p}$ for some prime p, $5 \leq p < \sqrt{N}$.

As in the sieve of Eratosthenes, we delete $\{ k \mid k = np \pm k_p \text{ for primes } p = 6k \pm 1 \}$

$n = \{1, 2, 3\ldots \} \forall p \geq 5 \leq p < N$

Consider the set $K = \{k \in \mathbb{Z}^+ \mid k < 6N\}$.

In every interval $I \in K$ such that $I = \{np, (n+1)p\} \forall n \in \mathbb{Z}^+$ and p is prime, $5 \leq p < \sqrt{N}$

\exists exactly 2 values of k, (i.e. $k = np + k_p$ and $k = (n+1)p - k_p$), such that t_k contains a multiple of p.

Let $\pi_2(N)$ be the number of primes p less than N such that $p + 2$ is also prime.

By the Brun Sieve we have:

\[
\pi_2(N) = \frac{N}{6} \prod_{5}^{V} (1 - \frac{2}{p}) + R_p \quad \text{where } R_p \text{ is the error term}
\]

and $V =$ maximum prime $p < \sqrt{N}$

Example 1:

$N = 529, V = 19$

$\pi_2(N) \approx \frac{529}{6} \prod_{5}^{19} (1 - \frac{2}{p}) = 20.6521\ldots$

Actually, $\pi_2(N) = 25$ so $R_p \approx 4.3$
Let $\pi_2 (n) = \text{the number of primes } p \text{ less than } n \text{ such that } p + 2 \text{ is also prime.}$

Where V is maximum prime $p < \sqrt{n}$

Table 1 ($\pi_2 (n)$ compared to the formula)

<table>
<thead>
<tr>
<th>n</th>
<th>$\pi_2 (n)$</th>
<th>$\frac{n}{6} \prod_{5}^{V} (1 - 2/p)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Approx.</td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td>1000</td>
<td>35</td>
<td>31</td>
</tr>
<tr>
<td>2500</td>
<td>72</td>
<td>64</td>
</tr>
<tr>
<td>5000</td>
<td>126</td>
<td>111</td>
</tr>
<tr>
<td>7500</td>
<td>169</td>
<td>150</td>
</tr>
<tr>
<td>10000</td>
<td>205</td>
<td>191</td>
</tr>
<tr>
<td>15000</td>
<td>272</td>
<td>261</td>
</tr>
<tr>
<td>20000</td>
<td>342</td>
<td>328</td>
</tr>
<tr>
<td>25000</td>
<td>408</td>
<td>394</td>
</tr>
<tr>
<td>30000</td>
<td>467</td>
<td>456</td>
</tr>
<tr>
<td>35000</td>
<td>539</td>
<td>520</td>
</tr>
<tr>
<td>40000</td>
<td>591</td>
<td>570</td>
</tr>
<tr>
<td>50000</td>
<td>705</td>
<td>700</td>
</tr>
<tr>
<td>75000</td>
<td>958</td>
<td>968</td>
</tr>
</tbody>
</table>

This estimate exceeds the actual number of twin prime pairs for large values of n because for some primes $p \notin T_w$ and elements in \{ $k : 1 \leq k < \frac{n}{6}$ \}, the number of elements in each of the sets \{ $k : p \mid 6k - 1$ \} \{ $k : p \mid 6k + 1$ \} = $\left\lfloor \frac{n}{6p} \right\rfloor + 1 \rfloor$ where $\left\lfloor . \right\rfloor$ is the greatest integer function, therefore some composites will not be sifted out by the product formula given above. The formula can be refined by rewriting it as a two-part sieve formula that represents the application of Eratosthenes’ Sieve first to $6k-1$ type numbers then to the $6k +1$ type.

See equation (2).
Except for 3, all lesser twin primes are of the form $6k - 1$.

Consider the set \(\{ u_k \mid u_k = 6k - 1, \; k \in \mathbb{Z}^+ \} \).

Lemma 2:

Given \(u_k < N, \; u_k \notin T_w \Rightarrow k \equiv \pm k_p \pmod p \) for some prime \(p, \; 5 \leq p < \sqrt{N} \).

i.e. \((u_k, v_k) \) is not a pair of twin primes \(\iff k \equiv \pm k_p \pmod p \) for some prime \(p, \; 5 \leq p < \sqrt{N} \).

