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Abstract- Texts on Quantum Mechanics all cover the electron’s 
magnetic dipole, or spin. However, texts on Electromagnetic 
Field Theory never mention it, and electromagnetic machines 
such as electron microscopes are designed without any reference 
to a magnetic dipole. No experiment has ever shown the 
presence of a permanent magnetic dipole in free electrons. All 
we have is Pauli’s assertion that blurring masks the experimental 
results. This paper, based on Field Theory, considers the 
alternative possibility, that free electrons have an induced rather 
than a permanent magnetic dipole, and demonstrates that the 
consequences of that alternative approach are to create a 
framework for an electromagnetic model of atomic behavior. 
This is a framework only. It identifies three separate pieces of 
work needed to create the full working model. 
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I. INTRODUCTION 

The Stern-Gerlach demonstrates that a beam of silver atoms, 
when passed through a non-homogenous magnetic field, will 
split in two [1]. Silver atoms contain a permanent magnetic 
dipole and in passing through the magnetic fields some of the 
atomic dipoles will align with the field. This is the lowest-energy 
orientation and some must orient themselves in opposition (the 
highest energy orientation) to maintain the Conservation of 
Energy. The interesting fact is that only these two orientations 
appear. 

Although this twinning of the beam is seen in many 
experiments, J. Van Huele and J. Stenson state that “Spin is a 
non-classical duplicity useful for classifying atomic states but 
not observable with free electrons” (a few textbooks do 
erroneously claim that this twinning can be observed with free 
electrons) [2]. This lack of experimental proof for free electrons 
led to Pauli’s assertion that the interaction of the charge with the 
magnetic field causes an incompressible blurring of the 
trajectories from Lorentz forces, at least as great as the 
separation between the spin components. 

However, modern technology can control a beam of 
electrons very precisely using electromagnetic focusing and 
scanning. This occurs in Cathode Ray Tube televisions and 
Scanning Electron Microscopes. The electron beam travels 
through these cycling fields at speed, adding induced fields to 

the mix. There are significant non-homogeneities in these fields, 
not only across the lenses but also in the scanning mechanism, 
yet a beam can be focused to a probe spot of nanometer size with 
no evidence of twinning or blurring beyond that generated by 
the electromagnetic lens’ aberrations and diffraction. The 
Scanning Electron Microscope might be viewed as a variant of 
the Stern-Gerlach apparatus applied to electrons, and the 
controllability of the focus of the electron beam in these 
machines might appear to refute Pauli’s assertion that blurring 
masks twinning of the electron beam.  

If an electron does not have a permanent (or intrinsic) 
magnetic dipole, it must still have a dipole in certain situations, 
such as for Paramagnetic Resonance. Hence if it does not have 
a permanent dipole, it must then be able to enter a state where it 
has an induced dipole. In the scanning and focusing beams of a 
Scanning Electron Microscope an induced electron dipole would 
then charge and discharge in response to the local field 
fluctuations, and all electrons would behave identically. On the 
other hand, a permanent electron dipole, as mentioned above, 
will have a fixed dipole that randomly moves to either the stable 
aligned state or the metastable opposition state as it passes 
through the fluctuating fields, causing twinning of the electron 
beam and affecting the focusing ability of the that beam. 

Electromagnetic Field Theory does not make any design 
consideration for a permanent electron dipole and it is rare to 
find any reference to one in a textbook on Field Theory, whilst 
it is important in Quantum Mechanics. This paper takes a Field 
Theory approach and considers what might result from the free 
electron’s dipole being modelled as induced rather than 
permanent. 
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II. WHAT CAN INDUCE A DIPOLE IN A FREE ELECTRON? 

If the electric field of an electron rotates it creates a dipole. 
Refer to Fig. 1. Here the center of the electron is shown as ‘e’ 
and its electric field lines are shown dashed. The electric fields 
of the electron are shown rotating with a velocity vector ‘v’ at 
the analysis points. The motion of the electric fields induces a 
magnetic field ‘B’ that points downwards in this example. It is 
clear that a rotating electron induces a magnetic dipole. 

