Related to Fermat’s Last theorem: The quadratic formula of the equation

\[X^{n-1} \mp X^{n-2}Y + X^{n-3}Y^2 \mp \ldots + Y^{n-1} = Z_2^n(nZ_2^n) \]
in the cases \(n = 3, 5 \) and \(7 \)

Nguyen Van Quang
Hue - Vietnam, 04-2018

Abstract

We give some quadratic formulas (including Euler’ and Dirichlet’s formula in [1],[2]) of the equation \(X^{n-1} \mp X^{n-2}Y + X^{n-3}Y^2 \mp \ldots + Y^{n-1} = Z_2^n(nZ_2^n) \) in the cases \(n = 3,5 \) and \(7 \) for finding a solution in integer.

The equation \(X^{n-1} \mp X^{n-2}Y + X^{n-3}Y^2 \mp \ldots + Y^{n-1} = Z_2^n \) always has a solution such as:

\[X = a(a^{n-1} \mp a^{n-2}b + a^{n-3}b^2 \mp \ldots + b^{n-1}) \]
\[Y = b(a^{n-1} \mp a^{n-2}b + a^{n-3}b^2 \mp \ldots + b^{n-1}) \]
\[Z_2 = a^{n-1} \mp a^{n-2}b + a^{n-3}b^2 \mp \ldots + b^{n-1} \]

\(X \), \(Y \) and \(Z_2 \) have a common factor \(a^{n-1} \mp a^{n-2}b + a^{n-3}b^2 \mp \ldots + b^{n-1} \)

Below we consider the case \(X \), \(Y \) and \(Z_2 \) are relative prime and \(X \), \(Y \) are odd for \(n = 3,5 \) and \(7 \).

1 The quadratic formulas of the equation \(X^2 - XY + Y^2 = Z_2^3 \) (related equation \(X^3 + Y^3 = Z_3^3; Z_1 = X + Y \))

1a.

\[x^2 - xy + y^2 = z_2^3 \] \hspace{1cm} (1)

(\(x + y \) is not divisible by 3)

Write \(x = u + v, y = u - v \), then:

\[x^2 - xy + y^2 = u^2 + 3v^2 \]
\[u = \frac{x + y}{2} \] is not divisible by 3, consider the equation \(u^2 + 3v^2 = z_2^3 \)

and \(z_2 \) can be written as \(z_2 = a + 3b \)

\[z_2^3 = (a + 3b)^3 = a(a - 9b)^2 + 27b(a - b)^2 \]

select \(u_1^2 = a(a - 9b)^2, v_1^2 = 9b(a - b)^2 \)
then \(a \) and \(b \) are the square, write \(a = c^2, b = d^2 \)

it gives:

\[u_1^2 = c^2(c^2 - 9d^2), v_1^2 = 9d^2(c^2 - d^2)^2 \]
then:

\[u_1 = c(c^2 - 9d^2) \] \hspace{1cm} (2)
\[v_1 = 3d(c^2 - d^2) \] \hspace{1cm} (3)

and \(z_2 = (c^2 + 3d^2) \)

1b.

\[x^2 - xy + y^2 = 3z_2^3 \] \hspace{1cm} (4)
x + y is divisible by 3

\[u = \frac{x + y}{2} \] is divisible by 3, write \(u = 3u' \) then: \(u^2 + 3v^2 = 3^2u'^2 + 3v^2 \)

\[x^2 - xy + y^2 = u^2 + 3v^2 = 3^2u'^2 + 3v^2 = 3(3u'^2 + v^2) \]

Consider the equation \(3(3u'^2 + v^2) = 3z_2^2 \)

So \((3u'^2 + v^2) = z_2^2 \)

And by the same way, we obtain:

\[v_1' = c(c^2 - 9d^2) \] as \(u_1 \), \(u_1' = 3d(c^2 - d^2) \) as \(v_1 \) and \(z_2 = (c^2 + 3d^2) \)

\(x = u + v = 3u' + v, \ y = u - v = 3u' - v. \)

If \(u, v \) is the one solution, then:

\[u' = \frac{(m^2 - 3n^2)u + 6mnv}{3n^2 + m^2} \]

\[v' = \frac{2mn + (3n^2 - m^2)v}{3n^2 + m^2} \]

are also solution: \(u'^2 + 3v'^2 = u^2 + 3v^2 \)

