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Abstract—We investigate the problem of super-resolution of

images in the presence of side information. In some situations,

when some information of the original image is available to the

sender, it can be embedded into the low resolution images, either

in the pixels themselves or in the headers. This information can be

later used when required to reconstruct the superresolved image.

For this, a novel multiresolution histogram matching based su-

perresolution procedure is outlined. The proposed technique gives

better results compared to contemporary resolution enhancement

algorithms.

I. INTRODUCTION

Superresolution (SR) is the problem of reconstructing a high
resolution image from a single low resolution image or set
of low resolution images, each of which contributes some
unique information. SR is an ill-posed problem since there
might be many high resolution images which give the same
low resolution image set. We need to resort to regularization
by imposing prior knowledge about the high resolution image,
to restrict its solution space to a visually plausible set [1]. In
ordinary SR at the receiver, one would impose a prior like the
Markov random Field [20] or the constrained Total Variation
norm model [13], [14] in conjunction with an estimation
procedure to get an estimate of the high resolution image.
These priors are inspired by general image statistics. However,
if we had more specific ’side’ information about the actual
image we are trying to reconstruct, our estimate would be
much better.

We believe that our method can perform better than con-
ventional resolution enhancement techniques in the following
two scenarios:

• Superresolution of transmitted low resolution images over
limited bandwidth.

• Deblurring of print media (text and images on paper)
captured by mobile phone cameras etc.

In the above scenarios, the chosen side information can
either be incorporated in the image headers or embedded
into the low resolution image itself (before transmission or
printing) using data embedding schemes such as Quantization
Index Modulation [2]. In this paper, we look at what ’side’
information is perceptually well suited for SR. An algorithm
that actually uses that information for high resolution image
estimation is also explored.
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A. Previous work and our contributions

Previous related work which uses data embedding for im-
age processing (non-security) applications includes improving
coding efficiency by embedding color information in the image
itself [4], using data embedding to enable good error conceal-
ment for transmitted images [5], and for transmitted videos
over lossy networks [6], and embedding information to help
selectively filter transmitted compressed image regions [17].
However, none of the previous works use partial information
embedding for superresolution and estimation of the original
image like we do. Also, in papers like [12] and [16], one
uses side information to enhance transmitted images, but these
methods do not make use of the side information motivated
by perceptually significant parameters like we propose.

More recently, [3] embedded statistics of the original image
into transmitted images, which could be used as an objective
quality metric. Our work is inspired by recent advances in
texture synthesis. It is discussed in [7], [10] and [11] that many
textures can be reconstructed by matching the histograms of
the filter responses of a set of well-selected bandpass filters.
In [7], the authors proposed an iterative projection method
with constraints imposed on the multiscale oriented pyramid
coefficients, and were able to construct meaningful textures
from random initial images. However, it was concluded that
this method does not work for images.

Our contributions in this paper are twofold. Firstly, we
have modified the above mentioned texture synthesis method,
turning it into an image deblurring scheme, making it suitable
for superresolution. Our proposed modifications are explained
in the sections which follow. Secondly, we have presented
a framework for using side information for image resolution
enhancement.

Our technique is general in that it can be used to further
augment the performance of any existing popular SR or image
enhancement technique like [8] and [9] which make use of
regularization of this ill posed inverse problem. Our method
can be viewed as a method to enhance prior knowledge. We
believe that this can also help do away with simplistic but
unrealistic assumptions being made at present.

The proposed algorithm follows these steps:
• Side information embedding- At the image print output

device or transmitter, embed a compact representation of
the side information into the image(s) being stored/ sent,
or, if possible, encode the side information in the header.

• Extraction and decoding of the side information- At the
receiver or image capture device, when required, decode
the embedded/encoded information in the set of image(s)



IEEE SIGNAL PROCESSING LETTERS , VOL. X, NO. YY, MONTH ZZZZ 2

received or stored after capture.
• The SR technique- Use the decoded information to aid

the SR image estimation procedure, in the form of prior
knowledge and original image statistics.

B. Organization
This paper is organized as follows. Section 2 explains

the proposed SR method, with a detailed discussion on the
proposed changes to the existing texture synthesis scheme
in section 2B. Also, the gradient projection based estimation
scheme to obtain the high resolution image is briefly outlined
in section 2C. Results for each of the examples are presented
in section 3, and section 4 concludes the paper.

II. THE PROPOSED SUPERRESOLUTION TECHNIQUE

Side information is incorporated into the low resolution
image, either using QIM or in the header. This side information
is used in the resolution enhancement process. Two important
questions are addressed below,

• What is the perceptually significant side information to
be embedded.

• How can the received side information be used to enhance
the received image quality.