The next question is, what might cause the electron’s fields 
to rotate, since this rotation is required to induce the dipole? 
Consider what happens when an electron enters an electric field 
aligned transversely across (i.e. normal to) its path, as shown in 
Fig. 2.  

Such a situation will occur when the electron is entering a 
magnet – the induced electric field will be normal to its path and 
to the magnetic field. It also happens progressively as an electron 
spirals into an atomic orbit. For this analysis we ignore the 
transverse forces on the electron. In Fig. 2 the electron ‘e’ is 
moving at velocity ‘v’ up the page into a transverse electric field 
Et. The boundary of the transverse field is the lowest transverse 
vector drawn. Insets at p1 and p2 show the resultant field at these 
points as the electron’s field moves into the transverse field. 

At p1 the transverse electric field Et and the electron’s field 
Ee interact to give the energy density dW/(dx dy dz) 
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The first term is the transverse electric field’s energy density, 
and the third term is the electron’s electric field energy density, 
whilst the second term is the energy density of the interaction 
when the electron’s field is inside the transverse field – the 
potential energy density. If this second term is positive the 

energy density rises as the electron’s field moves into the 
transverse field and repulsive forces arise. If it is negative the 
energy density falls and there are attractive forces. At point p1 in 
Fig. 2 the electric fields lie in similar directions and the energy 
density rises leading to repulsive forces on the left of the 
electron. At point p2 the fields tend to oppose and cancel each 
other out reducing the energy density and leading to attractive 
forces on the right of the electron. This combination of forces 
causes the electron’s field to rotate anticlockwise in Fig. 2 as it 
enters the transverse field but as there is no net change in energy, 
the kinetic energy of the electron drops as the rotational energy 
increases. 

The electron’s electric field is now rotating, generating a 
magnetic dipole which contains energy. On exiting the far end 
of the transverse electric field, the rotation will be reversed to 
zero and the original kinetic energy will be restored. If, however, 
the rotational energy is discharged inside the transverse field 
then on exiting that field a reverse rotation will be created that 
extracts yet more energy from the kinetic energy, reducing the 
velocity a second time rather than restoring the electron’s 
original velocity. 

Where the transverse field comes form the positive nucleus 
of an atom, the electron’s rotation is prograde to its orbit. 

 

III. ATOMIC ORBITALS 

When an electron enters an atom, and starts spiraling in 
towards the nucleus, it picks up rotational energy from the 
transverse field it encounters, as described in Section II. Both 
the rotational energy and the orbital kinetic energy are provided 
by the potential energy of the electron falling towards the 
nucleus. So how much energy goes into kinetic energy, and how 
much into rotational energy? The formal equations for this part 
of the framework need to be developed, but the experimental 
evidence is very clear. 

The electron is known to wander freely in and out from the 
atomic nucleus, implying that the kinetic energy is sufficient at 
all orbits to maintain a stable orbit. The orbit is stable when the 
electrostatic force between the electron charge qe and the nuclear 
charge qn is exactly matched by the centripetal force on the 
electron mass m, from its orbital motion. So 

𝐹 =
𝑚𝑣2

𝑟
=

𝑞𝑒𝑞𝑛

4𝜋𝜀𝑟2
 

𝑚𝑣2 =
𝑞𝑒𝑞𝑛

4𝜋𝜀𝑟
 

Now the total potential energy between an electron charge qe 
and the neutron charge qn, U at an orbital radius ‘r’ is  

𝑈 =
𝑞𝑒𝑞𝑛

4𝜋𝜀𝑟
 

 
Figure 2. Electron entering a transverse electric field. 

 
Figure 1. A rotating electron creates a magnetic dipole 
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As can be seen, the orbit is stable when the kinetic energy 
mv2/2 of the orbit is equal to half the potential energy 

𝑚𝑣2

2
=

(
𝑞𝑒𝑞𝑛

4𝜋𝜀𝑟
)

2
 

The other half goes into rotational energy. Since only half of 
the potential energy is consumed by orbital kinetic energy, the 
electron is stable at all orbits, so is free to wander in and out from 
orbit to orbit. As it wanders in towards the nucleus, it picks up 
rotation and its magnetic dipole becomes stronger and creates 
stronger magnetic effects. It loses its rotation again as it wanders 
out, returning the energies of rotation and of kinetics back to 
potential energy. 