2 The quadratic formulas of the equation \(X^4 - X^3Y + X^2Y^2 - XY^3 + Y^4 = Z_2^5 \) (related equation \(X^5 + Y^5 = Z_2^5; \ Z_1 = X + Y \))

2a.

\[x^4 - x^3y + x^2y^2 - xy^3 + y^4 = z_2^5 \]

x + y is not divisible by 5

Write \(x = p + q, \ y = p - q \), then:

\[x^4 - x^3y + x^2y^2 - xy^3 + y^4 = p^4 + 10p^2q^2 + 5q^4 = p^4 + 10p^2q^2 + 25q^4 - 20q^4 = (p^2 + 5q^2)^2 - 5(2q^2)^2 \]

\[p = \frac{x + y}{2} \] is not divisible by 5, consider the equation:

\[(p^2 + 5q^2)^2 - 5(2q^2)^2 = z_2^2 \]

let \(u = p^2 + 5q^2 \) and \(v = 2q^2 \)

then \(z_2^2 = u^2 - 5v^2 \) and \(z_2 \) can be written as \(z_2 = a - 5b \)

\[z_2^2 = (a - 5b)^2 = a(a^2 + 50ab + 25b^2) - 5b(a^2 + 10ab + 5b^2)^2 \]

select \(u_1^2 = a(a^2 + 50ab + 25b^2)^2 \), \(v_1^2 = 5b(a^2 + 10ab + 5b^2)^2 \)

then \(a \) and \(b \) are the square, write: \(a = c^2, b = d^2 \)

it gives:

\[u_1^2 = c^2(c^4 + 50c^2d^2 + 125d^4)^2 \]

\[v_1^2 = 5d^2(c^4 + 10c^2d^2 + 5d^4)^2 \]

then:

\[u_1 = c(c^4 + 50c^2d^2 + 125d^4) \]

\[v_1 = 5d(c^4 + 10c^2d^2 + 5d^4) \]

and \(z_2 = c^2 - 5d^2 \)
2b.

\[x^4 - x^3y + x^2y^2 - xy^3 + y^4 = 5z_2^5 \] (10)

x + y is divisible by 5

\[p = \frac{x + y}{2} \] is divisible by 5, write \(p = 5p' \), so \(p^4 + 10p^2q^2 + 5q^4 = (5p')^4 + 10(5p')^2q^2 + 5q^4 = 5(125p'^4 + 50p'^2 + q^4) \)

\(5(125p'^4 + 50p'^2 + q^4) = 5(625p'^4 + 50p'^2 + q^4 - 500p'^4) = 5((q^2 + 25p'^2)^2 - 5(10p'^2)^2) \)

Consider the equation: \(5[(q^2 + 25p'^2)^2 - 5(10p'^2)^2] = 5z_2^5 \)

So \((q^2 + 25p'^2)^2 - 5(10p'^2)^2 = z_2^5 \)

Let \(u = q^2 + 25p'^2, v = 10p'^2 \) then \(z_2 = c^2 - 5d^2 \) and \(u, v \) are given by (8);(9).

If \(u, v \) is the one solution, then:

\[u' = \frac{(m^2 + 5n^2)u - 10mnu}{5n^2 - m^2} \] (11)

\[v' = \frac{2mnu - (m^2 + 5n^2)v}{5n^2 - m^2} \] (12)

are also solution: \(u'^2 - 5v'^2 = u_0^2 - 5v_0^2 \)

The other one solution* of the equation \(u^2 + 5v^2 = (c^2 - 5d^2)^5 \) is:

\[u = u_2 = c(c^4 + 10c^2d^2 - 75d^4) \] (13)

\[v = v_2 = d(3c^4 - 10c^2d^2 - 25d^4) \] (14)

(* was not considered by Dirichlet in his proof).

3 The quadratic formulas of the equation \(X^6 - X^5Y + X^4Y^2 - X^3Y^3 + X^2Y^4 - XY^5 + Y^6 = Z_2^7 \) (related equation \(X^7 + Y^7 = Z_2^7; Z_1 = X + Y \))

3a.