Out of every \(p \) elements in the set \(\{u_k\} \), \((p \) prime and \(p \geq 5) \),

exactly one is a multiple of \(p \) and one precedes a \(6k+1 \) multiple of \(p \).

If we list the elements of \(\{ u_k \mid u_k = 6k - 1, \; k \in \mathbb{Z}^+ \} \) and delete every \(u_k \) in which \(k \equiv \pm 1 \pmod{5} \)

or \(\pm 1 \pmod{7} \) or \(\pm 2 \pmod{11} \) or \(\pm 2 \pmod{13} \) or \(k \equiv \pm 3 \pmod{17} \) or \(\pm 3 \pmod{19} \) \(\ldots \pm k_p \pmod{p} \) up to \(p < \sqrt{N} \).

The remaining terms are all twin primes.

We use this method to find twin primes in the table below by deleting all \(k \equiv \pm 1 \pmod{5} \)

or \(\pm 1 \pmod{7} \), \(\pm 2 \pmod{11} \) or \(\pm 2 \pmod{13} \), since \(13 = \max p < \sqrt{179} \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_k)</td>
<td>5</td>
<td>11</td>
<td>17</td>
<td>23</td>
<td>29</td>
<td>35</td>
<td>41</td>
<td>47</td>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>(k)</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>(u_k)</td>
<td>65</td>
<td>71</td>
<td>77</td>
<td>83</td>
<td>89</td>
<td>95</td>
<td>101</td>
<td>107</td>
<td>113</td>
<td>119</td>
</tr>
<tr>
<td>(k)</td>
<td>24</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>(u_k)</td>
<td>125</td>
<td>131</td>
<td>137</td>
<td>143</td>
<td>149</td>
<td>155</td>
<td>161</td>
<td>167</td>
<td>173</td>
<td>179</td>
</tr>
</tbody>
</table>

The \(u_k \)'s that correspond to the undeleted values of \(k \) are the lesser of twin primes

i.e.: 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179
We can demonstrate this sieve method by the following procedure:

first we cross out all values of k such that $k \equiv k_p \mod p$ if $p \equiv -1 \mod 6$ (i.e. $p = 6k_p - 1$) and all values of k such that $k \equiv -k_p \mod p$ if $p \equiv 1 \mod 6$ (i.e. $p = 6k_p + 1$) up to $p < \sqrt{n}$ so that we are left with the set \{ $k \in \mathbb{Z}^+ \mid k < \frac{n}{6}$ and $(6k-1)$ is prime \}.

Table 3 Values of k such that 6k-1 is a prime (not deleted)

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>−6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_k</td>
<td>5</td>
<td>11</td>
<td>17</td>
<td>23</td>
<td>29</td>
<td>35</td>
<td>41</td>
<td>47</td>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>k</td>
<td>14</td>
<td>12</td>
<td>43</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>u_k</td>
<td>65</td>
<td>71</td>
<td>77</td>
<td>83</td>
<td>89</td>
<td>95</td>
<td>101</td>
<td>107</td>
<td>113</td>
<td>119</td>
</tr>
<tr>
<td>k</td>
<td>24</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>u_k</td>
<td>125</td>
<td>131</td>
<td>137</td>
<td>143</td>
<td>149</td>
<td>155</td>
<td>161</td>
<td>167</td>
<td>173</td>
<td>179</td>
</tr>
</tbody>
</table>

We then cross out the elements of the set \{ $(k \in \mathbb{Z}^+ \mid k < \frac{n}{6}$ and $(6k+1)$ is composite \} i.e.