 

IV. RADIATION FROM ACCELERATING CHARGES 

It is important to realize that electron atomic orbitals never 
lose energy from centripetal acceleration, and in fact no 
accelerating charges radiate electromagnetic energy in an 
energy-conserving universe. 

We can summarize all such theories by the following generic 
“thought experiments”. Let us analyze a simple case. An 
electron is accelerated by some arbitrary means out of an 
Observer’s rest frame. In being accelerated it purportedly 
radiates energy. This is more easily grasped if, after we 
accelerate the electron for a while, we decelerate it back into the 
Observer’s rest frame as shown in Fig. 3. The acceleration and 
deceleration speeds are assumed constant, and equal but 
opposite in the electron’s frame of reference. The velocity with 
respect to the Observer, and the acceleration, are show 
graphically. 

The electron starts from rest in the Observer’s reference 
frame at point ‘a’, on the left of Fig. 3. It accelerates to the right, 
coast for a period, and then decelerates back to rest in the 
Observer’s rest frame on the right at point ‘b’. The electron 
perceives acceleration, then nothing as it coasts, then an identical 
acceleration but in the opposite direction. The electron, in its 
local frame of reference, cannot perceive deceleration any 
differently to acceleration. Hence in both periods of electron 
acceleration it must behave identically, putatively emitting 
electromagnetic radiation. Any reactive forces arising from this 
radiation are mirrored, so if they were to the left (say) in the 
acceleration they are to the right in the deceleration. From the 
symmetry in Fig. 3 it is clear that whatever forces were required 
during acceleration must be returned in full during deceleration. 
Since the energy associated with these forces is W = ∫ 𝐅 d𝐋, 
where W is the work done, F is the force, and L is the 
acceleration distance, it follows that any energy expended in 
accelerating the electron to radiate this energy must be returned 
to the Observer’s rest frame during deceleration, and there is 
therefore no net expenditure of energy to provide the 
acceleration and deceleration forces. However, two photon 
bursts have also been emitted so there is a net increase in the 
total energy of the system, by the sum of the energies in these 
two bursts. Hence the Principle of Conservation of Energy is 
violated. It follows that accelerating electrons do not radiate. 

If we consider the cyclotron in the light of this model, there 
is radiation from electrons following a curved path through a 
magnetic field. However, it cannot be the acceleration that 
induces the radiation, but a discharge of rotational energy. As 
the total electron velocity around the cyclotron increases, the 
induced electric field in the magnet increases in proportion, 
creating incremental rotation of the electron. When the electron 
enters the steering magnet, the induced transverse electric field 
causes it to pick up rotation and – from the Principle of 
Conservation of Energy – lose kinetic energy. This rotation is 
converted to radiant energy, just as in an atomic orbital energy 
discharge. On exiting the magnetic field, the lost rotational 
energy means that the original kinetic energy cannot be restored. 
We can therefore think of cyclotronic radiation as atomic-style 
energy transitions which we would experience between the far 
outer shells of atoms with ultra-massive atomic numbers. 

Because accelerating charges do not radiate as a result of that 
acceleration, electromagnetic models of atomic orbitals are 
perfectly stable and do not have the electron taking a decaying 
path into the nucleus. 

 

V. ATOMIC ENERGY TRANSITIONS 

At certain very specific combinations of orbit radius and 
velocity, the electron’s rotation can be discharged by precession 
of its induced dipole. The mechanism is not clear but appears 
related to the effect seen in the Power Ball Gyroscope Wrist 
Exerciser, where a forced procession on one axis can be used to 
spin up a gyroscope spin axis. Essentially, that gyroscope 
operates with two simultaneous spin axes. This defines the 
second equation that will be needed to fill in this framework.  

