Refutation of Liouville's theorem as not invertible

© Copyright 2018 by Colin James III All rights reserved.

We assume Meth8/VŁ4 where the designated proof value is tautology. The truth table is repeating fragments of 16-values, row major and horizontal. LET pqtw ABRTW; \(\rightarrow \), transition

We rely on: inside.mines.edu/~tohno/teaching/PH505_2011/liouville_dvorak.pdf

Allow \(W(A) \) to denote the phase volume of macrostate \(A \), i.e. \(W(A) \) is the number of microstates that realize macrostate \(A \); we can immediately conclude that \(W(\overset{\text{T}}{A}) = W(A) \). (1.1)

\[
((w\&p)\Rightarrow p) > ((w\&(r\&p)) = (w\&p)) ; \quad TTTT\ TTTT\ TTTT\ TTTT\ TTTT\ TTTT\ TTTT\ TTTT
\]

Consider two distinct macrostates \(A \) and \(B \) in the same phase space. Let \(\Gamma \) denote the microscopic path through phase space that realizes the macroscopic transition \(A \rightarrow B \). Denote the transformed macrostate \(A \) as \(\overset{\text{T}}{A} \) for time evolved \(A \). Liouville’s theorem preserves phase space volumes. Therefore, \(W(\overset{\text{T}}{A}) = W(A) \). We now consider only cases where the transition \(A \rightarrow B \) is experimentally reproducible. For [Figure 3: Evolution of macrostates in a dynamical system.] this to be true, \(\overset{\text{T}}{A} \) must lie entirely in \(B \). We cannot control which microstate the system evolves into, but we require that all evolved microstates \(\overset{\text{T}}{A} \) are a subset of \(B \). This condition implies that \(W(\overset{\text{T}}{A}) < W(B) \). The number of microstates for macrostate \(B \) is greater than that of macrostate \(A \). But Liouville’s theorem tells us \(W(\overset{\text{T}}{A}) = W(A) \), so experimental reproducibility of \(A \rightarrow B \) means that \(W(A) < W(B) \). This condition depends only on the initial configuration of the system because phase space volume is conserved. This is the requirement for experimental reproducibility and one explanation for entropy, \(S/\ln W \). (2.1)

\[
(((w\&(t\&p))=(w\&q)) & ((w\&(t\&p)) < (w\&p))) > ((p>q)=(w\&p) < (w\&q)) ;
\quad TTTT\ TTTT\ TTTT\ TTTT\ TTTT\ TTTT\ TTTT\ TTTT
\]

Consider the reverse transition: why does macrostate \(B \) not evolve into \(A \). This is equivalent to the transition \(\overset{\text{RB}}{B} \rightarrow \overset{\text{RA}}{A} \). This transition requires additional information about the initial microstate of \(\overset{\text{RB}}{B} \) to transform it into the proper sub-region of \(\overset{\text{RA}}{A} \) - information we don’t typically have. Because \(W(\overset{\text{RA}}{A}) < W(\overset{\text{RB}}{B}) \), this transformation is not experimentally reproducible. Liouville’s theorem connects the time evolved state to the initial state - their phase space volume are the same. Therefore, Liouville’s theorem places the requirement for experimental reproducibility (second law) on initial and final states \(S(A) < S(B) \). Interestingly, nowhere does any notion of time enter this argument. In this derivation, increasing entropy is a requirement only for experimental reproducibility, not a forward direction in time.

\[
(w\&(r\&p)) < (w\&(r\&q)) > \sim ((q>p) = ((r\&q) >(r\&p))) ;
\quad TTTT\ TTTT
\]

Eq. 1.2 is not tautologous: it is not a theorem. Eq. 2.2 is tautologous: it is a constructive theorem.

However, Eq. 3.2 is not tautologous: as the reverse of Eq.2.2, it is not a theorem. This means Liouville's theorem is not invertive and hence not a reversible theorem.