GENERALIZED LORENTZ TRANSFORMATIONS

A. Blato

Creative Commons Attribution 3.0 License (2018) Buenos Aires

Argentina

This article presents the generalized Lorentz transformations of time, space, velocity and acceleration which can be applied in any inertial or non-inertial (uniform circular motion) frame.

Introduction

If we consider an inertial or non-inertial (uniform circular motion) frame S and another inertial frame Σ then the time (t), the position (r), the velocity (v) and the acceleration (a) of a (massive or non-massive) particle relative to the inertial frame Σ are given by:

$$t = \int_{0}^{t} \gamma \, dt - \gamma \, \frac{\vec{r} \cdot \mathbf{V}}{c^{2}} + \mathbf{k}$$
$$\mathbf{r} = \vec{r} + \frac{\gamma^{2}}{\gamma + 1} \, \frac{(\vec{r} \cdot \mathbf{V}) \, \mathbf{V}}{c^{2}} - \mathbf{R} - \frac{\gamma^{2}}{\gamma + 1} \, \frac{(\mathbf{R} \cdot \mathbf{V}) \, \mathbf{V}}{c^{2}}$$
$$\mathbf{v} = \frac{d\mathbf{r}}{dt}$$
$$\mathbf{a} = \frac{d\mathbf{v}}{dt}$$

where (t, \vec{r}) are the time and the position of the particle relative to the frame S $(\mathbf{R}, \mathbf{V}, \mathbf{A})$ are the position, the velocity and the acceleration of the origin of the frame Σ relative to the frame S, (\mathbf{k}) is a particular constant between frames Σ and S, (c) is the speed of light in vacuum, and $\gamma = (1 - \mathbf{V} \cdot \mathbf{V}/c^2)^{-1/2}$

•
$$\frac{d\mathbf{r}}{dt} = \left(\frac{d\mathbf{r}}{d\mathbf{t}} + \Omega \times \mathbf{r}\right) \left(\frac{1}{dt/d\mathbf{t}}\right)$$

•
$$\frac{d\mathbf{v}}{dt} = \left(\frac{d\mathbf{v}}{d\mathbf{t}} + \Omega \times \mathbf{v}\right) \left(\frac{1}{dt/d\mathbf{t}}\right)$$

•
$$\Omega = \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{A} \times \mathbf{V})}{c^2}$$

- $\frac{\gamma^2}{\gamma+1}\frac{1}{c^2} = \frac{\gamma-1}{\mathbf{V}^2}$ ($\mathbf{V}^2 = \mathbf{V} \cdot \mathbf{V}$)
- $\vec{r} + \frac{\gamma^2}{\gamma + 1} \frac{(\vec{r} \cdot \mathbf{V}) \mathbf{V}}{c^2} = \gamma \vec{r} + \frac{\gamma^2}{\gamma + 1} \frac{(\vec{r} \times \mathbf{V}) \times \mathbf{V}}{c^2}$
- $\mathbf{R} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{R} \cdot \mathbf{V}) \mathbf{V}}{c^2} = \gamma \mathbf{R} + \frac{\gamma^2}{\gamma + 1} \frac{(\mathbf{R} \times \mathbf{V}) \times \mathbf{V}}{c^2}$

General Observations

If the frame S is inertial then the observer S must use an origin O' such that $(\mathbf{R} \times \mathbf{V} = 0)$

If the frame S is non-inertial (uniform circular motion) then the observer S must use an origin O' such that ($\mathbf{R} \cdot \mathbf{V} = 0$)

If the frame S is inertial then $(\mathbf{A} = 0)$, $(\mathbf{V} = \text{constant})$, $(\gamma = \text{constant})$ $(\int_0^t \gamma \, dt = \gamma \, t)$, $(\mathbf{R} = \mathbf{V} \, t + \text{constant})$, $(\mathbf{R} \times \mathbf{V} = 0)$ & $(\Omega = 0)$

If the frame S is non-inertial (uniform circular motion) then $(\mathbf{A} \neq 0)$ $(\mathbf{A} \cdot \mathbf{V} = 0)$, $(\gamma = \text{constant})$, $(\int_{0}^{t} \gamma dt = \gamma t)$, $(\mathbf{R} \cdot \mathbf{V} = 0)$ & $(\Omega \neq 0)$

Bibliography

- [1] R. A. Nelson, J. Math. Phys. 28, 2379 (1987).
- [2] R. A. Nelson, J. Math. Phys. 35, 6224 (1994).
- [3] C. Møller, The Theory of Relativity (1952).