A. Choosing the required side information
It was argued in [7] that texture images with identical higher

order marginal statistics and joint statistics across subbands are
indistinguishable to the human eye. It was also also shown
in [3] that the marginal distribution of the wavelet coeffi-
cients changes in different ways for different types of image
distortions. Based on these discussions, we choose the side
information to be the histograms and joint subband statistics
in the (multiresolution) steerable pyramid decomposition of
the original high resolution image. We first briefly review the
texture synthesis scheme from [7] below, and then explain our
proposed changes to this scheme.

The texture synthesis method builds textures from random
initial images. In the first step of texture synthesis, the
steerable pyramid is implemented by recursively splitting an
example image into a set of oriented subbands and a lowpass
residual band. The filters used in this decomposition are polar
separable in the Fourier domain. The recursive procedure
is initialized by splitting the input image into lowpass and
highpass portions, using the following filters:

L0(r, ✓) = L(r/2, ✓)/2
H0(r, ✓) = H(r/2, ✓)

where r, ✓ are polar coordinates. In this paper, we have used
K = 4 orientation bands, and N = 4 pyramid levels (scales),
for a total of 18 subbands (16 oriented, plus highpass and
lowpass residuals). Figure 1 shows the pyramid decomposition
structure, where Bk(w)’s are bandpass oriented filters. Figure
2 shows the actual subbands (real and imaginary parts) for the
3 scale 4 orientation decomposition of a disk image.

In the model in [7], the constraint functions are defined
on the coefficients of these subbands of the original image

Fig. 1. Pyramidal decomposition- The image is split into lowpass and
highpass subbands, the lowpass subband is further split recursively. The
reconstruction structure is to the right of the circles.

Fig. 2. 3 scale 4 orientation pyramidal decomposition of the disk image.
Left: real parts of oriented bandpass images at each scale. Right: Magnitudes
of these subbands.

(available to the sender). The chosen perceptually significant
parameter set includes three normalized sample moments
(variance, skewness and kurtosis), together with the range
(minimum and maximum intensities) for the pixel statistics,
the skewness and kurtosis of the lowpass subband images,
and the variance of the highpass subband images are computed
at each level of the recursive pyramid decomposition. Along
with this, the scheme also requires both raw coefficient as
well as magnitude cross-correlation terms across orientations
and scales, as well as phase cross-correlation terms across
subbands. The texture image is constructed by an iterative
sequential gradient projection method (starting from a random
image) which imposes each of the above constraints (extracted
from a reference image or texture patch) on the present
estimate of the texture being constructed. The algorithm works
well in practice for texture synthesis. However, this method
was noted to fail for synthesizing natural images from random
initializations.

B. Proposed modifications to texture synthesis
Here, we outline our proposed modifications to the texture

synthesis scheme, converting it into a deblurring method. We
also outline the reasons for these changes through example
images.

• The initial image estimate is not random, instead a
bicubic interpolated image is used.

• We eliminate the constraints on the raw coefficient cross-
correlation, as well as relative local phase constraints.

• A deringing stage is introduced.
1) Random versus bicubic initialization for superresolution:

One of the reasons why the texture synthesis algorithm fails for
natural image synthesis is because of the random initialization.
The set of multiscale constraints are not sufficient to capture
all the higher order statistical information in natural images,
especially global structures. This is different from textures
where the local regions reflect the global structure, since the
texture image consists of a repetition of those local patches.
However, for natural images, a low resolution version of the
actual image captures vital higher order information and global
structure which cannot be enforced using just the multiscale
constraints listed before. Below, we present a simple example
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image of a square of size 256X256 pixels (figure 3(a)),
which was reconstructed using (a) a random initial guess and
multiscale constraints (figure 3(c)), and (b) low resolution
image of size 32X32 (bicubic upsampled by 8) (see figure
3(b)) as the initial guess with multiscale constraints (figure
3(d)). In both cases, constrained gradient projection was used
(as explained in the next subsection). It is clear that the random
estimate with the constraints is unable to fully capture the
global structure, whereas (even a very) low resolution image
does well at this.

(a) original (b) Low resolu-
tion image

(c) SR with ran-
dom initialization

(d) SR with bicu-
bic initialization

Fig. 3. SR with random versus bicubic initialization for a square

2) Problems with raw subband coefficient correlations and
relative local phase: Raw subband coefficient correlations and
relative local phase are two constraints which are important for
texture synthesis,as noted in [7] since they enforce local con-
straints. However, for superresolution, we are more interested
in edges and larger details as well, and these two constraints
actually yield local non-linear distortions. Therefore, we pro-
pose to do away with these constraints. Below, we present
an example image in figure 4(a) which was downsampled
by 4 first (see figure 4(b)), the low resolution image was
superresolved with and without the above constraints (figures
4(c) and 4(d) respectively).We see that imposing the two extra
constraints noted above leads to non-linear distortions. It can
be seen that the estimated high resolution image still contains
some ringing artifacts which we address below.