\[x^6 - x^5y + x^4y^2 - x^3y^3 + x^2y^4 - xy^5 + y^6 = z_2^7 \] (15)

x + y is not divisible by 7

Write \(x = p + q, y = p - q \), then:

\[x^6 - x^5y + x^4y^2 - x^3y^3 + x^2y^4 - xy^5 + y^6 = p^6 + 21p^4q^2 + 35p^2q^4 + 7q^6 \]

\[= p^6 + 14p^4q^2 + 49p^2q^4 + 7p^2q^4 - 14p^2q^4 + 7q^6 \]

\[= p^2(p^2 + 7q^2)^3\frac{7}{2}q^2(p^2 - q^2)^2 \]

\[p = \frac{x + y}{2} \] is not divisible by 7, consider the equation: \(z_2^7 = p^2(p^2 + 7q^2)^2 + 7q^2(p^2 - q^2)^2 \) let \(u = p(p^2 + 7q^2) \) and \(v = q(p^2 - q^2) \)

then \(z_2 = u^2 + 7v^2 \) and \(z_2 \) can be written as \(z_2 = a + 7b \)

and by the same way as above, we obtain:

\[u_1 = c(c^2 - 21d^2)^2 - 7d^2(3c^2 - 7d^2)^2 - 14d^2(c^2 - 21d^2)(3c^2 - 7d^2)) \] (16)
\[v_1 = d[2c^2(c^2 - 21d^2)(3c^2 - 7d^2) + c^2(c^2 - 21d^2)^2 - 7d^2(3c^2 - 7d^2)^2] \]
\[u_2 = c[c^2(c^2 - 21d^2)^2 - 7d^2(3c^2 - 7d^2)^2 + 14d^2(c^2 - 21d^2)(3c^2 - 7d^2)] \]
\[v_2 = d[2c^2(c^2 - 21d^2)(3c^2 - 7d^2) - c^2(c^2 - 21d^2)^2 + 7d^2(3c^2 - 7d^2)^2] \]

and \(z_2 = c^2 + 7d^2 \)

3b.

\[x^6 - x^5y + x^4y^2 - x^3y^3 + x^2y^4 - xy^5 + y^6 = 7z_2^7 \]

\(x + y \) is divisible by 7

\[p = \frac{x + y}{2} \] is divisible by 7, write \(p = 7p' \), so \(p^2(p^2 + 7q^2)^2 + 7q^2(p^2 - q^2)^2 = 7^2p'^2(7^2p'^2 + 7q^2)^2 + 7q^2(7^2p'^2 - q^2)^2 \)

Consider the equation \(7[7^3p'^2(7p'^2 + q^2)^2 + q^2(7^2p'^2 - q^2)^2] = 7z_2^7 \)

So \(7^3p'^2(7p'^2 + q^2)^2 + q^2(7^2p'^2 - q^2)^2 = z_2^7 \)

Let \(u = q(7^2p'^2 - q^2), v = 7p'(7p'^2 + q^2) \), then \(z_2^2 = u^2 + 7v^2 \), and \(u, v \) are given by (16); (17); (18); (19).

If \(u, v \) is the one solution, then:

\[u' = \frac{(m^2 - 7n^2)u + 14mnv}{7n^2 + m^2} \] \hspace{1cm} (21)

\[v' = \frac{2mnv + (7n^2 - m^2)v}{7n^2 + m^2} \] \hspace{1cm} (22)

are also solution: \(u'^2 + 7v'^2 = u^2 + 7v^2 \)

Notes:
- Different from case \(n = 3 \), for the case \(n = 5 \), \(u \) and \(v \) must satisfy \(u = p^2 + 5q^2 \) and \(v = 2q^2 \) \hspace{1cm} (2a), \(u = q^2 + 25p^2, v = 10p^2 \) \hspace{1cm} (2b), for the case \(n = 7 \), \(u \) and \(v \) must satisfy \(u = p(p^2 + 7q^2) \), \(v = q(p^2 - q^2) \) \hspace{1cm} (3a), \(u = q(7^2p'^2 - q^2), v = 7p'(7p'^2 + q^2) \) \hspace{1cm} (3b).
- \(u', v' \) are integer or not, depend on \(u, v, m, n \).
- For the equation \(X^{n-1} + X^{n-2}Y + X^{n-3}Y^2 + ... + Y^{n-1} = Z_2^n(nZ_2^n) \), the algorithm is the same as above.

References

[1] Quang N V, Euler’s proof of Fermat Last’s Theorem for \(n = 3 \) is incorrect Vixra:1605.0123v3(NT)

[2] Quang N V, Dirichlet’s proof of Fermat last’s theorem for \(n = 5 \) is flawed Vixra:1607.0400v2(NT)

Email:
nguyenvquang67@gmail.com
quangnhu67@yahoo.com.vn