The discharge is complete, leaving no rotational energy, and 
it traps the electron. It cannot wander further out from the 
nucleus because the rotational energy is lost and cannot be 
returned to potential energy. Its magnetic dipole is lost. The 
electron can however continue to wander in and then back out 
within that limiting radius, picking up speed and rotation as it 
wanders in toward the nucleus and rebuilding its magnetic 
dipole, but not to the same strength as it would have been had it 
not discharged rotational energy. 

The electron can, at these same very specific orbits, absorb 
energy from an electromagnetic wave to restore its rotational 
energy, allowing it to wander out from the atomic nucleus once 
again. 

 

 
Figure 3. And electron accelerated from rest then brought back to rest. 
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VI. PARAMAGNETIC RESONANCE 

The magnetic dipole moment μe is proportional to the 
product of the electron’s rate of rotation ω and the magnitude of 
its electric field strength Ee. 

𝜇𝑒 = 𝑘1𝜔|𝐸𝑒| 

Moving electric fields also have momentum proportional to 
the square of their field strength, and the rotation gives the fields 
angular momentum α that is proportional to the square of the 
field strength times the rate of rotation.  

𝛼 = 𝑘2𝜔|𝐸𝑒|2 

 

The rate of precession ρ of the rotating fields in an external 
magnetic field B is then the product of B times the magnetic 
dipole moment, divided by the angular momentum. 

𝜌 =
𝑩𝜇𝑒

𝛼
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𝑘1

𝑘2

 
𝐵𝜔|𝐸𝑒|

𝜔|𝐸𝑒|2
 

 

=
𝑘1

𝑘2

 
𝐵

|𝐸𝑒|
 

 

The precession frequency is therefore proportional to B/qe, 
where qe is the unit charge on the electron. It is independent of 
the actual rate of rotation of the electron’s fields. 

The full formal derivation of this equation is the third part of 
this framework. In do so, it is important to realize that if the 
electron rotated as a solid object it would have infinite angular 
momentum, preventing it rotating at all. In fact, in this model the 
electron must rotate, but each and all radii of the charged 
particle’s electric field must be free to rotate independently of 
other radii. There is no energy cost in such a slip-style rotation. 

We can use the above formula to determine the unit charge 
of the neutron. The electron has a unit charge of qe=1.602x10-19 
coulombs and precesses at 2.8025x1010 Hz in a one Tesla field, 
so the unit charge of a neutron qn, precessing at 1.91667x107 Hz 
in the same magnetic field, is... 

 

10

7

2.8025 10

1.91667 10
n e

x
q q

x
=  

 
162.3424 10x −= coulombs 

This is nearly three orders stronger than the electron’s field, 
leading to neutron-neutron forces that are nearly six orders 
stronger than they would be if the neutron’s unit charge were 
that of the electron.  

The calculation for the proton shows it has a similar strong 
field at its heart. The proton precesses at 4.25781 x107 Hertz in 
a one Tesla field giving a proton unit charge qp of 

 

10

7

2.8025 10

4.25781 10
p eq

x

x
q=  

 
161.0544 10x −= coulombs 

This reinforces a model where the proton has a strong core 
field at its heart surrounded by a lower positron-strength field 
[3]. However, this in turn requires that a proton has a separate 
resonance for each part of its field, one for the core as described 
above, and another for its positron-like field, which will be at the 
same frequency as the electron. This latter resonance has not 
been reported, so either it does not exist (invalidating this 
model), or no-one is looking for it, or it is too difficult to devise 
an experiment which eliminates electron resonances when 
measuring proton resonances for this to be determined. 

 

VII. CONCLUSION 

An intrinsic electron dipole is never mentioned in 
Electromagnetic Field Theory. Although it is perhaps 
contentious in Quantum Mechanics to suggest that the electron’s 
dipole is not intrinsic, the fact that modern technology can get 
by with ignoring its existence makes it interesting to at least 
consider this approach within Electromagnetic Field Theory. 
This paper has attempted to do just that and the fact that it 
permits in turn a calculation of the field strength of the neutron, 
and an explanation of atomic orbital behavior, warrants at least 
a consideration of the approach. It may of course be that this 
approach works only for Field Theory models of electron 
behavior, but in that case the approach can still be used to 
develop yet more detailed Field Theory models of electron 
behavior both inside and outside the atom. 
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