\{ $k \mid k \equiv -k_p \mod p$ if $p \equiv -1 \mod 6$ \} ∪ \{ $k \mid k \equiv k_p \mod p$ if $p \equiv 1 \mod 6$ \}. This leaves us with the set of all twin primes less than N. (Table 2)

This can be expressed as approximation formula that follows:

$$\pi_2(N) \approx \pi(N) \approx \frac{\pi(N)}{2} \prod_{p < V} \frac{p-2}{p-1} \approx \frac{\pi(N)}{2} \prod_{p < V} \frac{p(p-2)}{(p-1)^2} \frac{p-1}{p} , V= \max p < \sqrt{N}$$

By the Prime Number Theorem $\pi (N) \sim \frac{N}{\ln N}$ and by Mertens’ Theorem:

$$\prod_{p < V} \frac{p-1}{p} \sim 2e^{-\gamma} \frac{\ln N}{\ln \ln N} = 1.122... \frac{\ln N}{\ln \ln N}$$

which overestimates the true ratio $\frac{\pi(N)}{N}$

and $\gamma = 5772156649...$ is the Euler-Mascheroni constant. [4] (Polya)

By using $\frac{1}{\ln N}$, which is a lower bound for $\frac{\pi(N)}{N}$ [5] (Rosser and Schoenfeld)

and a little bit of algebra, we obtain:

$$\pi_2 (N) \sim \frac{N}{2\ln N} \times \frac{4}{3} C_2 \times 3 \times \frac{1}{\ln N} ,$$

where

$$C_2 = \prod_{p \geq 3} \frac{p(p-2)}{(p-1)^2} = 0.6601618...$$

is the twin prime constant and

$$\pi_2(N) \sim 2C_2 \frac{N}{(\ln N)^2}$$

which is the Hardy-Littlewood Conjecture.
Hardy and Littlewood [2] also conjectured a better approximation:

\[(6) \quad \pi_2(N) \sim 2C_2 \int_2^N \frac{1}{(\ln t)^2} \, dt, \text{ also based on PNT}\]

Formula (4) is naturally equivalent to (3) but

\[(7) \quad \int_2^n \frac{1}{(\ln t)^2} \, dt = \frac{n}{(\ln n)^2} \left(1 + \frac{2!}{\ln n} + \frac{3!}{(\ln n)^2} + \cdots\right),\]

and the second factor on the right hand side is (for the values of \(n\) that we have to consider) far from negligible. [2] (Hardy and Wright)

This suggests \(2C_2 \frac{N}{(\ln N)^2} < \pi_2(N)\), for large integers \(N\)

From equation (2) and the fact that \(\frac{N}{6} \prod_{p \in T} \frac{p-1}{p}\) is an over-approximation of \(\frac{\pi(N)}{2}\),

(because for some primes \(p \notin T_w, 5 \leq p < \sqrt{N}, \lfloor\{k: p \nmid (6k-1) \setminus k_p\}\rfloor\)

\[= \lfloor\frac{N}{6} \left(\frac{p-1}{p} - \frac{6}{N}\right)\rfloor\text{ and likewise for }\{k: p \nmid (6k+1) \setminus k_p\}\).\]

After multiplying the right side of equation (2) by \(\frac{N}{6}\) and \(\frac{6}{N}\) we obtain:

\[(8) \quad \pi_2(N) \approx \frac{\pi(N)}{2} \cdot \frac{4}{3} \cdot C_N \cdot \frac{6}{N} \cdot \frac{\pi(N)}{2} \quad \text{where} \quad C_N = \prod_{2 < p < \sqrt{N}} \frac{p(p-2)}{(p-1)^2} \]

which includes \(\lim_{N \to \infty} \left(\frac{N(p-2)-6(p-1)}{N(p-1)}\right)\left(\frac{Np}{N(p-1)-6p}\right)\) for some primes \(p, 5 \leq p < \sqrt{N}\).

\[(9) \quad \pi_2(N) \approx 2C_N \frac{[\pi(N)]^2}{N}.\]

\(\lim_{N \to \infty} C_N = C_2 \land \pi(N) \sim \frac{N}{\ln N} \Rightarrow\)

\[(10) \quad \pi_2(N) \sim 2C_2 \frac{N}{(\ln N)^2}\]

As shown by Rosser and Schoenfeld [5],

\[\frac{N}{\ln N} < \pi(N) \quad \forall \quad N \geq 17 \quad \text{which gives us:}\]

\[(11) \quad 2C_2 \frac{N}{(\ln N)^2} < 2C_2 \frac{[\pi(N)]^2}{N} \quad \text{for large enough values of } N.\]
Table 4

(Values of $\pi_2(n)$ compared to logarithmic integral and ratio formulas) [1] (Caldwell)