3) Deringing using non-linear fuzzyfilter: As mentioned
before, the proposed superresolution method suffers from ring-
ing artifacts. Ringing was also observed in other applications
of the multiscale multioriented transform [19]. To combat this,
we use a nonlinear fuzzy filter proposed by Vo et al. in [18].
Ringing artifacts are directional, and this method proposes to
design non-linear fuzzy filters which can capture and filter
out these distortions. Here, we present an example of the
superresolved image alone (figure 4(d)), and compare it to
superresolution with deringing, which is the final output of our
proposed framework (figure 4(e)). It is clear that the fuzzyfilter
is able to almost fully remove the ringing.

C. Constrained gradient projection based superresolution
All the modified parameter values thus chosen (which corre-

sponds to about a kilobyte of side information) are embedded
into the low resolution image(s) or encoded into the image
header. The image is then either transmitted or put on print
paper. At the receiver or camera software, the side information
is first extracted as mentioned above. We then upsample the
LR image to have the same dimensions as the required SR
image using bicubic interpolation. This image serves as the
starting input to the constrained gradient projection algorithm.

Fig. 5. The iterative SR reconstruction method

The constraints imposed are based on the statistics of the
original image in the side information. The bicubic upsam-
pled low res image is decomposed into a complex steerable
pyramid. An iterative coarse-to-fine procedure imposes the
statistical constraints on the lowpass and bandpass subbands,
while simultaneously reconstructing a lowpass image. The
autocorrelation of the reconstructed lowpass image is then
adjusted, along with the skew and kurtosis, and the result is
added to the variance-adjusted highpass band to obtain the SR
image. The marginal statistics are imposed on the pixels of
this image, and the entire process is repeated. The procedure
is outlined in Figure 5.

Let x0 be the initial estimate of a subband of the high resolu-
tion image. Then, for each constraint ck, we have a projection
P relating the subband coefficients obtained at iteration xn to
the the subband coefficients from the previous iteration xn�1

onto the set imposed by p, i.e., xn = Pck(xn�1). Let �(x)
be one of the parameters which is being constrained (like
mean, variance etc.). A straightforward way of performing
these projections is to modify the current estimate along the
gradient of the constrained parameter under consideration, i.e.

xn = xn�1 + �kr�k(x) (1)

where �k is chosen such that the parameter meets its con-
straint, i.e., �(x) = ck. The reader is referred to [7] for details
of these projection operators.

III. RESULTS

We take the high resolution images and downsample them
by 4 to get low res images. Then bicubic interpolation is used
to get an intermediate image of the same size of the HR image,
which is input as the initial guess to the proposed algorithm.
Here, one could consider bicubic interpolation as an algorithm
which does not use any side information. From figure 6, we
see that for the ’Text’ image, the proposed method makes the
text readable and sharp, unlike only bicubic interpolation. As
with other images, our method improves upon the PSNR too.
For the ’House’ image in figure 7, we compare the results
of our method with bicubic interpolation, a Markov random
field prior based Bayesian MAP SR estimation algorithm
[20] and new edge directed interpolation (NEDI) [15] which
are other popular interpolation methods. The MRF based
algorithm is representative of techniques which use generic
image statistics to help regularize the SR image solution space.
NEDI uses second order statistics only. Our method adds
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(a) Original (b) Bicubic (c) SR with raw coeff and rel-
ative phase constraints

(d) SR without those two con-
straints

(e) SR with deringing: Final
output

Fig. 4. Estimated high res image at various stages of the superresolution process

visually significant details which could neither be inferred by
the generic prior model nor only second order statistics based
modeling.

Fig. 6. Text: L to R (PSNRs in braces)- Original high-res, bicubic (25.63
dB), proposed (26.34 dB).

(a) Bicubic (b) NEDI

(c) SR with general MRF
prior

(d) Proposed SR

Fig. 7. Comparison of the proposed SR method with bicubic, general prior
based SR and NEDI for ’House’ image

Additional results are at http://videoprocessing.

ucsd.edu/˜vikas/sr_results.html

IV. CONCLUSION

A superresolution method which uses side information is
proposed. We embed information about the original high res
image into the low res images or send it in the header.
We have provided an example SR algorithm in the form of

constrained gradient projection. One can use side information,
when available, to regularize the SR problem. This solution is
suited for improving the quality of transmitted low res images,
as well as deblurring print media captured using cell phone
cameras.
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