<table>
<thead>
<tr>
<th>n</th>
<th>$\pi_2(n)$</th>
<th>$2C_2 \text{li}_2(n)$</th>
<th>$2C_2 \frac{n}{(\ln n)^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td>8169</td>
<td>8248</td>
<td>6917</td>
</tr>
<tr>
<td>10^7</td>
<td>58980</td>
<td>58754</td>
<td>50822</td>
</tr>
<tr>
<td>10^8</td>
<td>440312</td>
<td>440368</td>
<td>389107</td>
</tr>
<tr>
<td>10^9</td>
<td>3424506</td>
<td>3425308</td>
<td>3074425</td>
</tr>
<tr>
<td>10^{10}</td>
<td>27412679</td>
<td>27411417</td>
<td>24902848</td>
</tr>
<tr>
<td>10^{11}</td>
<td>224376048</td>
<td>224368865</td>
<td>205808661</td>
</tr>
<tr>
<td>10^{12}</td>
<td>1870585220</td>
<td>1870559867</td>
<td>1729364449</td>
</tr>
<tr>
<td>10^{13}</td>
<td>15834664872</td>
<td>15834598305</td>
<td>14735413063</td>
</tr>
<tr>
<td>10^{14}</td>
<td>135780321665</td>
<td>135780264894</td>
<td>127055347335</td>
</tr>
<tr>
<td>10^{15}</td>
<td>1177209242304</td>
<td>1177208491861</td>
<td>1106793247903</td>
</tr>
</tbody>
</table>

Let $W(n) = 2C_2 \frac{[\pi(n)]^2}{n}$

Table 5

(limit $\frac{W(n)}{\pi_2(n)}$ approaching 1 as n increases)

<table>
<thead>
<tr>
<th>n</th>
<th>$\pi(n)$</th>
<th>$W(n)$</th>
<th>$\frac{W(n)}{\pi_2(n)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td>78498</td>
<td>8136</td>
<td>0.9959603…</td>
</tr>
<tr>
<td>10^7</td>
<td>664579</td>
<td>58314</td>
<td>0.99251114…</td>
</tr>
<tr>
<td>10^8</td>
<td>5761455</td>
<td>438273</td>
<td>0.995242615…</td>
</tr>
<tr>
<td>10^9</td>
<td>50847534</td>
<td>3413659</td>
<td>0.9968325…</td>
</tr>
<tr>
<td>10^{10}</td>
<td>455052511</td>
<td>27340309</td>
<td>0.99735998…</td>
</tr>
<tr>
<td>10^{11}</td>
<td>4118054813</td>
<td>223905433</td>
<td>0.99790256…</td>
</tr>
<tr>
<td>10^{12}</td>
<td>37607912018</td>
<td>1867406346</td>
<td>0.998300599…</td>
</tr>
<tr>
<td>10^{13}</td>
<td>346065536839</td>
<td>15812374441</td>
<td>0.99859230168…</td>
</tr>
<tr>
<td>10^{14}</td>
<td>3204941750802</td>
<td>135619040528</td>
<td>0.999881219…</td>
</tr>
<tr>
<td>10^{15}</td>
<td>29844570422669</td>
<td>1176010096499</td>
<td>0.998981365…</td>
</tr>
</tbody>
</table>
Let \(t_k = (6k - 1, 6k + 1) \) and \(T_w = \) the set of all twin prime pairs.

The occurrence of twin primes may be summarized as follows:

\[\forall k > 3 \text{ and primes } p, \]
\[t_k \in T_w \iff k \equiv 0, 2 \text{ or } 3 \pmod{5} \land k \not\equiv \pm k_p \pmod{p} \forall p > 5 \]

Where \(k_p \) is the value of \(k \) for the primes \(p = 6k + 1 \) or \(p = 6k - 1 \).
References:

 utm.edu/staff/caldwell/preprints/Heuristics.pdf

3. Hardy, G. H., Littlewood, J. E.: Some Problems of ‘Partitio Numerorum’ III: On the

6. Rosser, J. Barkley, Schoenfeld, Lowell: Approximate formulas for some functions of prime
 numbers. Illinois J. Math. 6, (1962) p. 69